
preprint 
 

 

Expression cartography of human tissues using self organizing 
maps 
 
 
Henry Wirth1,2*, Markus Löffler1,3,4, Martin von Bergen2,5, Hans Binder1,4* 
 
1 Interdisciplinary Centre for Bioinformatics of Leipzig University, D-4107 Leipzig, Härtelstr. 16-18 
2 Helmholtz Centre for Environmental Research, Department of Proteomics, D-04318 Leipzig, 

Permoserstr. 15, Germany 
3 Institute for Medical Informatics, Statistics and Epidemiology, Universität Leipzig, D-4107 

Leipzig, Härtelstr. 16-18 
4 Leipzig Interdisciplinary Research Cluster of Genetic Factors, Clinical Phenotypes and 

Environment (LIFE); Universität Leipzig, D-4103 Leipzig, Philipp-Rosenthalstr. 27, Germany 
5 Helmholtz Centre for Environmental Research, Department of Metabolomics, D-04318 Leipzig, 

Permoserstr. 15, Germany 
 
* to whom correspondence should be addressed 
 
 
Abstract 
Background: The availability of parallel, high-throughput microarray and sequencing experiments 
poses a challenge how to best arrange and to analyze the obtained heap of multidimensional data in a 
concerted way. Self organizing maps (SOM), a machine learning method, enables the parallel sample- 
and gene-centered view on the data combined with strong visualization and second-level analysis 
capabilities. The paper addresses aspects of the method with practical impact in the context of 
expression analysis of complex data sets. 
Results: The method was applied to generate a SOM characterizing the whole genome expression 
profiles of 67 healthy human tissues selected from ten tissue categories (adipose, endocrine, 
homeostasis, digestion, exocrine, epithelium, sexual reproduction, muscle, immune system and 
nervous tissues). SOM mapping reduces the dimension of expression data from ten thousands of genes 
to a few thousands of metagenes where each metagene acts as representative of a minicluster of co-
regulated single genes. Tissue-specific and common properties shared between groups of tissues 
emerge as a handful of localized spots in the tissue maps collecting groups of co-regulated and co-
expressed metagenes. The functional context of the spots was discovered using overrepresentation 
analysis with respect to pre-defined gene sets of known functional impact. We found that tissue related 
spots typically contain enriched populations of gene sets well corresponding to molecular processes in 
the respective tissues. Analysis techniques normally used at the gene-level such as two-way 
hierarchical clustering provide a better signal-to-noise ratio and a better representativeness of the 
method if applied to the metagenes. Metagene-based clustering analyses aggregate the tissues into 
essentially three clusters containing nervous, immune system and the remaining tissues.  
Conclusions: The global view on the behavior of a few well-defined modules of correlated and 
differentially expressed genes is more intuitive and more informative than the separate discovery of 
the expression levels of hundreds or thousands of individual genes. The metagene approach is less 
sensitive to a priori selection of genes. It can detect coordinated expression pattern whose components 
would not pass single-gene significance thresholds and it is able to extract context-dependent patterns 
of gene expression in complex data sets. 
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1. Background 
Parallel, high-throughput biological experiments that simultaneously monitor thousands of molecular 
observables provides an opportunity for investigating cellular behavior at multiple levels of resolution. 
Especially, DNA microarray and next generation sequencing technologies allow researchers to screen 
ten thousands of genes for differences in expression between up to hundreds of individuals or 
experimental conditions of interest. Not only the progressively increasing data throughput of newest 
array and sequencing technologies challenges data analysis methods but also the increasing 
availability of large data sets from public data repositories such as gene expression omnibus 
(www.ncbi.nlm.nih.gov/geo/) or array express (www.ebi.ac.uk/microarray-as/ae/) with to date hundred 
thousands of different assays implying large-scale meta-analyses.  
These resources pose a challenge how to best arrange and to visualize the huge heaps of data in a 
fashion that enables a combined sample- and a gene-centered view [1]. Gene expression analysis often 
pursues the latter gene-centered approach. It emphasizes the identification of lists of genes that change 
their expression with respect to a reference state. This perspective is suitable for discovering details of 
the biological processes in which individual genes are involved. Contrarily, the alternative sample-
centered perspective aims at assigning samples (rather than genes) to groups according to their 
expression signature. Aggregated displays partly discard relevant information immanent in the full 
expression profiles of individual gene-related features leading to a significant loss of systems-level 
information. Contrarily, detailed gene-centered representations in form of gene lists are unsuitable to 
survey systems characteristics in large series of heterogeneous samples. Therefore, it would be 
desirable to possess methods which combine sample- and gene-centered views on multidimensional 
expression data to capture the global picture of groups of samples while simultaneously presenting the 
specific expression pattern within each individual sample. 
Self-organizing map (SOM) machine learning developed by Kohonen [2] projects data vectors from 
the original high dimensional space to reference vectors in two-dimensions. Recent applications of the 
SOM method to microarray expression data emphasized either the gene-centered perspective to cluster 
genes [3] or the sample-centered mode to map individual samples onto the SOM grid enabling, for 
example, the classification of tumor samples into a small number of diagnostic or prognostic groups 
[4-6]. However, the SOM method can be configured also in such a way that it combines both, the 
sample- and gene-centered perspectives [7, 8]. This option was applied in terms of the so-called ‘gene 
expression dynamics inspector’ (GEDI)[8]. It decodes the expression pattern of ten thousands of genes 
per sample into a two-dimensional mosaic pattern which allows the sample-to-sample comparison of 
expression profiles by direct visual inspection.  
The SOM-based GEDI program tool has been applied in studies on cell differentiation and 
development [9-11], organogenesis [12] and tumor differentiation [1]. It has been demonstrated that 
SOM analysis not only combines the gene-centered with the integrative, sample-centered views in a 
well-balanced fashion but also visualizes relevant substructures inherent in the data without forcing 
them into hierarchies and without significant loss of primary information. This intuitive image-based 
perception clearly promotes the discovery of qualitative relationships between the samples in the 
absence of an existing hypothesis.  
The SOM approach also enables to employ new concepts of data analysis based on, e.g., global 
entropy estimates and state-space trajectory characteristics [11, 12]. Moreover, the projection of the 
original ‘real’ gene expression data into reference vectors provides a simple heuristic to adequately 
reduce the dimensionality of the data while preserving their full structure without loss of essential 
information. Note that gene expression analysis typically requires data filtering prior to downstream 
steps to remove weakly expressed and noisy genes. Usually subjective filter criteria are applied 
without standardized guidelines. This filtering might be dangerous because it potentially modifies the 
intrinsic data structure leading to serious limitations in the ability to adequately capture the full 
information content of the original data set which might be hidden, for example, in weakly expressed 
structures.  
Finally, each SOM-reference vector represents one microcluster of coexpressed ‘real’ genes of similar 
expression profiles in the samples studied. Coexpressed features are likely to be functionally 
associated because biological processes are governed by coordinated modules of interacting molecules 
[13]. This so-called ‘guilt-by-association’ principle is widely invoked in functional genomics [14, 15]. 
Different methods have been developed to identify such groups in terms of sets of correlated genes 
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[16], ranked coexpression groups [15] or metagenes [17, 18] using test criteria based on multivariate 
statistics, rank-based grouping or nonnegative matrix factorization recognizing similarities between 
subportions of the data, respectively. SOM machine learning thus provides another simple heuristic for 
functional analysis which implies mutual causal associations between the genes of each metagene 
microcluster.  
In the first instance, this paper focuses on selected methodical aspects of the SOM method not or only 
partly addressed previously: Firstly, we complement the gallery of primary SOM mosaics with a 
number of summary maps characterizing the data structure after transformation into latent variables. 
These summary maps allow extraction of so-called spots which comprise clusters of co-expressed 
metagenes. Secondly, the detected spots are linked with biological knowledge to support functional 
interpretation of the data using the ‘guilt by association’ principle. Particularly, we apply gene set 
overrepresentation analysis to visualization space on two different levels of data compression given by 
the metagenes and by spots of metagenes, respectively. This grouping of coexpressed genes enables to 
significantly reduce the dimensionality of expression data from ten thousands of single genes to a 
handful of representative features. Thirdly, we therefore analyze the capability of the SOM approach 
for data filtering and dimension reduction in terms of maintaining representativeness and reduction of 
noisiness of the data. Particularly, we tackle the question whether substitution of single genes by 
metagenes improves the performance of downstream agglomerative methods such as hierarchical 
clustering, correlation and independent component analysis. Here we follow partly previous studies on 
a smaller and less diverse data set [1]. Finally, we applied SOM analysis in a sample-centered second-
level version allowing the more detailed assessment of similarity relations between the samples. We 
developed our own R-program including all analysis functionalities described below for application of 
the method in a R-environment. Our SOM method includes the calibration of microarray raw intensity 
data to minimize possible artifacts due to systematic biases caused by improper preprocessing [19]. 
Microarray expression data of a collection of human tissues were chosen as an illustrative example: 
Firstly, the selected 67 tissues provide a sufficient large data set of highly diverse expression pattern 
possessing a complex internal covariance structure. Secondly, the samples are well classified in terms 
of distinct tissues and tissue categories allowing the clear assignment of expression pattern. Despite 
these methodical issues the discovery of the human body index data set in this study is also motivated 
by the argument that tissue-specific RNA expression pattern indicate important clues to the 
physiological function of the coding genes suitable as a reference for comparison with diseased 
tissues, as well as a basis for identifying molecular markers of injury to specific organs and tissues. 
Our analysis thus provides a first step towards a SOM atlas of gene activity in normal human tissues 
which complements previous work on the diversity of gene expression in human tissues [20-22].  
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2. Results and discussion 

2.1. Expression maps of human tissues 
Microarray expression data taken from the human body tissue index data set were input into the SOM 
machine learning algorithm after calibration and normalization of the raw probe intensities as 
described in the Methods section below. Our SOM method transformed the whole genome expression 
pattern of about 22,000 single genes into one mosaic pattern per tissue studied. Figure 1 shows 
selected SOM-fingerprints of 42 selected tissues using a 60x60 mosaic grid. The collection of SOM of 
the complete set of 67 tissues is given in Additional file 2. Each tile of the SOM mosaics refers to one 
of 3,600 metagenes characterizing the expression landscape of the data set. The metagenes act as 
representatives of miniclusters of single genes with similar expression profiles. Their number varies 
from metagene to metagene (see below). The color gradient of the map was chosen to visualize over- 
or underexpression of the metagenes in the particular tissue compared with the mean expression level 
of each metagene in the pool of all samples studied: Maroon codes the highest level of gene 
expression; red, yellow and green indicate intermediate levels and blue corresponds to the lowest level 
of gene expression. Each individual mosaic exhibits characteristic spatial color patterns serving as 
fingerprint of the transcriptional activity of the respective tissue sample. 
The tissues are grouped into ten categories in accordance with the classification used in Hornshoj et al. 
[23]. Most of these categories show typical SOM-landscapes which are characterized by red and blue 
spots at specific positions due to over- and underexpressed metagenes as the most evident features. For 
example, the profiles of adipose tissues might be identified by the maroon-red overexpression spot in 
the right upper corner and those of nervous tissues by a similar spot in the left upper corner.  
Some tissues combine the characteristic spot pattern of different tissue categories (see Figure 2). For 
example, the expression fingerprint of tongue (no. 24) shows the typical overexpression spot evident 
in the profiles of other epithelial tissues (e.g. 21: oral mucosa) but also the spot typically found in 
muscle tissues (e.g. 32: skeletal muscle). The physiology of tongue tissue as a ‘mucosa covered 
muscle’ is thus reflected in the expression profile. Another example is pituatary gland (profile no. 5), 
an endocrine gland located near hypothalamus: Its SOM landscape shows the upregulated spot found 
in other nervous system tissues (e.g. cerebral cortex or the adjacent hypothalamus, no. 49 and 56, 
resp.) in the left upper corner, as well as a unique spot in the right lower area not found in the profiles 
of other tissues. This spot obviously collects genes which are specifically overexpressed in pituatary 
gland (see below), whereas the first spot represents a common signature typically found in nervous 
system samples. Some SOM-fingerprints are outliers in their tissue category: For example, small 
intestine (no. 12), classified as digestive tissue, shows the overrepresentation pattern of muscle type 
tissues. This is not surprising as this organ consists of a double layer of smooth muscle. Also 
myometrium (no. 33), the smooth muscle of the uterus, is classified as muscle. Its SOM expression 
profile however closely resembles that of endometrium (no. 26) and also of ovary (no. 27), reflecting 
the common function of these three organs in female reproduction. 
Taking together, comparison of the individual SOM fingerprints within each tissue category reveals 
similar pattern in most cases whereas different tissue types show consistent differences between their 
landscapes. Such differences can be detected, for example, by simple visual inspection of the mosaic 
pattern of nervous, immune system and endocrine type tissues. Hence, comparison of the SOM-
textures allows the straightforward grouping of the tissues into different categories based on 
differences of their expression patterns. 
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Figure 1: SOM expression profiles of 42 selected tissues. The tissues are sorted according to tissue categories in 
agreement with the classification used in Hornshøj et al. [23]. The color of the heading of each tissue category 
and the numbering of tissues are used also in the other figures throughout the paper. 
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Figure 2: Specific spots in selected expression profiles: The SOM-pattern of tongue (a) shows two spots of 
upregulated  metagenes. One of them is characteristic for mucosa type tissues (b; red circles) and the other one is 
found in muscle tissues (c, yellow circles). Pituatary gland (d) shows a specific spot for this particular tissue and 
one which is characteristic for nervous system tissues (e and f, blue circles) as well. 

2.2. Metagene characteristics and overexpression spots 
The metagene expression profiling map in Figure 3a illustrates the systematic character of the 
alterations of metagene expression within the SOM with strongest similarities between adjacent 
metagenes. It also shows that more distant metagenes largely differ in their profiles: In the centre one 
finds virtually invariant metagenes whereas the profiles along the borders of the map more strongly 
vary thus collecting specific information for selected tissues. This distribution of the profiles reflects 
the fact that SOM machine learning tends to maximally segregate different modes of variable profiles 
on one hand while maximizing their distance with respect to virtually invariant profiles on the other 
hand. Note also, that the number of real genes per metagene strongly varies as indicated by the 
numbers given in each tile of the metagene expression profiling map. 
The metagene expression profiling map uses a smaller number of tiles and thus a coarse grained 
latticing of the mosaic. The population and variance maps shown in panel b and c of Figure 3 provide 
information about the number of single genes per metagene minicluster and the variability of the 
metagene profiles via appropriate color coding using the finer granularity of the individual tissue 
profile. SOM-machine learning scales the difference between the expression profiles of adjacent 
metagenes inversely to their population, i.e., adjacent metagene profiles become more similar for 
highly populated metagenes. This way the method tends to distribute the single genes over as much as 
possible tiles. The population map reveals that the real genes nevertheless inhomogeneously distribute 
among the tiles of the mosaic (Figure 3b). Highly populated metagenes (nk>20, see yellow and red 
tiles) predominantly group along the edges of the map whereas only a few highly populated tiles are 
found in its central area. A zone of ‘empty’ metagenes lacking real genes (nk=0, see dark blue tiles) 
clusters in four regions halfway between the centre and the edges of the map. The tile of maximum 
population (nk=308, see the dark brown tile slightly left from the centre of the map) refers to genes 
with virtually invariant, mostly absent specific expression in all tissues studied. These genes form the 
strong peak in the distribution of differential expression shown in the methods section below (see also 
Figure 11c and d below).  
These invariant genes give rise to the dark blue spot in the central area of the variance map (Figure 
3c). The variance map also reveals that other nearly invariant metagenes cluster around this tile in the 
central area of the map (see blue and green areas in Figure 3c). Both, invariant and empty metagenes 
carry essentially no specific information as classification markers in transcriptional profiling. Hence, 
the tiles occupied by empty and invariant genes form regions not suited for differential expression 
analysis between the tissues studied.  
The more variant and higher populated metagenes reveals an underlying spot like pattern in direction 
towards and at the boundaries of the map (red areas in Figure 3c) which largely agrees with the over- 
and underexpression spots detected in the SOM mosaics of individual tissues. For an overview about 
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all observed spots we generate two types of integral maps characterizing over- and underexpression, 
respectively (Figure 3d and e). They transfer either the over- or the underexpression spots observed in 
the individual profile into one master map. The profiles of selected metagenes reveal marked under- 
and overexpression for distinct tissue types which transform into a characteristic spot patter (see 
Figure 1 and Figure 3). For example, the metagenes in the left upper corner show overexpression for 
nervous system and underexpression for immune system tissues whereas the metagenes in the right 
lower corner are, in turn, characterized by overexpression in immune system tissues. Table 1 assigns 
the different spots to the tissues mosaics in which they appear. 

 

 
 
Figure 3: Metagene characteristics: Metagene expression profiling map of the 67 tissues studied (panel a), 
population (b), variability (c, Eq. (2)), metagene over- (d) and underexpression (e) maps. Panel a): Metagene 
profiles are shown by thick curves whereas thin grey ones show the profiles of associated real genes. The vertical 
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axis is the logged expression change relatively to the mean expression of the selected gene averaged over all 
tissues. All tiles use the same vertical scale. The number in each tile gives the population of the respective 
metagene cluster with real genes. The bars color-code the tissue samples (compare with headings in Figure 1). 
The circles indicate over- and under-expression in selected tissues listed in the boxes (see text). One sees that the 
metagenes in the left upper and the right lower corner cluster genes strongly overexpressed in nervous (grey 
circle) and immune system (blue circle) tissues, respectively. Panel d) and e): Red/maroon spots mark 
overexpression, blue ones underexpression. Selected spots are marked by letters (capital and lower case letters 
refer to maxima and minima, respectively). They are assigned to different tissues in Table 1. 
 
Table 1: Functional assignment of tissue specific over- and underexpression spots using the GO-terms biological 
process/molecular function (see also Figure 3d and e). 
 
Spot a Over-/underexpressed in tissue a Biological process / Molecular function 

(overrepresented genes set) b 
A Nervous system samples (45-67), pituatary 

gland(5) 
Nervous system development 
Synaptic transmission 
Transmission of nerve impuls 

B Muscle related: small intestine (12), tongue 
(24), heart atrium&ventricle (29, 30), 
muscle (31, 32) 

Structural constituent of muscle 
System process 
Striated muscle contraction 

C1 Liver (10), kidney cortex&medulla (8,9) Substrate specific transporter activity 
Carboxylic acid metabolic process  
Organic acid metabolic process 

C2 Pancreas (6) Carboxypeptidase activity 
Carboxylesterase activity 
Digestion 

D Adipose tissue (1-3), epithelium tissue (18-
26), ovary (27) 

Tissue development 
Organ development 
Ectoderm development 

E Male reproduction: testis (28) Sexual reproduction 
Reproduction 
Gamete generation 

F Immune system samples (34-44) Immune system process 
Immune response 
Defense response 

G Pituatary gland(5) Hormone activity 
DNA fragmentation during apoptosis 
Apoptotic nuclear changes 

H Bone marrow (40), thymus (43) Cell cycle process 
Mitotic cell cycle 
Cell cycle phase 

a Immune system (34-44) Regulation of axonogenesis 
Regulation of structural morphogenesis 
Regulation of neurogenesis 

b Various samples without clear assignment, 
e.g., sexual reproduction and muscle 

Microtubule binding 
Protein maturation 
Tubulin binding 

c Epithelium and muscle tissues RNA metabolic process 
Biopolymer metabolic process 
RNA processing 

 
a Spots are assigned in Figure 3d and e 
b Top-three overrepresented gene sets 
 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.5
82

5.
1 

: P
os

te
d 

21
 M

ar
 2

01
1



9 
 

2.3. Gene set overrepresentation 
The SOM assigns mini-clusters of real genes to each metagene represented by a tile in the two-
dimensional mosaic pattern. For each of these mini-clusters one can estimate the degree of 
overrepresentation with respect to genes taken from a pre-defined gene set using the hypergeometrical 
(HG-) distribution distribution. It provides one p-value per metagene which can be visualized in the 
same two-dimensional mosaic as the original SOM via appropriate color-coding. This so-called 
overrepresentation map allows identification of metagenes containing an overrepresented fraction of 
genes from the particular gene set by visual inspection. This map applies to all samples studied 
because the genes in each of the mini-clusters are invariant for all samples used to train the SOM. The 
overrepresentation map thus reflects the global overrepresentation pattern in the experimental series 
studied. 
Figure 4 shows overrepresentation maps for selected gene sets. Their overrepresentation is usually 
observed in different regions of the map, for example in the right lower and left upper corner for genes 
related to ‘immune system process’ and to the ‘transmission of nerve impulse’, respectively. The 
examples also show that overrepresentation is either strongly localized in one region of the map (e.g. 
for ‘nervous system’ or, to a less degree, for ‘RNA repair’ and ‘immune system process’) or it spreads 
over wider areas of the SOM (e.g. for ‘apoptosis’). 
Overrepresentation analysis is not restricted to single tiles but it can be applied also to the over- and/or 
underexpression spots of adjacent tiles discussed in the previous subsection. Hence, overrepresentation 
of selected gene sets can be linked with alternative properties of the expression profiles such as 
overexpression simply by a combining spot selection and subsequent overrepresentation analysis. 
Particularly, the genes associated with each spot are analyzed for overrepresentation of genes taken 
from the collection of 1454 gene sets downloaded from the GSEA-homepage according to the GO-
categories molecular function, molecular process and molecular component (see methods section). The 
hypergeometrical distribution then provides an ordered list of gene sets ranked with decreasing 
significance of overrepresentation for each of the spots.  
Figure 5a shows nine spots of strongly overexpressed metagenes and the three leading gene sets in the 
list to get a first idea about the possible molecular function of the genes in the spot. The most 
significant, top-twenty gene sets for three selected spots are presented as bar plots in Figure 5b. For 
example, spot A in the left upper corner of the SOM is clearly related to molecular processes in 
nervous cells according to the three leading gene sets (see also Table 1). In addition, ten out of the top-
twenty gene sets are also related to nervous system (Figure 5b). Also other spots can be associated 
with distinct molecular functions such as immune system processes (spot F), sexual reproduction (spot 
E) or muscle contraction (spot B). 
The heat map in Figure 6 links overrepresentation of the three topmost gene sets with differential 
expression in a tissue- and spot-specific fashion. It clearly reveals that essentially only one spot with 
clearly assigned molecular function is overexpressed in nervous (see grey bar on top of the heatmap 
for assignment), muscle (green) and homeostasis (ocher) tissues. Some of these tissue-specific gene 
sets are also overexpressed in other tissues. For example, the muscle-specific gene sets are highly 
expressed also in tongue and small intestine which partly contain muscle tissues (see above). 
 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.5
82

5.
1 

: P
os

te
d 

21
 M

ar
 2

01
1



10 
 

 
 
Figure 4: Overrepresentation maps of six selected gene sets containing between Nset= 157 and 472 genes. 
Overrepresentation in each tile of the mosaic is calculated in units of log(pHG) using the hypergeometrical 
distribution and color-coded (maroon>red>yellow>green>blue). White areas indicate metagenes not containing 
genes from the respective set). Strongest overrepresentation of the different gene sets is found in different 
regions of the SOM (see red circles). Overrepresentation can be concentrated within one or a few adjacent 
metagenes (e.g. nervous system, panel b) or spread over different disjunct regions of the map (apoptosis, panel 
d). 
 
It is noteworthy that the enriched areas in the overrepresentation maps of ‘nervous system 
development’ and of ‘immune response’ gene sets (see Figure 4) largely agree with the overexpression 
spots in the expression profiles of nervous and immune system tissues, respectively. A non-negligible 
number of members of these gene sets are however located also in other regions of the 
overrepresentation map which are partly assigned to alternative functions. For example, genes from 
the ‘immune response’ set also accumulate in spot D assigned to tissue development. It is 
overexpressed in a larger number of tissues not explicitly assigned to the category of immune system 
tissues. Moreover, subgroups of genes from these gene sets are located in the central area of the map 
which accumulates virtually invariant and weakly expressed genes (compare with Figure 3). Possibly 
part of the genes in these sets are incorrectly specified and/or possess a more complex activation 
pattern ‘beyond’ the similarity metrics used to train the SOM. We suggest that combination of gene set 
overrepresentation analysis with SOM-expression profiling allows verification and further refinement 
of existing gene sets. 
In summary, gene set overrepresentation analysis links selected gene sets and different regions of the 
SOM with single-tile resolution. These regions, in turn, can be collected into over- or underexpression 
spots in different tissues. Overrepresentation analysis then provides lists of significantly 
overrepresented gene sets which characterize the respective spot in a functional context. Some of the 
spots can be assigned to specific molecular characteristics such as ‘nervous processes’, ‘muscle 
contraction’ and ‘immune response’. Both, the single-set SOM-wide and the multi-set spot-wise 
overrepresentation analysis constitute a link between characteristic expression pattern and concepts of 
molecular function of the associated genes. These orthogonal views complement each other: The 
former one judges the homogeneity of a selected set with respect to different metagene expression 
profiles. The latter one assigns selected expression profiles to their tentative molecular function. 
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Figure 5: The overexpression summary map shows nine spots which are strongly overexpressed in different 
tissues (part a). Overrepresentation of a collection of 1454 gene sets is estimated for each spot using the 
hypergeometrical distribution. The right legend assigns the three most significantly overrepresented gene sets to 
the respective spots. The top-twenty gene sets of the ranked list are shown in part b for three selected spots. The 
length of the bars scales with the logged overrepresentation p-value of the sets. The color assigns the category of 
the gene sets according to the GO terms ‘molecular process’ (green), ‘molecular component’ (red) and 
‘molecular process’ (blue). 
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Figure 6: Overexpression summary heatmap of selected global spots (A – H, see Figure 5 and Table 1) in all 
tissues studied. They are grouped in horizontal direction according to their tissue categories (see color bar on top 
of the map where the colors are assigned to the categories in agreement with Figure 1). Each spot refers to one 
row. It is associated with the top-three overrepresented gene sets on the right axis of the map. The expression 
scale refers to the maximum metagene expression in the respective spot. 
 

2.4. Filtering metagenes and single genes 
The reduction of the size of the data set by removing genes that carry essentially no or low information 
is common practice to improve downstream analysis such as two-way hierarchical clustering of genes 
and samples. Such data reduction has been shown to result in dendrograms which more accurately 
reflect relationships between the samples with increasing stringency of the filter applied [24]. This 
improvement can be rationalized by the fact that random noise tends to disrupt similarity relations 
between genes and samples. On the other hand, also the opposite trend is possible: systematic errors in 
the data, e.g. due to batch effects, can cause artificial clustering if the bias affects subsets of genes in a 
coordinated fashion. Hence, a particular filter aims at improving data by removing either noisy, biased 
and/or weakly expressed genes. On the other hand, extreme filtering is dangerous because it may 
eliminate valuable information, for example, about genes of relatively low and thus noisy expression 
but with important biological impact. Hence, filtering is an optimization task with the requirement of 
removing virtually irrelevant data while preserving all information in the remaining part of the data 
which is important in the context of the particular issue studied. We will shortly call the latter property 
as the ‘representativeness’ of a filter and the former one as its ‘noisiness’, i.e. the mean noise-to-signal 
ratio of the data included. Optimization thus aims at maximizing representativeness while minimizing 
noisiness. 
‘Top-list selection’ is probably the simplest method of filtering: One first defines a ranking criterion 
such as differential expression or variability (see below), then one ranks the data accordingly and 
finally selects a certain number of features on top of the list for further analysis. The length of the list 
can be cut by applying different criteria such as a fixed number of features or a significance threshold. 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.5
82

5.
1 

: P
os

te
d 

21
 M

ar
 2

01
1



13 
 

SOM analysis enables alternative filtering based on the metagenes as representative features 
characterizing the expression profiles of microclusters of single genes. In other words, the metagene 
profiles itself can serve as a filtered and compressed extract of the original data. Our SOM-method 
assigns the expression profiles of the N=22,277 input genes measured in 67 tissues to 3,600 metagene 
clusters. Each metagene cluster consequently contains G/M=<nk>=6.2 real genes on the average. 
Hence, complexity of transcriptome characterization is reduced to about one sixth by utilizing the 
metagenes instead of the ‘real’ genes. 
Moreover, the local G/M-ratio considerably varies between the different metagene clusters with 
minimum and maximum values of nk=0 (empty metagenes) and nk=308 (see Figure 3b). Thus each 
metagene can be representative for a very different number of real genes. In consequence, the 
importance of transcriptome information is effectively reweighted by using metagenes instead of real 
genes. For example, the metagene of highest population (nk= 308) clusters genes of virtually invariant 
expression profiles. These essentially not-informative features comprise 1.4% (308/22,277x100%) of 
all single genes but only 0.3% (1/3,600x100%) of all metagenes. Hence, their contribution is 
effectively down-scaled by nearly a factor of ~1/5 if one uses the metagenes instead of real genes. In 
other words, SOM clustering itself can be viewed as a sort of selective compression filter reducing the 
number of features considered by condensing larger numbers of similar single gene profiles into one 
metagene profile with a profile-specific compression factor, Fk

compression= (nk⋅K/N)-1 (K and N are the 
total numbers of metagenes and of single genes). 
Metagene filtering is expected to outperform single gene filtering in terms of representativeness and 
noisiness because the reduced number of metagenes not only preserves the diversity of the different 
single gene profiles but also amends the resolution of downstream analysis due to the reduced noise of 
the metagene profiles. With the objective of proving this expectation we compare two options for data 
filtering by applying top-list selection either to the metagenes or to the single ‘real’ genes. We used 
three types of filters to reduce the number of single genes and metagenes, namely fold change(FC)-
expression, variance and significance (FDR-) filtering (see Additional file 3 and the methodical 
section). In the first case the full set of absolute FC-values of all genes (real genes and metagenes) 
under all conditions studied are ranked and a certain number of topmost features is considered for 
further analysis.  
Note that lists of equal numbers of metagenes and single genes are asymmetric owing to data 
compression of the metagene miniclusters discussed above. The different sample sizes selected by 
both options of filtering are given in detail Additional file 3. Metagene lists integrate roughly a tenfold 
larger list of ‘real’ genes in our particular SOM settings. Figure 7 compares therefore the selected 
areas in the SOM mosaic filtered by FC-lists of different lengths if applied either to metagenes or to 
single genes. The shorter metagene lists cover essentially the same regions of the SOM as the longer 
single gene lists with considerable overlap of the selected meta- and single genes. The large overlap 
demonstrates that the metagene filter is representative for the metagene-associated single genes which 
to a large fraction are also selected if one applies single gene filtering using a much longer list. For 
example, 3,529 out of the 3,600 single genes are shared by the FC-3600 single gene and the FC-1000 
metagene lists (‘FC-1000’ denotes the ‘fold change top-1000’ criterion, see Figure 7a). However, 444 
out of the top-1000 metagenes do not contain the genes from the single gene list which, on the other 
hand, contains 71 single genes in 44 metagenes not selected by the metagene list. Hence, the metagene 
filter covers a wider range of expression profiles than the single gene filter which selects only a few 
additional features. Figure 7b illustrates that different spot areas are progressively excluded from the 
list of filtered features with increasing stringency of the filter as expected. 
In addition to FC-filtering we applied variance and significance filtering which select profiles of 
largest variance or of highest significance of differential expression. The former filter type possesses 
similar properties as the FC-filters. In contrast, significance filters select more diverse collections of 
features spread over partly different areas in the respective mosaic representations (see Additional file 
3). Below we apply FC-filtering in the more detailed analysis to judge the consequences of both filters 
for selected downstream characteristics. 
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Figure 7: Filtering genes or metagenes by differential expression: Different numbers of metagenes (left mosaics) 
and single genes (right mosaics) are selected using the FC-1000/FC-3600 (a) and FC-100/FC-1000 (b) filters to 
account for the data compression in the metagene clusters. The brown areas in the left part show the selected 
metagenes and the colored tiles in the right part the fraction of single genes in the metagene miniclusters 
(maroon to blue codes high to low fractions). The Venn-diagrams illustrate the degree of overlap between the 
metagenes and single genes selected by both filters.  
 

2.5. Metagene- and single genes-based clustering analysis 
In the next step we subjected the lists of filtered genes and metagenes to secondary standard analysis 
methods to assess the particular effect of filtering. We performed one- and two-way hierarchical 
clustering and independent component analysis (ICA) using either the expression values of a list of 
real genes or of a list of metagenes of selected lengths. Hierarchical cluster analysis was applied 
because this method is often routinely run as a first step of data summary in microarray data analysis 
[25]. 
One way hierarchical cluster trees obtained from single gene and metagene FC-lists of length 3600, 
1000 and 100 reflect similar properties showing that clustering is relatively robust with respect to the 
chosen conditions (Figure 8a). Tissues from categories with homogenous SOM-pattern such as 
nervous (grey), adipose (orange) and immune system (blue) tissues (see also Figure 1) robustly cluster 
together at nearly all conditions studied. Note that the blue cluster of immune system tissues however 
partly decomposes if one uses the shortest single gene list (FC-100) owing to the loss of 
representativeness. On the other hand, the FC-100 metagene list of equal length still produces a 
compact blue cluster reflecting the improved representativeness of the same number of metagenes.  
The blue immune system tissue cluster splits for both, the single gene and metagene filters in the 
opposite limit of low stringency using FC-3600 lists. These lists obviously become too long with 
worse noisiness characteristics. Note, that the FC-3600 metagene list considers all available metagenes 
whereas the FC-3600 single gene list is still limited to only 16% of all available single genes. Longer 
single gene lists even more downgrade the observed cluster structure due to the progressive inclusion 
of noisy genes (data not shown). In summary, metagene lists are more representative and less noisy 
than single gene lists of equal length in downstream cluster analysis. On the other hand, also the length 
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of metagene lists is optimum in the intermediate range (e.g., the FC-1000 list in our study): shorter and 
longer lists are suboptimal in terms of representativeness and noisiness, respectively. 
The cluster trees generated on the basis of single gene and metagene lists reveal another interesting 
difference (compare the first and second rows in Figure 8a): The mean length of the outmost branches 
between the periphery of the circles and the first split point is considerably shorter for the metagene-
based trees than for the single gene-based trees. This relation reverses for the innermost branches. This 
systematic difference reveals that metagene clusters are more compact than the respective single gene 
clusters (an illustrative explanation for this difference is given in Additional file 3) which, in turn, 
reflects the decreased noisiness of the metagene data. In the right part of Figure 8a we compare the 
inter-to-intra cluster ratio of the Euclidian distances between the samples (F-score) for three tissue 
categories as a simple measure of the compactness of their clusters. The F-score of the metagenes 
systematically exceeds that of the single genes.  
Figure 8b shows two-way hierarchical cluster heatmaps after FC-filtering of metagenes and single 
genes. This type of representation visualizes similarity relations between the samples in horizontal 
direction (see the color bars which assign the tissue categories) and between the filtered genes in 
vertical direction. One immediately observes that the contrast of the heatmaps increases from the left 
to the right because more stringent filters trivially accentuate larger differences between over- (red) 
and under (blue) expressed features. The loss of contrast for the longer FC-3600 and FC-1000 lists 
compared with the FC-100 list is stronger for the metagenes because data compression includes a 
larger fraction of features of small differential expression (green and light blue areas) then the 
respective single gene lists. On the other hand, the short FC-100 list of metagenes produces the 
heatmap of strongest contrast illustrating the favorable signal-to-noise characteristics of the 
metagenes. 
The heatmaps express detailed information about the amount of genes differentially expressed in the 
various tissues (cluster size, see the right part of Figure 8b). For example, the percentage of single 
genes consistently overexpressed in the nervous tissues and underexpressed in the other tissue 
categories (see also the green/maroon area associated with the grey bar on top of the heatmaps) 
increases from values of less than 50% (FC-3600) to a dominating amount of more than 90% (FC-100) 
whereas the percentage of genes overexpressed in other tissue categories nearly vanishes. Hence, the 
relative contribution of genes collected into clusters characterizing a selected tissue clearly depends on 
the length of the list. The use of metagenes instead of single genes effectively re-weights the 
contribution of tissue-specific genes. Particularly, the percentage of metagenes which are specific for 
nervous tissues is markedly smaller in the metagene list giving rise to a more balanced distribution of 
features. 
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Figure 8: The effect of filtering of single genes and metagenes on the results of one-way hierarchical clustering 
trees (part a), two-way hierarchical cluster heatmaps (part b) and independent component analysis (part c) of the 
67 tissues studied. The samples are color-coded according to the classification of tissues introduced in Figure 1. 
Top-list FC filters select the 3600, 1000 and 100 (from left to right) most strongly differentially expressed 
genes/metagenes in all samples. Note that the ICA-plots are invariant with respect to reversing the direction(s) of 
the coordinate axe(s) and thus to mirror and rotational symmetry operations. The right part shows different 
benchmark criteria for different lengths of the FC-lists ranging from FC-3600 to FC-100 (see top axis). The 
benchmark criteria were applied to nervous system, immune system and epithelium tissues (see text and 
Methods section). 
 

2.6. Metagene- and single genes-based ICA analysis 
While clustering may identify groups of samples which share genes/metagenes of similar expression 
pattern it does not represent the multivariate structure of the data. Such aspects become highlighted by 
projecting the data to subspaces of lower dimension spanned by interesting modes such as the 
components of minimum mutual statistical dependence. ICA provides a visual plot in the space 
spanned by these independent components which are shown to point along the directions of maximum 
information content in the data or, equivalently, of non-normal distribution of the data [26]. We 
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applied ICA to single and metagene lists to see which of the alternative data sets offers the better 
separation among the various tissue groups. 
The ICA-plots of the two leading independent components shown in Figure 8c illustrate the degree of 
similarity between the samples in dependence on the selected filters. All filters except one provide 
virtually three clusters, namely that of nervous (grey circles), immune system (blue) and the remaining 
tissues. The FC-100 single gene filter merges the latter two clusters due to its small representativeness 
with respect to non-nervous tissues (see also the respective heatmap in Figure 8b). Note also that the 
relative dimension of the three clusters in the ICA-plot and thus also their intrinsic resolution changes 
from filter to filter. These trends reflect the subtle interplay between the length of the list and its 
representativeness and/or noisiness which might overweight one tissue category and underweight 
another one. For example, the specifics of epithelium tissues (cyan circles) become relatively well 
resolved using the FC-100 metagene or, alternatively, the FC-1000 single gene lists. The respective 
heatmaps in Figure 8b confirm that this tissue category is well represented by a reasonable number of 
specifically over- and underexpressed genes/metagenes in these lists. The fraction of these genes 
however clearly decreases in the other filtering lists giving rise to the suboptimal resolution of the 
cluster of cyan circles in the ICA plots. The right part of Figure 8c compares the relative size of three 
clusters in terms of the fraction of the covered coordinate region. The metagene-based clusters are less 
dependent on the chosen length of the list and more balanced especially for short lists. 
The ICA plots in Figure 8c reveal another interesting property inherent in the expression profiles: The 
points especially of nervous (grey) and immune systems (blue) but also of epithelium (light blue) 
tissues form chain-like clusters which point roughly along the coordinate axes. This pattern reflects the 
fact that the transcriptional activity of nervous tissues on one hand side and immune system and 
epithelium tissues on the other hand side are governed by different and mutually independent groups 
of genes. We will discuss this point below more in detail in the context of the SOM mosaics. In the 
context of the filter lists it should be noticed that this property of the data gets partly lost after most 
stringent single gene filtering (FC-100) whereas essentially all metagene lists well reflect the 
independence of the expression pattern of the different tissue categories. 
In summary, ICA analysis illustrates the robustness and the discrimination power inherent in the 
metagene lists. The use of metagenes allows compressing the length of the list by about one order of 
magnitude without loss of information. The filtering conditions govern the resolution between 
different tissue categories in the ICA plot in a subtle way. Short and intermediate metagene lists 
provide best results in this respect. Notably, consideration of the full metagene information without 
filtering (FC-3600) provides still quite reasonable resolved clusters in the ICA-plot. In conclusion, 
metagenes are more robust with respect to the quality of secondary analysis than single gene lists 
owing to their better representativeness. Hence, the reduction of dimensionality provided by SOM 
analysis improves the performance of downstream hierarchical clustering and ICA analysis. The 
number of considered features can be reduced by about one order of magnitude without loss of 
information if one uses metagenes instead of real genes. Clustering and ICA characteristics obtained 
for the metagene and single gene lists after variance and FDR filtering virtually agree with the results 
of FC-filtering (see Additional file 4).  
 

2.7. Metagene- and single gene-based correlation analyses 
In the next step we calculated pairwise correlation maps (PCM) illustrating Pearson correlation 
coefficients for all mutual combinations between the tissues. The PCM-heatmaps shown in Figure 9a 
are obtained using the FC-1000 (single genes, left part) and FC-100 (metagenes, right part) filters 
representing both roughly the same number of genes (see discussion above). The metagenes clearly 
provide PCM-patterns of higher contrast which becomes emergent as diagonal and off-diagonal dark 
red/maroon and blue clusters. They refer to tissue pairings with highly correlated and anti-correlated 
expression profiles, respectively. Both, the single gene and the metagene PCM reveal essentially four 
groups of tissues which consist mainly of nervous (see the grey bar at the margins), immune system 
(blue bar), muscle (green bar) tissues and also of a mix of diverse tissue categories. 
The expression profiles of nervous tissues strongly anti-correlate with essentially all the other tissue 
categories, i.e. a gene overexpressed in nervous tissues usually becomes underexpressed in non-
nervous tissues and vice versa. The original expression SOM always reflect this property showing one 
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characteristic overexpression spot in the left upper corner (see spot A in Figure 3 and Table 1) and 
otherwise a blue and light blue background due to underexpressed genes/metagenes (Figure 1). Muscle 
tissues show strong off-diagonal correlation with the group of diverse tissues but not with the immune 
system tissue group. This property can be mainly attributed to spot D in the right upper corner in the 
SOM of these tissues whereas the diagonal correlation component mainly originates from the muscle-
specific spot B (see Figure 3 and Table 1). The cluster of immune system tissues along the diagonal of 
the PCM can be attributed to spot F in their SOM. Hence, the diagonal and off-diagonal clusters in the 
metagene PCM can be related to different spots in the original expression SOM of the different tissue 
categories. 
To get further insights into the origin of the contrast differences between the single gene and metagene 
PCM we calculated frequency distributions of the pairwise correlation coefficients either between 
tissues of one category or between tissues of different categories (Figure 9b). Intra-category 
correlation coefficients are expected to be close to unity because samples of the same categories show 
usually similar expression profiles. Indeed, these metagene correlation coefficients are close to unity 
as expected whereas the respective single gene correlations show a markedly broader distribution 
resulting in smaller correlation values on the average. Inter-category pairings of single genes show a 
broad distribution centered about zero with a strong component of anti-correlation near -0.5 revealing 
that single genes of different tissue types are either not or anti-correlated. The metagenes produce a 
more resolved trimodal distribution with strong components of correlated, anti-correlated and 
uncorrelated metagenes near 1.0, -0.7 and 0.0, respectively. The component peaks are clearly sharper 
and the whole distribution covers a wider range of correlation values. Hence, the metagenes obviously 
enable the better resolution of different subcomponents produced by different tissue types. 
The PCMs reveal that anti-correlated metagene expression profiles are especially found between 
nervous tissues and the other tissues. We therefore calculated a second set of frequency distributions 
restricting the intra-tissue correlations to nervous tissues only and the inter-tissue correlations to that 
between nervous and all the other tissues (Figure 9c). The latter histograms reveal that the degree of 
anti-correlation is much stronger for the metagenes than for the single-genes again showing that 
metagenes more sharply express the correlation pattern of gene expression. Note that this anti-
correlation is evident already in the textures of the original tissue SOM: Large blue areas in the SOM 
of nervous tissues reveal under-expression of the respective metagenes which become selectively 
overexpressed in the SOM of other, non-nervous tissues (Figure 1). The inter-nervous tissue 
correlation histogram also shows a strong correlation peak near unity which is caused by the 
metagenes commonly overexpressed in nervous tissues and pituatary gland (endocrine tissue, no. 5) as 
discussed above. 
In summary, our extended dataset of human tissues confirms the results of Guo et al. [1] who found 
that SOM based metagenes well recapitulate gene expression profiles of the entire gene dataset despite 
dimension reduction and that the visual patterns capture the real similarity relationships among 
samples with a high fidelity. Moreover, using metagenes instead of real genes one can improve the 
resolution power of popular standard analyses based on two-way hierarchical clustering or pairwise 
correlation heatmaps. The SOM metagene pattern serves as an adequate data filter which appropriately 
selects representative features characterizing the expression properties of the system studied.  
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Figure 9: Single gene (left panels) and metagene (right panels) correlation analysis of human tissues using the 
1000/100 most strongly regulated genes/metagenes: (a) Pairwise Correlation Matrix (PCM); (b) Frequency 
distributions of correlation coefficients for all intra- and inter-tissue category pairings and (c) for pairings of 
intra-nervous tissue pairings and for pairings between nervous and all other tissues. Note that the metagenes 
produce the stronger contrast of the PCM clusters due to the sharper and better resolved distributions. 
 

2.8. Sample cartography: Second level SOM  
Guo et al. proposed an alternative second-level SOM analysis step [1]. It maps all samples together 
into one two-dimensional mosaic pattern to visualize the degree of similarity between their expression 
profiles. The second-level SOM algorithm uses the metagene expression of each sample as input. 
After training, each tile of the mosaic is characterized by the expression profile of one ‘metasample’ 
which serves as the condensation nucleus of the associated minicluster of real samples possessing 
similar SOM pattern. The mutual distances between the samples in the map are related to the degree of 
similarity of their SOM expression pattern. Typically, second level SOM use a resolution where the 
number of mosaic tiles exceed the number of samples. In consequence most tiles remain empty. Figure 
10 shows the second level SOM of all 67 human tissues studied using a 9x9 grid: Each tissue is 
represented by its tissue number and the color of its previously assigned tissue category (see the circles 
and also Figure 1). In addition, representative first-level SOMs are shown in each of the not-empty 
tiles representing the respective metasample. 
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Figure 10: Second level SOM of the metagene expression profiles of all 67 samples: Each tissue is color-coded 
by the circles according to its tissue category and assigned by its number. The small mosaics show the relevant 
first level SOM pattern of the not-empty metasamples which might be occupied by up to six real samples. 
 
Essentially one distinguishes the same three main clusters which were detected in the ICA-plots shown 
in Figure 8c; namely that of nervous tissues (grey), immune system tissues (blue) and the remaining 
ones. In general, ICA and 2nd level SOM provide a similar view on the samples, however with subtle 
differences. For example, the ICA algorithm distributes the sample points continuously in the 
coordinate system spanned by the two leading principal components of maximum information content. 
The mutual separation between the points linearly scales with their distance in units of these 
components. In contrast, SOM machine learning non-linearly distributes the positions of the sample 
points in the discrete space defined by the mosaic grid of metasamples which enables to display 
differences between the samples with improved resolution. In consequence, the individual tissues 
spread over a larger area in the SOM mosaics than in the respective ICA. 
As noticed above, most of the samples group into linear clusters which orient along one of the 
coordinate axes in the two dimensional ICA plots. The orthogonal orientation of most of these clusters 
indicates that each of them is characterized by genes which vary mutually independently. In the 
original ICA this property applies to nervous tissues on one hand and all other tissues on the other 
hand. Nervous tissues are characterized by their specific spot A (see Figure 3a) containing genes 
which vary virtually independent of that of the other tissue spots. We also generated three dimensional 
ICA-plot to assess the third main component of variability (see Additional file 3). This plot reveals 
that the characteristic pattern of orthogonal linear clusters of selected tissue categories extends into the 
third dimension (see, e.g. the clusters of nervous system, immune system and epithelium tissues in the 
3D-ICA of all tissues). Hence, the metagene-based ICA plots in two and three dimensions allow to 
disentangle tissue categories of virtually independent expression profiles. The responsible groups of 
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genes can be identified using the spot pattern of the original SOM where they typically aggregate into 
metagene spots specifically overexpressed in the respective tissue category.  
The second-level SOM similarly, but not identically arrange the samples as discussed above. The non-
linear scaling in the SOM partly disturbs the arrangement of samples according to the mutual 
independence of their expression profiles as in the ICA-plots. For example, the linear ICA-clusters of 
the nervous tissues (grey circles) transform into slightly more compact clusters in the 2nd level SOM. 
Hence, although very similar, 2nd level SOM and ICA visualize partly complementary aspects of the 
data which can be studied more in detail using the spot-texture of the individual SOM of the samples 
studied.  
 

3. Summary and Conclusions 
The microarray expression data of 67 human tissues was used as an illustrative example to 
demonstrate the strengths of the SOM method in disentangling large sets of heterogeneous data. After 
suited preprocessing and training, the SOM method decomposes the original data into metagene 
expression profiles representing clusters of correlated single genes. Metagene expression values in the 
individual samples provide mosaic pictures visualizing tissue-specific over- and underexpression in 
terms of characteristic color-coded textures. They enable the direct comparison of the expression of 
individual samples in a simple and intuitive way.  
Particularly, the tissue-specific patterns of gene expression were readily discernable in the obtained 
gallery of individual tissue maps. They reveal a series of about one handful stable over- and 
underexpression spots which selectively characterize different tissue categories such as nervous, 
immune system, muscle, exocrine, epithelial or adipose tissues. Single tissues of mixed characteristics 
such as tongue (composed of expressions spots found in muscle or epithelial tissues) can be easily 
identified. Also anti-correlated expression spots are detected which, for example, are overexpressed in 
nervous tissues but underexpressed in the other tissues and vice versa. 
To extract the functional context of spot and metagene related lists of single genes we applied 
overrepresentation analysis with respect to pre-defined gene sets of basically known functional impact. 
The mapping of overrepresentation of a selected gene set into the SOM mosaic provides a ‘functional’ 
map showing areas which are potentially relevant for this function. Application to the SOM atlas of 
human tissues shows that the tissue related spots typically contain enriched populations of function-
related gene sets well corresponding to molecular processes in the respective tissues. The 
representative expression profiles of the leading metagenes of the spots well agree with the expression 
profiles of leading functionally related gene sets. This result strongly supports the ‘guilt-by-
association’ principle that coexpressed genes are likely to be functionally associated. It, in turn, 
implies the ability to define either new gene sets using selected SOM spots or to verify and/or to 
amend existing ones. 
The SOM method compresses the original set of high-dimensional data in two consecutive steps: 
Firstly, similar expression profiles of single genes are collected into metagene clusters, which reduces 
the number of relevant features nearly by one order of magnitude in our application. These metagene 
profiles can be understood as a sort of ‘eigen-modes’ characterizing the multitude of expression 
pattern inherent in the data. Secondly, the textures of the obtained SOM are decomposed into a few 
(typically less than one dozen) spots of similarly (over- or under-) expressed metagenes. This ‘double 
compression’ sequentially applies global (similar profiles) and local (over-/underexpression in part of 
the samples) criteria. 
The use of metagene instead of single gene expression reduces the dimension of the data and leads to 
an increased discriminating power in downstream agglomerative analysis such as hierarchical 
clustering and independent component analysis owing to essentially two facts: Firstly, the set of 
metagenes better represents the diversity of expression pattern inherent in the data and secondly, it 
also possesses the better signal-to-noise characteristics as a comparable collection of single genes. Due 
to the better representativeness, metagene lists are less sensitive to downstream filtering than lists of 
single genes. Metagenes can be seen as a natural choice to detect context-dependent patterns of gene 
expression in complex data sets. 
Our example shows that SOM cartography transforms large and heterogeneous sets of expression data 
into an atlas of sample-specific texture maps which can be directly compared in terms of similarities 
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and dissimilarities. This global view on the behavior of defined modules of correlated and 
differentially expressed genes is more intuitive than ranked lists of hundreds or thousands of 
individual genes. Importantly, the dimension reduction of the data does not entail the loss of primary 
information in contrast to simple filtering approaches which irretrievably removes part of the data. 
Instead, the reduction of dimension is attained by the re-weighting of primary information in the 
aggregation step. The whole set of single gene expression profiles remains virtually ‘hidden’ behind 
the metagenes. This primary information together with the respective gene annotations can be 
extracted in later steps of analysis to interpret the observed SOM textures using concepts of molecular 
biological function. 
 

4. Data and Methods 

4.1. Microarray Data 
Microarray raw intensity data (*.cel files, Affymetrix HG-U133 plus 2 array) of M=67 tissues each 
measured in Rm=1, 2… (m=1…M) replicates were downloaded from the Gene Expression Omnibus 
repository as the ‘human body index - transcriptional profiling’ - data set 
(http://www.ncbi.nlm.nih.gov/geo, GEO accession no. GSE7307; see Additional file 1 for the detailed 
list of samples used). The used HG-U133p2 array essentially merges the probes printed on two 
previous GeneChip arrays (HG-U133A and B). In our analyses we masked the probes referring to the 
HG-U133 B array to assure comparability with array studies which use the popular HG-U133A array. 

4.2. Preprocessing of microarray intensities 
We consider a data set consisting of the expression levels of N genes in M different sample categories 
such as different tissues each measured in Rm (m=1…M) replicates. For gene expression studies the 
number of genes N is typically in the ten thousands, the number M of experimental conditions is 
typically in the tens to hundreds and the number of replicates between one and ten. 
The used GeneChip microarrays provide typically eleven raw probe intensities per gene constituting 
one probe set. Raw probe intensity values of each of the MxRm chips are calibrated and summarized 
into one expression value E per probe set using the hook method [27, 28]. The expression values from 
all arrays are subsequently quantile-normalized [29] (see Figure 11a for illustration). 
The obtained distribution of expression values typically shows a bimodal shape: It’s left and right 
peaks at smaller and larger expression values were attributed to non-specific and specific 
hybridization, respectively [30]. The peak due to non-specific hybridization is non-informative with 
respect to the target genes which are therefore called ‘absent’ because their expression is smaller than 
the detection threshold of the method. The non-specific peak consequently characterizes the 
‘chemical’ background of the measurement.  
The distribution of expression data of each experimental series is then processed as follows: Firstly, 
the origin of the log-expression axis at log E=0 was positioned to agree with the peak position of the 
non-specific peak of the distribution. Secondly, both peaks are decomposed as described previously 
[30] assuming mirror symmetry of the left and right flanks of the non-specific peak (Figure 11b). 
Thirdly, we make use of the decomposed distributions to estimates the probability that the specific 
expression of a selected gene is detected. This ‘present-call’-parameter is set to pc=0 and pc=1 for 
genes with expression values outside the region of overlap of both peaks (see Figure 11c). The present 
call is calculated as the fraction of the local density of the specific signal contributing to the total 
signal distribution in the range of overlap. The resulting value of pc roughly linearly scales between 
zero and one with increasing expression in this range (Figure 11c). Fourth, the log-expression of each 
gene is scaled with its present call, i.e., e= pc(e’)*e’ where lower case e define the logged expression 
values, e’= log E. The used transformation thus considerably narrows the non-specific peak at position 
e’=0 of the expression axis while leaving the specific signal virtually unaffected. As a consequence, 
the variability of the signals of absent called and thus of non-informative probes is markedly reduced 
(Figure 11c). This transformation enables to conserve the full set of available genes in the data set 
used for SOM analysis in contrast to data filtering which removes presumably uninformative probes 
from the data set prior to downstream analysis. 
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Expression values of replicates of the same tissue were log-averaged and finally, the logged expression 
values of each gene were transformed into differential expression values relative to the mean 
expression of the particular gene in the experimental series of tissues considered (Figure 11d),  
 
∆e = e - <e>all_tissues   .        (1) 
 
Eq. (1) thus defines differential expression in units of the logged fold change, logFC≡ ∆e.  
 
 

 
Figure 11: Normalization and adjustment of expression values: The different distributions of hook-calibrated 
expression values of the samples studied merge into one representative mean distribution after quantile 
normalization (panel a). Its double peaked shape is decomposed into two single peaked distributions due to non-
specific and specific hybridizations at small and larger expression values, respectively (b). The fraction of the 
specific signal contributing to the total signal density (dashed curve) is used as weighting coefficient of the 
expression values, e= pc(e’)*e’, which reshapes the total signal density (c). Finally, the expression values are 
normalized with respect to the logged mean expression of each gene (d). The large central peak refers to 
invariant genes under all conditions studied. 
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4.3. SOM-mapping of gene expression profiles  
In the next step, the preprocessed differential expression values of the series of tissue samples, ∆e, are 
feed into the unsupervised machine learning program to train a self organizing map (SOM) 
representing information-rich diagrams as illustrated in Figure 12. The SOM method applies a neural 
network algorithm to project high dimensional data onto a two-dimensional visualization space [2, 
31]. SOMs have a strong visualization capability by presenting each individual sample as an entity 
allowing, for example, its identification in a series of samples. At the same time each SOM still keeps 
high-resolution information about the co-expression pattern of the genes in the samples studied.  
Particularly, we apply a home-made R-program which uses the CRAN package ‘som’. Our program 
was designed referring to the Gene Expression Dynamics Inspector (GEDI) 
(www.chip.org/~ge/gedihome.html), a freeware MatLab-program, which translates high-dimensional 
data into a two-dimensional mosaic pattern (Eichler et al. [8]). This SOM-algorithm assigns the 
expression profiles of the N input genes measured under M conditions to a number of K < N 
rectangular ‘tiles’ (so-called SOM nodes), each of which is characterized by one representative profile 
of metagene expression given by a vector of length M, ∆ek

meta=(∆ek,1
meta, ∆ek,2

meta,…, ∆ek,M
meta) 

(k=1…K). It is trained such that the profiles of the metagenes capture the range of all individual 
expression pattern observed. Each individual expression profile of a ‘real’ gene is assigned to the 
metagene pattern of closest similarity using the minimum Euclidian distance as criterion. Each 
metagene thus serves as a sort of condensation nucleus for a minicluster of nk ‘real’ genes with similar 
expression profiles, ∆ek,i=(∆ek,1,i, ∆ek,2,i,…, ∆ek,M,i), with i=1…nk and k

k 1...K
N n

=

= ∑ . 

The metagenes are arranged in a two-dimensional x*y grid with K=x⋅y where most similar expression 
profiles of metagenes are located adjacent each to another. The correlation between metagene 
expression decreases with the mutual distance between the tiles on the mosaic. The degree of 
similarity between adjacent metagenes depends on the number of genes assigned to the respective 
metagenes being closer for larger populated metagenes and vice versa. For each measuring condition 
m=1…M a SOM mosaic pattern is constructed by color-coding the tiles k=1…K according to its 
metagene expression, ∆ek,m

meta. This way one obtains a coherent mosaic pattern that is characteristic 
for each sample owing to the similarity of adjacent metagenes. Since the SOMs assign the same 
metagene to the same tile in all samples, they can be directly compared to each other allowing 
immediate identification of biologically interesting groups of genes.  
The expression profiles of individual genes and of the respective metagenes are shown in Figure 12 for 
a segment of 5x3 tiles. Typically, the number of tiles to ‘pixelate’ the expression profiles is 
considerably larger, K=10x10 – 100x100= 102 – 104 with, on the average, nk=5 – 100 genes per 
metagene. The obtained mosaic pattern is usually more homogeneous than typical gene clustering 
heatmaps containing typically about 102 clusters. This finer granularity of SOM-maps is associated 
with a fewer number of genes per unit (cluster/metagene) which in consequence gives rise to a more 
detailed expression pattern. 
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Figure 12: Expression profiling using self organizing maps (SOMs): Raw microarray probe intensity data 
referring to an experimental series of different conditions was preprocessed including calibration, normalization 
and adjustment. The obtained expression values are then feed into the SOM-algorithm. It translates the high-
dimensional expression data into a two-dimensional grid of expression profiles. Each tile represents a cluster of 
individual genes (thin lines in the graphs, numbers of genes are given for each cluster) characterized by the 
expression profile of a representative metagene (thick lines). The expression profile is given by the expression 
values in the samples studied. The expression profiles of the metagenes are then transformed into one mosaic 
picture per condition which are shown in the row „expression profiles“ below. The tiles in these maps are color-
coded to represent overexpression or underexpression of each metagene in the respective sample to map the 
underlying gene expression pattern. The parallel evaluation of multiple samples allows linking their overall 
profile pattern. For example, the metagene of the tile in the left upper corner of the mosaic is underexpressed in 
sample no. 1 and overexpressed in sample no. 2 as indicated by the red and blue circles and the respective color-
code in the respective pictures. Summary maps characterize different aspects of the individual SOM such as the 
population of metagenes or the summary of all overexpression peaks. Metagene expression can further be used 
for statistical and functional analysis as will be described elsewhere. In the last step, summary reports for each 
sample are generated providing lists of differentially expressed genes, enriched gene sets, error statistics and 
further information (see http://som.izbi.uni-leipzig.de). 
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4.4. Supporting maps 
We define the following supporting maps which provide additional information about the miniclusters 
defined by each metagene and the associated real genes: 
(i) The metagene expression profiling map uses a coarse grained mosaic to provide an overview of the 
courses of the metagene profiles. For visualization purposes we use a coarse grained (e.g., 8x8) mosaic 
with considerably less tiles than the mosaic grid applied for the SOMs (60x60). The metagene profiles 
might be plotted together with the associated single gene profiles. 
 
(ii) The population map plots the number of real genes per metagene in logarithmic scale, log nk. 
 
(iii) The variance map illustrates the variability of the expression profile of each metagene in the 
samples studied,  

( )
k

M 2meta meta
k,m

m 1

1var e
M 1 =

= ∆
− ∑ .         (2) 

 
(iv) The integral over-/under-expression summary maps collect all over-/underexpression spots 
observed in the individual sample SOMs into one master map. 
 

4.5. Gene set overrepresentation analysis 
Gene set analysis requires the knowledge of predefined gene sets to study their enrichment in gene 
lists which are obtained from independent differential expression analysis (see [32] for a critical 
review and references cited therein). A large and diverse collection of such sets can be downloaded 
from the ‘gene-set-enrichment-analysis’-website (http://www.broadinstitute.org/gsea). Particularly, we 
included in total 1454 gene sets in our analysis according to the GO terms ‘biological process’ (825 
sets), ‘molecular function’ (396 sets) and ‘cellular component’ (233 sets). We use the term 
‘overrepresentation’ to assign the probability to find members of a given set in a list compared with 
their random appearance independent of the values of their expression scores. We use the 
hypergeometric distribution to characterize overrepresentation in terms of a p-value which estimates 
the probability to find a stronger overlap between the list and the set by chance than actually detected 
[33, 34]. 

4.6. Grouping samples: Second level SOM cartography 
We applied second-level SOM analysis as proposed by Guo et al. [1] to visualize the similarity 
relations between the individual SOM-metagene expression pattern. Second-level SOM analysis uses 
the K metagene expression profiles of the M samples as input and then cluster the samples and not the 
genes as in first-level SOM analysis. Each tile of the second-level SOM mosaic characterizes the 
expression profile of a representative metasample defined by K metagene expression values. The M 
samples were presented using a mosaic grid of size K2SOM>M. Note that the number of metasamples 
usually exceeds the number of real samples whereas in first order SOM the number of metagenes is 
usually much smaller than the number of real genes. A considerable fraction of tiles of the second 
order SOM are consequently empty with no sample assigned. 

4.7. Estimating similarities: Clustering-, tree- and independent component-analysis  
One- and two-way hierarchical clustering [25] and independent component analysis [35] were applied 
in two versions using either the profiles of the SOM-metagenes (metagene analysis) or the profiles of 
individual ‘real’ genes (single gene analysis) using the R-packages ‘stats’ and ‘fastICA’ for clustering 
and ICA, respectively. Hierarchical clustering uses Euclidian distances between the genes/metagenes 
as similarity measure, whereas ICA is based on covariance. In addition to two-way hierchical 
clustering heatmaps, we generate pairwise correlation maps (PCM) which visualize the Pearson 
correlation coefficients between the gene expression profiles (metagenes or ‘real’ genes) in all 
pairwise combinations of samples. 
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4.8. Filtering genes and metagenes 
Optionally, the number of real genes and/or metagenes used in the analyses is reduced by applying 
three types of filters to exclude genes/metagenes of weak or of virtually invariant differential 
expression from downstream analysis: (i) FC-filtering: the genes/metagenes are ranked with 
decreasing absolute value of the fold change (FC) for each sample and a certain number (e.g., 100, 
1000 and 3600) of the top-most features is selected; (ii) Variance filtering: the genes/metagenes are 
ranked with decreasing variance of their expression profiles and a certain number of top-most features 
is selected; (iii) FDR-filtering: only genes/metagenes with a local false discovery rate (FDR) smaller 
than a certain threshold (0.005, 0.01, 0.05) were selected. The local FDR estimates the probability of 
false positives in a list genes/metagenes. We used a shrinkage t-score statistics to assign p-values to 
each single gene the distribution of which then provides its FDR-values. The FDR of the metagenes is 
simply calculated as log-average of the single gene FDR of the respective metagene cluster. Details of 
the method are given elsewhere. 
 

4.9. Filtering benchmarks 
The performance of metagene and single gene filters was compared using the following benchmarks 
(see also Figure 8): 
Hierarchical clustering: The ratio of the inter-class and intra-class variance of the Euclidian distances 
between the respective expression data (F-score) was used to estimate the quality of the clusters. 
Two-way hierarchical clustering: The percentage of genes/metagenes attributed to tissue-specific 
clusters for three tissue categories (nervous, immune systems and epithelium) was used to estimate the 
representativeness of the list. 
ICA: The percentage of the variance of the independent components IC1 and IC2 of one tissue 
category, %= (varIC1+varIC2)one_category/(varIC1+varIC2)three_categories, was used to judge the relative 
size of the respective cluster. 
 
Additional material 
Additional file 1: Table of samples studied 
Additional file 2: Whole set of 67 SOM expression profiles of human tissues  
Additional file 3: The additional text addresses the filtering of metagenes/single genes and the 
interpretation of cluster trees. Further details of zooming-in of two tissue subgroups are given together 
with the 3D-ICA plots of the tissues studied. 
Additional file 4: Agglomerative cluster analyses after single gene and metagene filtering using FDR 
and variance criteria 
 
The complete set of results of our SOM analysis of the human tissue dataset can be found on our 
website: http://som.izbi.uni-leipzig.de 
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1. Filtering metagenes and single genes 
We analyzed the tissue data set using three types of filters to reduce the number of single genes and 
metagenes, namely FC-expression, variance and significance (FDR-) filtering (see Supplementary 
Table 1 and the methodical section). In the first case of expression filtering the full set of absolute 
differential expression values of all genes (real genes and metagenes) under all measured condition are 
ranked and a certain number of topmost genes in the list is considered for further analysis. In variance 
filtering the ranked list is generated using the variance of the expression profiles of the genes. These 
filterings improve the sensitivity of downstream discriminant  analyses because they remove non- and 
less-informative weakly expressed, ‘noisy’ and/or virtually invariant genes from the data set. In the 
case of significance filtering the false discovery rate (FDR) of the features (metagenes or real genes) is 
used as filter criterion. Details of the statistical analysis of differential expression using SOM 
clustering will be presented elsewhere. 
Supplementary Table 1 shows that the filter criteria when applied to the metagenes gives rise to a 
gene-to-metagene ratios between G/M= 3 and 19 where more stringent filters increase the G/M-values. 
For example, the 100 selected metagenes (FC-filtering) are representative for 1,487 single genes 
(G/M=14.9). In turn, selection of real genes roughly maintains this relation: The filtered 100 ‘real’ 
genes distribute over 8 metagenes only (G/M=12.5) which are all enclosed in the 100 members of the 
metagene list. Hence, both subsets of metagenes after metagene and single gene filtering completely 
intersect each other reflecting the high degree of correlation between the metagenes and the associated 
‘real’ genes. Figure S 1 shows the areas in the SOM mosaics covered by the filtered features and their 
mutual overlap after metagene and single gene filtering in terms of Venn diagrams. The left/right part 
of the figure highlights the selected metagenes/genes per tile of the SOM-mosaic. For example, the 
FC-3600 filter selects 100% of the metagenes but only 16% of the real genes. These genes accumulate 
essentially in the same areas of the SOM-mosaic as the metagenes, however whenselected using the 
more stringent FC-1000 filter, which selects 28% of the metagenes only. The FC-1000 single gene 
filter, in turn, delivers genes which preferentially accumulate in the metagenes which are mostly 
selected by the more stringent FC-100 metagene filter (compare the right mosaics in Figure S 1 with 
the left one in the respective row below). 
Hence, equal numbers of ‘real’ genes and of metagenes selected by the respective filters reflect 
effectively different sample sizes owing to the G/M-compression which reduces the length of the 
metagene list. It integrates the properties of roughly a tenfold larger list of ‘real’ genes and vice versa 
in our particular SOM settings. 
With increasing stringency of filtering, whole spot areas and thus also the respective expression 
profiles are progressively excluded from the list of filtered features. For example, the most stringent 
FC-100 metagene filter excludes a few areas selected by the FC-1000 single gene filtering thus 
revealing a decreased representativeness. Variance-filtering essentially provides similar relations 
between metagenes and real genes as FC-filtering (see Supplementary Table 1). 
As a third option, we applied filtering using equal significance levels estimated in terms of the false 
discovery rate (FDR) to adjust the sample size of gene and metagene filters. The FDR-value defines 
the probability that each of the selected features is a differentially ‘null’ and thus a false positive one 
[1]. It applies to single genes and to the metagenes as well. In the latter filtering the FDR-threshold 
applies to the mean FDR of the single genes associated with each metagene. 
The number of selected real genes after FDR-filtering is similar if the filter is applied to real or to 
metagenes (for example, 670 versus 387 for FDR<0.2; Figure S 2 and Supplementary Table 1) in 
contrast to the previously applied FC- and variance filters. Note however that the single genes after 
real gene filtering spread over a much larger number of metagenes than the metagenes which are 
directly selected after filtering metagenes (116 versus 14 for FDR<0.2, Figure S 2). This difference 
simply reflects the fact that genes selected by the single gene filter might be associated with metagenes 
which are not selected by the metagene filter as illustrated by the mosaics shown in Figure S 2. Hence, 
the FDR-filter if applied to single genes provides a similar numbers of real genes compared with the 
respective metagene filter. These genes however spread over a markedly larger number of metagenes 
and suggest an increased representativeness. In other words, significance filtering is roughly 
symmetric with respect to sample size but asymmetric with respect to ‘representativeness’ of the 
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selected features. Figure S 3 illustrates the consequences of shifted FDR-significance criteria which 
increases the number and representativeness of the features selected by metagene filters. 
 
 
Supplementary Table 1: Filtering metagenes and real genes 
 
filter  applied to metagenes applied to real genes 
 threshold #metagenes #real genes G/M a #metagenes #real genes G/M* a 
fold change 
(FC)b 

100 100 1,487 14.9 8 (8/0)c 100 (100/0)c 12.5 
1,000 1,000 7,770 7.8 127 (127/0) 1,000 (1,000/0) 7.9 
3,600 3,600 22,277 6.2 600 (600/0) 3,600 (3,600/0) 6.0 

        
variance 
(Var)d  

100 100 1,889 18.9 20 (19/1) 100 (97/3) 5,0 
1,000 1,000 9,924 9.9 126 (124/2) 1,000 (995/5) 7,9 

        
false 
discovery rate 
(fdr)e 

0.2 14 387 27.6 116 (14/102) 670 (317/353) 5.7 
0.4 666 6,576 9.8 1,390 (666/724) 7,088 (5,587/1,501) 5.1 
0.5 1,751 13,692 7.8 2,332 (1,751/581) 13,063 

(11,812/1,251) 
5.6 

        
 
a G/M, G/M*: ratio #real genes/#metagenes. All genes of the filtered metagenes are considered in the first case 

(G/M). In the second case (G/M*) the metagenes containing the filtered single genes are considered. 
Consequently not all single genes of the respective metagenes are taken into account and one gets on the 
averaged G/M>G/M* for the same criterion. 

b Toplist FC-expression filter: Metagenes/genes are ranked with decreasing FC-value. The number of items 
indicated on top of the list are selected. 

c (#in/#out): #in denotes the intersection between the number of metagenes/real genes sampled by filtering the 
metagenes and real genes. #out is the respective number of genes not sampled by the metagene filter 

d Toplist variance filter: Metagenes/genes are ranked with decreasing variance of their expression profile. The 
number of items indicated on top of the list are selected. 

e False discovery rate (fdr) significance filter, i.e. all metagenes/genes with smaller fdr-values than the 
indicated threshold are included in the list  
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Figure S 1: Filtering genes or metagenes by differential expression: Equal numbers of metagenes (left mosaics) 
and single genes (right mosaics) are selected using the FC-3600 (a), FC-1000 (b) and FC-100 (c) filters. The 
brown areas in the left part show the selected metagenes and the colored tiles in the right part the density of 
single genes (maroon to blue codes high to low densities). The Venn-diagrams illustrate the degree of overlap 
between the metagenes and genes after metagene and single gene filtering. Note that the FC-3600 filter if applied 
to single genes (right mosaic in panel a) selects features in the same areas of the mosaic as the FC-1000 filter if 
applied to metagenes (left mosaic in panel b). The similar result was found for FC-100 and FC-1000 filters if 
applied to metagenes and single genes, respectively. 
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Figure S 2: Filtering genes and metagenes by significance: Equal FDR-thresholds are applied to metagene (left 
mosaics) and single gene (right mosaics) lists selected using FDR< 0.5 (panel a), FDR<0.4 (panel b) and 
FDR<0.2 (panel c) filters. The brown areas in the left part show the selected metagenes and the colored tiles in 
the right part the density of single genes (maroon to blue codes high to low densities) selected by filtering 
metagene and single gene lists, respectively. The Venn-diagrams illustrate the degree of overlap between the 
metagenes and genes after metagene and single gene filtering. The single gene filter selects consistently a 
roughly twice as large number of metagenes and a slightly larger number of single genes than the respective 
metagene filters.  
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Figure S 3: Analogous to Figure S 2: Comparison of metagene/single gene filters using different FDR thresholds, 
0.5/0.4 (panel a), 0.4/0.2 (b). The Venn diagrams indicate that the less stringent metagene filter shifts the number 
of metagenes and single genes selected towards the metagene filter. 
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2. Clustering metagenes and single genes 
Figure S 4 shows two simple cluster trees with different relative distances between their branching 
points, L1 and L2. The left one characterizes more compact clusters than the right one. It qualitatively 
explains the difference between the cluster trees obtained from single gene (left below) and metagene 
(right below) lists. In the chosen radial representation the cluster trees are projected to unit circles, 
which is equivalent with the normalization of the mean Euclidian distance between all samples to a 
unique constant. The length of a particular branch in this plot consequently estimates its relative length 
defined as the ratio of its Euclidian distance divided by the mean value. The mean length of the ‘outer’ 
branches, <L1>, thus estimates the mean relative distance between most similar samples on the lowest 
level of clustering whereas the mean length of the ‘inner’ branches estimates the mean mutual distance 
between the largest clusters. This distance of closest approach is markedly smaller for metagene gene 
cluster trees than for single genes meaning that the observed metagene clusters are more compact as 
illustrated schematically by the sketch in Figure S 4. 
 
 

 
Figure S 4: Schematic illustration how the relative length of the branches in the tree transforms into the 
compactness of clusters: This distance of closest approach is markedly smaller for metagene gene cluster trees 
than for single genes meaning that the observed metagene clusters are more compact as illustrated schematically 
by the sketch in the part above.  
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3. 3D-ICA map  
We generated three dimensional ICA versions of the 2D ICA plots shown in the main paper. They 
clearly show that typically one of the linear clusters of one of the tissue categories points along the 
third main component of independent variation. The smaller ICA on the right enlarge the clusters 
formed by three selected tissue categories. The respective ICA-plots were calculated separately. 
 

 
Figure S 5: 3D ICA plots of the tissues studied. 
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