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Abstract 
According to the Surveillance Epidemiology and End Results report, 1,479,350 men and women will 
be diagnosed with and 562,340 will die of cancer of all sites in 2009, indicating that about 40% of the 
cancer patients do not respond well to current anticancer therapies. Using tumor and normal tissue 
cell lines as a model, we show this high mortality rate is rooted in inherent features of anticancer 
treatments. We obtain that, while in average anticancer treatments exhibit a two fold higher efficacy 
when applied to cancer cells, the response distribution of cancer and normal cells significantly overlap. 
Focusing on specific treatments, we provide evidence indicating that the therapeutic index is 
proportional to the fraction of cancer cell lines manifesting significantly good responses, and propose 
the latter as a quantity to identify compounds with best potential for anticancer therapy. We conclude 
that there is no single treatment targeting all cancer cell lines at a non-toxic dose. However, there are 
effective treatments for specific cancer cell lines, which, when used in a personalized manner or 
applied in combination, can target all cancer cell lines. 

 

Background 
Cell culture studies are the starting point of most 
screens for anticancer treatments [1, 2]. They 
provide an initial idea of their anticancer efficacy, 
when applied to tumor derived cell lines, and 
toxicity, when applied to cell lines derived from 
normal tissue. Thus, high throughput cell based 
assays has been used to identify novel 
anticancer drugs. One of the largest screens, as 
measured by the number of treatments tested, is 
the NCI60 screen, the anticancer drug screen 
run by the National Cancer Institute (USA) [1]. 
Specifically, the NCI60 screen has reported the 
growth inhibition efficacy of about 50,000 
compounds against 60 tumor derived cell lines, 
of different tissue of origin and harboring 
different somatic alterations. This screening 
effort has lead to the identification and 
characterization of compounds with potential 
anticancer activity {Shoemaker, 2006 #674}, 
including small molecules selectively toxic in P-
glycoprotein expressing tumor cells [3] and 
compounds with increased activity in tumor cells 
carrying the BRAF-V600E mutation [4].  

More recently, the Genomics of Drug Sensitivity 
in Cancer Project has being launched as part of 

a collaboration between The Cancer Genome 
Project at the Wellcome Trust Sanger Institute 
(UK) and the Center for Molecular Therapeutics 
of the Massachusetts General Hospital Center 
(USA). This project has been designed to screen 
potential anticancer drugs against a larger library 
of tumor derived cell lines, at expenses of 
focusing on a smaller subset of compounds. 
Examples of studies carry on through this 
research initiative include the screening of lung 
cancer cell lines for sensitivity to an EGFR 
inhibitor [5] and of the sensitivity of cancer cell 
lines to kinase inhibitors [6]. 

Yet, because these screening efforts focus on 
the most potent treatments, there is hardly any 
analysis of the overall response of cancer and 
normal cell lines to anticancer treatments. Such 
analysis is imperative to have a more complete 
understanding of the screening data and to 
statistically differentiate a good response from 
the average response. Furthermore, given that 
most anticancer screen are based on panels of 
tumor derived cell lines, it is not clear whether 
we can make any conclusion about toxicity 
based on them. Here, we provide a first attempt 
to answer those questions based on a 
recollection of literature data reporting growth 



inhibition measurements and the NCI60 and 
Sanger screen data. 

  
Results and Discussion 
In order to compare the efficacy of different 
treatment types (e.g., radiation vs small 
molecule) and different range of activity for the 
same treatment type (e.g., two small molecules 
with different concentration ranges), we first 
need to identify the appropriate quantity to 
compare them (Fig. 1). For example, growth 
inhibition assays manifest similar features for 
ionizing radiation and small molecule treatments, 
but only when using a linear radiation dose and 
a logarithmic concentration scale, respectively. 
Within small molecules treatments, two 
compounds can manifest 50% growth inhibition 
at different concentration ranges, such as nM for 
Taxol and µM for Doxorubicin (Fig. 1). To be 
more precise let us focus on the 50% growth 
inhibition (Fig. 1, dashed line). In the case of 
radiation, this is achieved at the ID50, the 
radiation dose resulting in the 50% growth 
inhibition of treated cells relative to untreated 
controls. In the case of small molecule 
treatment, this is achieved at the IC50, the small 
molecule concentration resulting in the 50% 
growth inhibition of treated cells relative to 
untreated controls. We define the relative dose 

of treatment T resulting in a 50% growth 
inhibition of cell line C, IR50(T,C), as 
IR50(T,C)=ID50(T,C)-mean(ID50)(T) for 
radiation treatment and 
IR50(T,C)=log10IC50(T,C)-mean(log10IC50)(T) 
for small molecules, where the mean is taken 
over the available universe of cell lines. This 
quantity satisfies the desired properties, 
independence of treatment kind and range of 
activity, and it allow us to investigate the overall 
response statistics to anticancer treatments. 

We have collected literature data reporting 
radiation ID50s and IC50s of several small 
molecules and antibodies against cancer and 
normal cell lines (Supplementary Table 1). In 
total, it comprises 101 different treatments 
represented by measurements in 4 or more cell 
lines. The IR50 distribution across the literature 
dataset exhibits a symmetric distribution with a 
peak around zero (Fig. 2a). This distribution has 
a similar shape for both cancer and normal cell 
lines, with the latter shifted to the right. In 
average normal cell lines show a two fold higher 
IR50 than cancer cell lines (p=5x10-5, 
permutation test), supporting the general 
expectation that cancer cell lines are more 
sensitive to radiation and chemotherapy 
treatment than normal cells. However, there is a 
significant fraction of normal cell measurements 
with negative IR50, indicating that some 
treatments are causing a 50% growth inhibition 
of normal cells at relatively low doses. Similarly, 
we can inspect the statistical features of specific 
treatments. For methotrexate (MTX) the IR50 
distribution seems bimodal and it has a more 
evident separation between the cancer and 
normal distributions (Fig. 2b). The latter 
observation is quantified by the, here defined, 
Cell Proliferation Therapeutic Index, 
CPTI(T)=(µN(T)- µC(T)/σ (T), where µN(T) and 
µC(T) are the mean IR50 of treatment T in 
normal and cancer cell lines, respectively, and 
σ(T) is the IR50 standard deviation of treatment 
T across all cell lines. This quantity characterizes 
how well the treatment is targeting cancer cell 
lines compared to normal cell lines, relative to its 
overall variation across all cell lines. Treatments 
having large positive values of CPTI are those 
with the best therapeutic potential. In the case of 
MTX we obtain CPTI(MTX)=1.2, implying that 
the average IR50 for cancer cells is one 
standard deviation above that for normal cells 

 
Figure 1 Growth inhibition assay: The drug 
response curves of the MCF7 breast cancer cell line 
to ionizing radiation, as a function of radiation dose 
(top scale), and to the chemotherapeutic compounds 
Doxorubicin and Taxol, as a function of their log10 
concentrations (bottom scale). The symbols 
represent the average and the error bars the 
corresponding standard error. 



(p=0.0015). In contrast, the IR50 distribution for 
etoposide (ETP) is unimodal and centered at 
zero for both cancer and normal cells (Fig. 2c). 
This fact is also captured by the therapeutic 
index just defined, CPTI(ETP)=-0.09, which is 
small compared to that for MTX. In total we were 
able to estimate the CPTI for thirteen 
compounds having four or more cancer cell lines 
and four or more normal cell lines in the 
literature dataset (Supplementary Table 1a). In 
addition to MTX, Magainin G, Betulinic acid, and 
Vincristine have a CPTI above one (p<0.05). For 
three other treatments, 5-Fluorouracil, IR, and 
Doxorubicin, we obtain a CPTI above 0.4, 
although we cannot reject the possibility that 
cancer and normal cell lines have the same IR50 
distribution (p>0.05). The remaining compounds 
show negative CPTI and no significant difference 

between cancer and normal cell lines. 

Ideally we would like to extend this kind of 
analysis to a larger library of treatments. For 
example, the NCI60 anticancer drug screen 
reported the response of 47,624 compounds 
against 60 tumor derived cell lines (NCI60 
screen) [1]. While this screen has not assayed 
normal cell lines, it has the advantage of having 
tested several compounds against the same 
cancer cell lines, following the same 
experimental protocol. The IR50 distribution of 
the 47,624×60 measurements (Fig. 2d) shows 
features similar to the literature IR50 distribution 
(Fig. 2a), with a peak around zero and a fast 
decrease as we move away from zero.  
However, the NCI60 distribution has a more 
pronounced peak at zero and a lesser spread 
around it. Given that the NCI60 screen has 

 
Figure 2 Response distribution: a) The IR50 distribution across several compounds and normal and cancer 
cell lines as obtained from the literature dataset. The IR50 for specific treatments, b) methrotexate (MTX) and 
c) etoposide (ETP), is also shown. d) The IR50 distribution across the NCI60 screen. The dashed line at -2 
standard deviations splits the IR50s into good responses to the left and not good responses to the right. 



 
Figure 3 CPSI as a CPTI surrogate: a) Scatter plot 
of the CPSI estimated from the literature and Sanger 
datasets as a function of the corresponding value 
estimated from the NCI60 dataset, each symbol 
representing a compound. The solid line is the 
identity and points close to it are indicative of similar 
results. b) Plot showing a linear correlation between 
the literature-estimated CPSI and CPTI. The solid 
line represents the best linear fit to data points with 
CPSI>0, CPTI=-1.0+4.5CPSI. c) Plot showing a 
linear correlation between the NCI60-estimated CPSI 
and the literature-estimated CPTI. The solid line 
represents the best linear fit to data points with 
CPSI>0, CPTI=-0.6+3.4CPSI. The following 
abbreviations have been used, 5-fluorouracil (5FU), 
butilinic acid (BA), cisplatin (CP), doxorubicin (DOX), 
etoposide (ETP), methotrexate (MTX), magainin A 
(MA), magainin B (MB), thioguanine (TG), thiopurine 
(TP), Thiosemicarbozone NSC73306 (TS), and 
vincristine (VC). 

tested a much larger and less biased treatment 

library we choose its IR50 distribution as our 
reference model to identify low IR50 outliers. We 
define a good response as an IR50 below  -2σ 
(Fig. 2d, dashed line), where σ ≈0.31 is the IR50 
standard deviation across the 47,624×60 
measurements. In simple words, with about 95% 
confidence, an ID50 dose 0.62 units below the 
mean and an IC50 two fold lower than the mean 
is a good response.   

A potential limitation of the NCI60 screen is that 
it does not report data for normal cell lines, 
forcing us to develop a CPTI surrogate based on 
measurements for cancer cell lines alone. From 
the analysis of the literature dataset, we noticed 
that the left tail of the IR50 distribution is 
enriched by measurements for cancer cells (Fig. 
2a). Thus, we hypothesized a good candidate 
could be a measurement quantifying the 
propensity of a given treatment to have 
measurements in the left tail of the IR50 
distribution for cancer cells. Thus, we define the 
Cell Proliferation Selective Index of treatment T, 
CPSI(T), as the fraction of cancer cells with IR50 
below -2σ standard deviations (about 5% of the 
extreme low IR50). To investigate the reliability 
of this quantity we analyzed three datasets with 
different sample sizes: literature (4 to tens 
samples), NCI60 (60 samples) and a recent 
screen by the Sanger Institute (Sanger screen, 
355 samples). Overall the CPTI computed from 
the NCI60 data shows similar values than those 
obtained using the literature and Sanger 
measurements (Fig. 3a), with a Pearson 
correlation coefficient (PCC) of 0.34 and 
statistical significance (p, permutation test) of 
0.09. This correlation is even stronger 
(PCC=0.76, p =0.0035) when excluding CPTIs 
identical to zero, resulting from treatments with 
no sample manifesting a good response. 

To investigate potential relationships between 
CPSI and CPTI, we first focused on the literature 
dataset, where we can estimate both the CPTI 
and CPSI for 13 treatments (Supplementary 
Table 2d). After excluding CPTI=0 
measurements (2 points), we obtain a 
remarkably good correlation between the two 
indexes (PCC=0.77, p=0.0029) (Fig. 3b). 
Second, we tested whether the CPSI estimated 
from the NCI60 screen is predictive of the CPTI 
from the literature data, using nine treatments for 
which we had data in both cases 
(Supplementary Table 2d). Excluding once again 



the CPTI=0 measurements (2 points), we 
recapitulated the linear correlation between the 
CPTI and CPSI (PCC=0.80, p=0.02) (Fig. 3c). 
On the other hand, treatments with CPSI=0 and 
relatively high CPTI are false negatives, resulting 
in an estimated false negative rate of about 20% 
(2/9). 

The use of the CPSI as a surrogate for the CPTI 
has important practical implications. Tumor 
derived cell lines are in generally easier to 
growth in culture and they are routinely used in 
anticancer drug screens. In particular, as 
mentioned above, the NCI60 screen has tested 
the response of several compounds, including 
hundred FDA approved drugs (Supplementary 
Table 1c). Now, armed with the CPSI surrogate 
of therapeutic index, we can use this dataset to 
score compounds for their potential use in 
anticancer therapy. Using the IC50 data reported 
by the NCI60 screen, we computed the CPSI of 
47,624 compounds and, exploiting the linear 
relationship in Fig. 3c, we made predictions for 
their CPTI. Table 2 reports the twenty best FDA 
approved drugs according their predicted CPTI 
(see also Supplementary Table 2b). Among 
compounds scoring high, there is a significant 
enrichment of mTOR inhibitors (p=0.05, 

Fischer’s exact test). There are several 
antimetabolites as well, but it is expected given 
the abundance of antimetabolites among the 
hundred FDA drugs analyzed here (p=0.21).  On 
the other hand, there is a significant depletion of 
DNA damaging agents, including alkylating 
agents (p=0.000005), topoisomerase inhibitors 
(p=0.0000007), and antimitotic agents 
(p=0.0006). Taking together these results 
indicate that mTOR inhibitors and 
antimetabolites has overall a better predicted 
CPTI than DNA damaging agents. 

A high CPTI is indicative of a good therapeutic 
potential, because it will allow to set at 
intermediate treatment dose that would be 
sufficiently high to target cancer cell lines, but 
sufficiently low to avoid toxicity over normal cell 
lines. However, it is extremely important to 
notice that we still face the problem of certain 
cancer cell lines being resistant to the treatment. 
This fact is better illustrated by inspecting the 
IR50 distribution for a compound with high CPTI, 
such as MTX. By setting the IR50 at -2σ (Fig. 2b, 
dashed line) we can guaranty that we are 
working at a drug concentration below the IC50 
for all the normal cell lines considered in this 
study (non-toxic dose). However, the same 

CPSI CPTI NSC Mechanism of action Name 
0.57 1.33 613327 DNA Antimetabolite Gemcitabine 
0.52 1.16 740 RNA/DNA Antimetabolite Methotrexate 
0.48 1.04 733504 mTOR Inhibitor Everolimus 
0.43 0.87 732517 Tyrosine Kinase Inhibitor Dasatinib 
0.42 0.82 683864 mTOR Inhibitor Temsirolimus 
0.40 0.76 712807 RNA/DNA Antimetabolite Capecitabine, 5FU prodrug 
0.38 0.70 226080 mTOR inhibitor Rapamycin 
0.33 0.53 63878 DNA Antimetabolite Ara-C 
0.33 0.53 606869 RNA/DNA Antimetabolite Clofarabine 
0.30 0.42 27640 DNA Antimetabolite 5-Fluorouracil deoxyriboside 
0.27 0.31 698037 RNA/DNA Antimetabolite Alimta 
0.25 0.25 287459 DNA Antimetabolite Cytarabine 
0.23 0.19 719344 Aromatase Inhibitor Anastrozole 
0.23 0.19 125066 Alkylating Agent Bleomycin 
0.23 0.19 125973 Antimitotic Agent Taxol 
0.23 0.19 279836 Topoisomerase II Inhibitor Mitoxantrone 
0.23 0.19 266046 Alkylating Agent Oxaliplatin 
0.22 0.14 105014 DNA Antimetabolite Chorodeoxyadenosine 
0.22 0.14 141540 Topoisomerase II Inhibitor Etoposide 
0.18 0.02 127716 DNA Antimetabolite Decitabine 

 
Table 1 Compounds with highest CPSI: The twenty FDA drugs with the highest CPSI, as obtained from the 
analysis of the NCI60 data. The CPTI was obtained using the linear relationship CPTI=- 0.6+3.4CPSI derived 
from Fig. 3c. 



applies for all the cancer cell lines at the right of 
the dashed line (48%). The traditional solution to 
this problem has been to increase the dose to 
cover a higher fraction of cancer cell lines, but at 
expenses of an increased toxicity. There are, 
however, other strategies to overcome the 
problem of resistance without compromising on 
toxicity.  

Personalized therapy: The most obvious 
approach is to identify a biomarker (or 
biomarkers) allowing us to discriminate between 
the sensitive and unsensitive cancer cell lines. 
Whenever a tumor would score positive for that 
biomarker then we could use the corresponding 
treatment at a non-toxic dose.  This strategy is 
off course more powerful when developed for a 
library of treatments, increasing the chances that 
most tumor types will score positive for the use 
of at least one treatment in the library. Using this 
type of approach we, in collaboration with others, 
have identified a small molecule with increased 
activity in cancer cells with a mutation in p53, 
one of the most common alterations in human 
tumors yet lacking fro a specific treatment 
(unpublished work). 

Combination therapy: Another strategy is to use 
drug combinations, each at a non-toxic dose, 
such that together they target all or most cancer 
cell lines. We have recently shown that a three 
drugs combination is sufficient to target all the 
NCI60 cell lines, and there are 14 of such 
combinations [7], indicating that the drug 
combination approach is feasible and requires 
no more three-drug combinations. While the 
extrapolation of these observations to the cancer 
patient population is not straightforward, it 
provides a methodology to identify drug 
combinations that are efficient in the sense that 
each drug in the cocktail covers for the 
resistance to the others and are minimal by 
using the minimum number of drugs necessary 
to do the job. 
Conclusions 
This analysis demonstrate the power of looking 
at the response pattern of cancer and normal 
cell lines to a library of compounds, rather than 
just focusing on a few compounds manifesting 
the highest potency for selected cell lines. It 
reveals the major challenge in anticancer 
therapy: how to overcome the fact that cancer 
and normal cell line responses to an average 

treatment manifest overlapping distributions. Our 
results indicate that there is no single treatment 
targeting all cancer cell lines at a non-toxic dose. 
More important, we anticipate that both 
personalized medicine and combination therapy 
are feasible strategies for anticancer therapy at 
non-toxic doses. Finally, the indexes introduced 
here allow us to compare different treatments 
and rank them according to their therapeutic 
potential. 

Methods 
The datasets used in this study were obtained 
from: literature, author compilation; NCI60 
screen, http://dtp.nci.nih.gov; Sanger screen, 
http://www.sanger.ac.uk/genetics/CGP/translatio
n.  
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