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INTRODUCTION

 We run lots  of BLAST searches. Typically, we’re 
searching DNA or protein sequences  from a single-
genome or metagenomic dataset against a  big data-
base. Because of increased throughput from next-
generation sequencing technologies, you’ll often end up 
with millions  of sequences, so it’s  no longer possible to 
BLAST all your sequences  against a  decent size data-
base on a single machine or even a small cluster. Now, 
we are leveraging cloud computing to run large-scale 
parallelized BLAST jobs  and then compiling all the re-
sults for biologists and performing downstream analysis.
 But these days when we throw a bunch of se-
quences at the cloud (e.g. Amazon EC2), we’re still not 
sure how long it’s  going to take. How many machines 
do we need? How many pieces  do we need to chunk 
our sequences  into? How much is  this  going to cost 
us? The answers to these questions are usually found 

empirically by running a small set of sequences against 
the target database and scaling up that estimate based 
on your dataset size. This approach has several pitfalls, 
in particular, the composition of your query set has  a 
significant impact on the BLAST runtime. Figure 1 illus-
trates this situation. Here we took a real dataset of 1000 
proteins, and created several new datasets with differ-
ent amino acid composition but the same sequence 
lengths. Then we ran BLASTP searches  of these data-
sets  against the NCBI COG database and measured 
each runtime. The longest run ended up being 78% 
longer than the shortest runtime. 
 From this  we can see that sequence composition 
matters, and BLAST is  so sophisticated (and heuristic) 
that it is  difficult to accurately estimate BLAST runtime 
for all sequences. After playing around with this a  bit, 
we have found that there is  reasonable consistency in 
sequence composition for most shotgun metagenomic 
sequence datasets. Therefore, it’s  possible to use some 
gross  measures  to estimate how long a practical BLAST 
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ABSTRACT
BLAST is  arguably the single most important piece of software ever written for the biological sciences. It is  the 
core of most bioinformatics  workflows, being a critical component of genome homology searches and annota-
tion. It has influenced the landscape of biology by aiding in everything from functional characterization of genes 
to pathogen detection to the development of novel vaccines. While BLAST is  very popular, it is also often one of 
the most computationally intensive parts  of bioinformatics analysis. In our workflows, BLAST typically takes the 
majority of cpu time, and we need to parallelize to finish in a  reasonable time frame. Waiting for BLAST to finish 
without having any clue of how long it’s  going to take is kind of depressing, and you could waste a day of work 
trying to run a job that would never finish. If you feel the same way we do, then check out Cunningham, a  tool 
we designed to estimate BLAST runtimes  for shotgun sequence datasets  using sequence composition statistics. 
We’ve trained its  models on real metagenomic sequence data  using the Amazon EC2 cloud, and it will provide a 
relatively quick estimate for datasets  with up to tens  of millions  of sequences. It’s not perfect, but it’ll give you at 
least some idea of expected runtime, how large a cluster you’re going to need, how much you’ll need to partition 
your data, etc. We use it all the time now, so we hope it’ll be useful to someone else out there. Cunningham 
has been implemented in CloVR for efficient autoscaling in the cloud and is freely available at http://clovr.org.
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search would take. Cunningham is a tool we’ve devel-
oped just for this  purpose. Given a set of sequences, a 
blast program (BLAST{N,P,X}), and a  pre-specified da-
tabase (db), Cunningham will rapidly assess  the se-
quence profile of the queries  and produce an estimate 
of BLAST runtime.  
 What does  Cunningham use to estimate runtime? 

One thing that appears to be crucial is the number of 
matching words (or seeds)  between the query se-
quences and the database itself. It’s  actually more 
complicated with BLASTP and BLASTX, which use so-
called “neighborhoods” of non-identical words  to seed 
alignments  and requirements  of two-hits  within a  region 
of some length [1]. Nevertheless, the number of identi-
cally matching seed words  is  still informative of overall 
similarity between query and db. Another factor is  se-
quence length. If all sequences  are less  than the word 
size, there won’t be any seed matches  to explore lo-
cally. If the query sequences are very long, there will 
likely be many more local alignments to perform and this 
will take additional computational time, so we’ll also 
consider average sequence length within a dataset.  

VALIDATION
 To demonstrate how these indicators  can assist in 
runtime estimation, we collected several databases  (Ta-
ble 1) and created a series  of sequence datasets by 
randomly sampling from a  collection metagenomics 
projects (Table 2). DNA sequences were generated us-
ing Sanger or 454 technology, so there is  substantial 
range in sequence lengths  (<100bp to >800bp) for 
these random datasets. For protein-based searches, we 
randomly sampled from the over 3  million predicted pro-
teins and protein fragments from the MetaHIT project. I 
also computed kmer profiles for each database (k=3 for 
protein, k=11 for dna (including reverse complemented 
sequence)), so we can determine the number of match-
ing word pairs  between a query set and a database. 
Mathematically, we compute this as:	

                    

€ 

M = Q wi( ) ⋅D
i=1

W

∑ wi( )

where W is  the set of all words, and the number of oc-
currences  of the word wi in the query set and database 
are Q(wi) and D(wi), respectively.
 Validation BLAST jobs were performed using CloVR 
(http://clovr.org) on the Amazon EC2 cloud using 
c1.xlarge on-demand instances, and every job got its 
own cpu to work on to avoid overloading bias. Default 
parameters  were used with the exception of ‘-b 1 -e 1e-
5 -F F’. Figure 2 shows  the resulting runtimes plotted 
with the corresponding number of matching word pairs. 
We see strong linear relationships between runtime and 
M, which we can take advantage of using standard re-
gression techniques. Cunningham uses a different lin-
ear model for BLASTN, BLASTP, and BLASTX, but they 
all share a common form:                                        
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Figure 1. Variable BLAST runtimes  due to changes  in 
sequence composition. In this  mock example, each bar 
represents the BLASTP runtime of a query dataset with 
1000 protein sequences  (of identical lengths) against 
the NCBI COG database. The original dataset (orange) 
had a  runtime of ~1,532 seconds. By randomly altering 
the amino acid composition of the dataset, we are able 
to increase the runtime by up to 43%  or decrease the 
runtime by up to 20%. These dramatic differences indi-
cate that the runtime of a BLAST program is  highly sen-
sitive to the composition of the sequence being ana-
lyzed.

Database
Sequence 

type
Programs used

NCBI RefSeq
DNA 

(genomes)
BLASTN

NCBI COG Protein BLASTP, BLASTX

eggNOG Protein BLASTP, BLASTX

KEGG genes Protein BLASTP, BLASTX

Table1. BLAST databases used for this project.
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where T (the runtime) depends on the number of shared 
seed pairs  M, and the average query sequence length 
L. Fitting this  model to the data  from figure 2, we see 

acceptable prediction accuracy for BLASTN, BLASTP, 
and BLASTX, with r-squared values of 0.996, 0.999, 
and 0.998, respectively.  In all three models, M and L 
were both found to be significant (P values < 0.01). 
Though our sample data is  somewhat biased and lim-
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Dataset Sequence type Reference

EBPR-Sludge Sanger shotgun DNA [2]

Mediterranean gutless worm Sanger shotgun DNA [3]

Global ocean sampling (2 samples) Sanger shotgun DNA [4]

Nine biomes (microbial samples) 454 shotgun DNA [5]

Peru margin deep sea sediment 454 shotgun DNA [6]

Developing infant gut 454 shotgun DNA [7]

Obese and lean twins 454 shotgun DNA [8]

MetaHIT predicted proteins proteins from assembled Illumina [9]

Table 2. Metagenomic datasets used for this project. DNA and protein sequence datasets were created by randomly 
selecting sequence sets from compiled projects. 
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Figure 2. Correlation of BLAST runtimes and total seed 
match pairs  for (A) BLASTN, (B) BLASTP, and (C) 
BLASTX on randomly selected shotgun metagenomic 
datasets. BLASTN are searches against NCBI RefSeq 
microbial genomes, BLASTP and BLASTX runs are 
against the COG, eggNOG, and KEGG genes  data-
bases. BLASTN and BLASTX used the same set of 
randomly selected DNA sequences. We observe a 
highly linear relationship for BLASTX and BLASTP, and 
less so for BLASTN.
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ited in runtimes  to a  few hours, we are encouraged by 
the excellent prediction accuracy across  all three pro-
grams (figure 3). So, let’s have fun making some predic-
tions of runtime for really large BLAST jobs. 

BIG RUNS & SUMMARY 
Cunningham is  implemented with a set of specific data-
bases, but the indicators  could be computed for techni-
cally any possible database. Here we’ll take some well 
known datasets/databases  and see what Cunningham 
predicts. Let’s  also consider how long it takes  Cunning-
ham to run on a standard desktop because you can’t 
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Figure 3. Linear model prediction accuracy for (A) BLASTN, (B) BLASTP, and (C) BLASTX on randomly selected 
shotgun metagenomic datasets. These linear models  utilize the total number of seed matches  between a dataset 
and a  database as  well as  the average query length. R-squared model fit values are: BLASTN -> 0.996, BLASTP-> 
0.999, & BLASTX->0.998. Prediction for runtimes were often within 0.05 cpu hours (3  minutes). Cunningham uses 
the same linear model with different coefficient values for each program.
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wait all day right? Table 3  shows the results  of Cunning-
ham for different datasets and a few specs  about each 
run. Note when the datasets  become too large, count-
ing all the shared seed pairs becomes cumbersome. So 
as a heuristic, if there are more than 600,000 se-
quences or over 300 million residues  in the query data-
set, then Cunningham will randomly subsample from 
the data  and compute seed match pairs  for multiple 
rounds, and finally scale up the estimate based on the 
average number of seed match pairs  and the total 
number of sequences  in the query.  If you’ve gotten this 
far, it either means you want to try Cunningham or you 
want to write something that beats it. Well done either 
way!

Cunningham is  open source and currently implemented 
in the CloVR package for efficient autoscaling in the 
cloud. Please visit http://clovr.org for the free source 
code.
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Dataset
Total 

residues

BLAST 

program
Database

Cunningham 

estimate

Cunningham’s 

runtime

Obese and lean twins 1.83 Gb BLASTN RefSeq
647 cpu hours     

(27 cpu days)
4 min 25 sec

Obese and lean twins 1.83 Gb BLASTX COG
1030 cpu hours    

(43 cpu days)
4 min 21 sec

Nine biomes   

(microbial samples)
698 Mb BLASTN RefSeq

236 cpu hours     

(10 cpu days)
3 min 14 sec

Nine biomes   

(microbial samples)
698 Mb BLASTX KEGG

6233 cpu hours    

(260 cpu days)
3 min 8 sec

Developing infant gut 145 Mb BLASTN RefSeq
48 cpu hours        

(2 cpu days)
2 min 4 sec

Developing infant gut 145 Mb BLASTX NCBI-NR
6918 cpu hours 

(288 cpu days)
1 min 40 sec

Table 3. Cunningham predictions for some big datasets. We have not assessed their accuracy.
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