Nature Precedings : doi:10.1038/npre.2011.5292.2 : Posted 13 Dec 2011

Taking shortcuts with OWL using safe macros

Chris Mungall', Alan Ruttenberg?, David Osumi-Sutherland?

! Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
CJMungall@lbl.gov
2 Science Commons, Cambridge, MA, USA
alanruttenberg@gmail.com
3 Department of Genetics, University of Cambridge, Cambridge, UK
djs930@gen.cam.ac.uk

Abstract. Accurate representation of complex domains such as biol-
ogy demands powerful and expressive ontology languages such as OWL.
However, the complex nested class expressions required for modeling can
be a hindrance to ontology authoring and adoption. These class expres-
sions can appear opaque to domain experts, and even users proficient
in OWL can benefit from some kind of syntactic sugar or “short-cut”
strategy, especially when authoring large ontologies.

One solution is to have domain experts fill in simple templates (for ex-
ample, in Excel) and translate the results into more complex axioms,
but this has the disadvantage of being disconnected from full ontology
authoring and reasoning environment.

We present here a method of specifying shortcut properties directly in
OWL. These shortcut properties can be used in similar ways as object
properties within the OWL environment, with the resulting simple ax-
ioms translated automatically to more complex axioms via macro ex-
pansion. We describe some example scenarios where this is of use in
authoring existing bio-ontologies.

One of the main implications of this work is a way to simplify the trans-
lation between OBO format and OWL, and the use of RDF triple-stores
with complex OWL ontologies.

1 Introduction

Accurate representation of complex domains such as biology demand powerful
and expressive ontology languages such as OWL. However, the very expressive
power of OWL can be a hindrance to widespread adoption and effective use -
domain experts may not be comfortable with complex axioms and deeply nested
class expressions. Even those proficient in OWL may prefer to work in terms
of high-level templates that abstract away from the logical “machine code” of
OWL. This is particularly true for the development of large ontologies, which
often requires the repeated application of the same template pattern for multiple
classes. In addition to being tedious and error-prone, the high-level pattern is
not immediately apparent on viewing the ontology. Table 1 shows some example
repeated patterns extracted from core bio-ontologies from the OBO Foundry
registry[13].

Nature Precedings : doi:10.1038/npre.2011.5292.2 : Posted 13 Dec 2011

Source

Pattern

Example

DC-CL |hasPart some (’plasma|Class: ’alpha-beta T cell’
membrane’ and hasPart ?Y) |EquivalentTo: 'T cell’ and hasPart some ('plasma
membrane’ and hasPart ’alpha-beta TCR com-
plex’)
CL bearerOf some (realizedBy|Class: 'immune cell’
only 7Y) EquivalentTo: ’cell’ and bearerOf some (real-
izedBy only 'immune system process’)
GO (partOf some ?7X) disjoint-|(partOf some nucleus) disjointFrom (partOf some
From (partOf some ?Y) cytoplasm)
Fly Class: 7X Class: retina
SubClassOf: partOf some|SubClassOf: partOf some eye
Y
Class: 7Y Class: eye
SubClassOf: hasPart some|SubClassOf: hasPart some retina
?7X
Fly hasPart some (’presynap-|Class: ’giant fiber neuron’
tic membrane’ and partOf|SubClassOf: hasPart some (’presynaptic mem-
some (synpase and hasPart|brane’ and partOf some (synpase and hasPart
some (’postsynaptic mem-|some (’postsynaptic membrane’ and partOf some
brane’ and partOf some|tergotrochanteral muscle motor neuron’)))
7Y)))
CL hasPart exactly 0 7Y Class: ’enucleate cell’
EquivalentTo: cell and hasPart exactly 0 nucleus
TAO |hasPart some (partOf some|Class: 'vertebra 5’
?Y) SubClassOf: hasPart some (partOf some ’V4-5
joint’)
OBI |realizes some (’analyte role’|Class: ’human antithrombin-IIT (AT-III) in blood

and roleOf some (’scattered
molecular aggregate’ and
hasGrain only 7Y))

assay’

SubClassOf: realizes some (‘analyte role’ and
(roleOf some (’scattered molecular aggregate’ and
(hasGrain some ’human antithrombin-IIT pro-

tein’)))

Table 1. Example generic patterns taken from various ontologies in the OBO library
(http://obofoundry.org). CL = cell ontology, DC-CL = dendritic cell ontology, Fly =
Drosophila anatomy, GO = Gene Ontology, OBI = Ontology for Biomedical Investi-
gations, TAO = Teleost anatomy ontology. Note that for GO and CL these axioms are
available as optional extensions[11][3]

Nature Precedings : doi:10.1038/npre.2011.5292.2 : Posted 13 Dec 2011

There are a number of approaches to this problem. Quick Term Templates
(QTTs)[12] are a way of generating complex OWL axioms from simple tables.
The domain expert can use a familiar tool such as Excel, structured according to
a predetermined template, rather than working directly in an ontology develop-
ment environment such as Protege. A similar approach is to defined a domain-
specific intermediate representation language, and translate this to OWL.

However, this approach can be unsatisfying for a number of reasons. A script-
ing approach is ad-hoc and difficult to integrate with existing OWL toolchains.
In addition, the source intermediate representation is lost on translation into
OWL - ideally the intermediate representation would still be visible within en-
vironments and tools such as Protege and OntoBee[16].

Here we describe a macro expansion language that allows the representation
in a high-level intermediate form directly in OWL, through the use of high-level
shortcut relations. A generic simple macro-expansion tool can be used to expand
these shortcut relations into more complex axioms and class-expressions. This
has the advantage of allowing the intermediate representation to be viewed and
manipulated from within standard OWL tools and environments.

2 Macro Expansion Language

We propose a macro expansion language that can be represented directly within
OWL-DL. The macro expansions are represented as OWL Manchester Syntax[9]
with the addition of template variables. Either annotation properties or object
properties are annotated with macros, and these can be used to expand individ-
ual axioms at any time during the ontology development or deployment cycle,
preferably prior to reasoning. We refer to properties that are annotated in this
way as shortcut relations. Table 2 shows the two different annotation proper-
ties that can be used to define shortcut relations. The first is intended to apply
to annotation properties connecting two classes, and the second is intended to
apply to object properties used in different contexts. In both cases the value of
the annotation property is a template string containing Manchester syntax with
variable placeholders denoted by the ’?’ symbol.
The pattern in the second row of table 1 could be specified as follows:

AnnotationProperty: capableOf

Annotations: expand_expression_to "bearer0Of some (realizedBy only ?7Y)"

We now describe these in more detail, first describing expansion of property
assertions, followed by expansions of expressions.

2.1 Macro Expansion of Annotation Properties

We propose an annotation property expand_assertion_to that specifies how to ex-
pand a single OWL AnnotationAnnotationPropertyAssertion into a more com-
plex axiom by substituting two variables 7X and 7Y with the subject and target
of the assertion respectively.

The rule can be specified as:

Nature Precedings : doi:10.1038/npre.2011.5292.2 : Posted 13 Dec 2011

Annotation Prop-|Usage Matches
erty

expand_assertion_to |Expanding annotation assertion|AnnotationPropertyAssertion(?R,

axioms connecting two classes |?7X 7Y)

expand_expression_to |Expanding class expressions 7R some 7Y or
7R value 7Y

Table 2. Annotation properties use to specify a macro expansion. If a property 7R is
annotated using one of these two annotation properties, then the ontology is scanned
for occurrences of the match pattern, which is then expanded according to the specified
template.

21 AnnotationPropertyAssertion (ezpand_assertion_to YR ?T) =
substitute(AnnotationPropertyAssertion (YR ?X ?Y), ?T)

Where substitute is a two-argument function that replaces axioms or expres-
sions (argument 1) with a template (argument 2).
For example, given the following shortcut relation specification:

AnnotationProperty: spatially_disconnected_from
Annotations: expand_assertion_to
"DisjointClasses: (part_of some 7X) (part_of some 7Y)"

The following annotation property assertion axiom:

Class: nucleus
Annotations: spatially_disconnected_from cytoplasm

would expand to a general class inclusion (GCI) axiom:
DisjointClasses: (part_of some nucleus) disjointFrom (part_of some

Note that this pattern is not applicable to all cases in table 1 - for example,
we may want to define a class using an equivalence axiom. Here we want a generic
way of expanding class expressions using shortcut relations, such that they can
be used in different axiom types. This is where the second type of expansion
comes in.

2.2 Macro Expansion of Object Properties

As an alternative that works for both SubClass and EquivalentTo axioms, we pro-

cytoplasm)

pose a different expansion rule for a new annotation property expand_expression_to.

Here, the macro describes how to expand a class expression, not a property as-
sertion, and only uses a single variable.

The macro object property should be used in existential restrictions, and the
translation rule is:

Nature Precedings : doi:10.1038/npre.2011.5292.2 : Posted 13 Dec 2011

22 AnnotationPropertyAssertion (ezpand_expression_to ?R ¢T) =
substitute(?R some ?Y,?T)

For example, the cell ontology defines a shortcut relation used for defining
cell types based on the proteins expressed on the plasma membrane (i.e. the
boundary of the cell)[8].

ObjectProperty: has_plasma_membrane_part
Annotations: expand_expression_to
"has_part some (’plasma membrane’ and has_part some ?7Y)"

This allows us to specify axioms using existential restrictions as follows:

Class: ’alpha-beta T cell’
EquivalentTo: ’T cell’ and has_plasma_membrane_part some (’alpha-beta TCR complex’)

This intermediate level representation would expand to:

Class: ’alpha-beta T cell’
EquivalentTo: ’T cell’ and
has_part some (’plasma membrane’ and
has_part some ’alpha-beta TCR complex’)

Note that the intermediate level representation can still be used by a rea-
soner. Whilst it may fail to make all the correct inferences, in this particular
case it will not produce any incorrect inferences. We regard this semantically
correct intermediate representation as a desirable trait, even if the intention is
to ultimately reason over the expanded form.

However, if existential restrictions are used in the intermediate level rep-
resentation, then it is possible to have an intermediate representation that is
semantically incompatible with the expanded form.

Consider the following shortcut relation:

ObjectProperty: lacksPart
Annotations: expand_expression_to "hasPart exactly 0 7Y"

The author would write in the intermediate form:

Class: ’enucleate cell’
EquivalentTo: cell and lacks_part some nucleus

Which would expand to:

Class: ’enucleate cell’
EquivalentTo: cell and has_part exactly O nucleus

Note that the intermediate form would produce different inferences from
the expanded form. For example, if nucleus is a subclass of organelle, then the
intermediate form entails that a enucleate cell lacks part some organelle. When
expanded, this becomes too strong.

Notice that table 2 has an additional rule for hasValue restrictions:

Nature Precedings : doi:10.1038/npre.2011.5292.2 : Posted 13 Dec 2011

23 AnnotationPropertyAssertion (ezpand_expression_to,?R,?T) =
substitute(?R value ?Y,?T)

Here we are treating the intermediate property as a relation between an
individual and a class.
Now we can write an intermediate representation:

Class: ’enucleate cell’
EquivalentTo: cell and lacks_part value nucleus

This expands to the correct form. Whilst the intermediate form does not
produce all the same inferences as the intermediate form, the intermediate form
does not produce any incorrect inferences.

The meaning of the intermediate form may appear curious. Here we are
treating the class nucleus as part of the domain of discourse, which is allowed
in OWL2. The lacksPart shortcut relation holds between instances and classes.

We can also safely introduce an expansion rule for individuals:

24 expand_expression_to(?R,?T) =
substitute(Property Value(?R,?X,?Y),?X Types: substitute(?R,?Y))

We can write property assertions:

Individual: imaged-cell00001234
Properties: lacks_part nucleus

Which expand to:

Individual: imaged-cell00001234
Types: has_part exactly O nucleus

3 Implementation

We have implemented a shortcut relation translator on top of the java OWLAPI
(this was based on a prototype prolog implementation, available as part of the
Thea2[15] - the new implementation is entirely java-based).

The implementation is distributed as part of the org.oboformat codebase
(http://code.google.com/p/oboformat), although it is entirely independent of
OBO-Format. It is also available as part of the OBO Ontology Release Tool
(Oort)[4].

The implementation uses the information artefact ontology (IAO) as the
annotation property vocabulary. The expand_expression_to annotation property

has the IRT http://purl.obolibrary.org/obo/TAO_0000424, and the expand_assertion_to

annotation property has the IRI http://purl.obolibrary.org/obo/IA0_-0000425.

The implementation allows two strategies for handling shortcut relations.
The first one is to simply expand in place, replacing the expression with the
shortcut relation with the expanded expression.

Nature Precedings : doi:10.1038/npre.2011.5292.2 : Posted 13 Dec 2011

The second strategy leaves the original ontology unmodified, and instead
adds a General Class Inclusion (GCI) axiom to a separate auxhiliary ontology.
For example, if the source ontology contains:

ObjectProperty: has_plasma_membrane_part
Annotations: expand_expression_to
"has_part some (’plasma membrane’ and has_part some ?7Y)"

And has has an axiom:

Class: ’alpha-beta T cell’

EquivalentTo: ’T cell’ and has_plasma_membrane_part some (’alpha-beta TCR complex’)

Then the auxhiliary ontology will include:

has_plasma_membrane_part some (’alpha-beta TCR complex’)
EquivalentTo
has_part some (’plasma membrane’ and
has_part some ’alpha-beta TCR complex’)

The auxhiliary ontology are source ontology can then be imported in a sep-
arate ontology.

4 Discussion

4.1 Comparison with property chains

Property chains are a powerful feature introduced into OWL2. They are even
more powerful when combined with self-restrictions, and can be used to reca-
pitulate some of the features of the macro-expansion rules described above. For
example, the has plasma membrane part relation could be specified as follows:

ObjectProperty: has_plasma_membrane_part
SubPropertyChain: has_part o is_plasma_membrane o has_part

ObjectProperty: is_plasma_membrane

Class: ’plasma membrane’
SubClass0f: is_plasma_membrane Self

A minor disadvantage here is that opaque axioms and properties are inserted
into the ontology — but these could in principle be hidden given appropriate
annotation properties and tooling.

A more serious disadvantage is that property chains cannot be used to define
a property. The direction of implication is one-way only.

To see this, consider a standard axiom in mereology defining an overlaps
relation in terms of parthood:

Nature Precedings : doi:10.1038/npre.2011.5292.2 : Posted 13 Dec 2011

overlaps(z,y) < Jz : hasPart(z, z) A partOf(z,y)

The overlaps relation is useful in bio-ontologies[1], so it can be tempting to
declare an object property for it, and provide a property chain:

ObjectProperty: overlaps
SubPropertyChain: has_part o part_of

But this axiom is weaker, and there is a danger if this property is used
in assertions thinking it has the same semantics. If an ontology asserts that a
overlaps some b, then this is not the same as asserting that a hasPart some
partOf some b. If a user queries for hasPart some partOf some b, then classes
asserted to be subclasses of overlaps some b will not be returned.

The guiding principle here is: if the intention is to define a property then a
shortcut relation should be specified. If the intention is to infer property asser-
tions then use a property chain.

Note that property chains cannot be used for shortcut relations such as ca-
pableOf, because in this case the shortcut relation abbreviates a nested class
expression involving both an existential and universal restriction.

4.2 Practical usage and implementation: ontology views

The scheme we have proposed is relatively simple and can be implemented easily.

However, to be maximally useful, the translator could be integrated into
ontology editing environments such as Protege4[7]. Expanded axioms could be
marked using axiom annotations. Users would have the option of viewing the
ontology at the intermediate level, the expanded level, or both. Changes at one
level would automatically expand/contract to the other level, and feed in to
incremental reasoning.

However, even without this tight integration we believe that a translation
tool implementing the macro language specified here would be useful.

There is a possible concern about reasoning over the intermediate view, prior
to expansion. However, our strategy here insulates us from making incorrect
inferences at the intermediate level. Users will still have to be aware of the
differences between the two levels to know why they get more inferences in the
expanded view.

4.3 Applications for OBO to OWL translation

OBO-Edit is an ontology editing environment popular amongst biologists[2]. The
native model for this tool is the OBO file format, which can be translated to
a subset of OWL[5][14]. A characteristic feature of the OBO format is that an
ontology is treated as a labeled graph (much like RDF). Edges in the graph
are by default translated to existential restrictions[10]. Whilst it is possible to
write nested class expressions in OBO format by using RDF blank-node style

Nature Precedings : doi:10.1038/npre.2011.5292.2 : Posted 13 Dec 2011

anonymous classes, this is not well-supported and best avoided. In addition, there
is no standard way to write other OWL constructs such as negation and universal
restriction, which are becoming increasingly necessary for bio-ontologies.

Many OBO-Edit authored ontologies have started informally adopting short-
cut relations with a view to translating these to expanded OWL axioms further
down the line. One approach is to do this as part of the obo to owl translation,
but we believe there are advantages to doing the expansion as a separate inde-
pendent step. For one thing, it simplifies the already complicated translation,
which has some problems in the existing translation. It also has the advantage
of maintaining the shortcut relations in the OWL environment.

Currently a piece of obo-format may look like this:

[Typedef]

id: has_part
is_transitive: true
inverse_of: part_of
xref: BF0:0000051

[Typedef]

id: lacks_part

expand_expression_to: "BF0_0000051 exactly 0 7Y" []
is_class_level: true

[Term]

id: CL:0000595 ! enucleate erythrocyte
intersection_of: CL:0000232 ! erythrocyte
intersection_of: lacks_part G0:0005634 ! nucleus

The OBO-Format 1.4 specification (http://purl.obolibrary.org/obo/oboformat/spec.html#7)

states that this is translated to:

ObjectProperty: BF0_0000051
Characteristics: Transitive

ObjectProperty: lacks_part
Annotations:
expand_expression_to "BFO_0000051 exactly O 7Y"

Class: CL_0000595 /* enucleate erythrocyte */
EquivalentTo: CL_0000232 /* erythrocyte */
and lacks_part value GO_0005634 /* nucleus */

Applying the expansions rules we would get an auxhiliary ontology with the
axiom:

(lacks_part value GO_0005634)
EquivalentTo
(BFO_0000051 exactly 0 GO_0005634)

Nature Precedings : doi:10.1038/npre.2011.5292.2 : Posted 13 Dec 2011

Which has the intended semantics.

This has the advantage of allowing the users of OBO format tools to access
the more expressive constructs in OWL, yet retain a simple graph-like model.
This has positive implications for many downstream consumers of OBO format
ontologies, many of which are tools or databases that also have a simple graph-
like model of ontologies.

4.4 Applications for RDF and semantic web applications

If an OWL ontology contains complex axioms involving nested class expressions
this can result in RDF triples that are difficult to work with at the RDF level.
This difficulty is ameliorated by languages such as SPARQL-DL, but there is
still problem for many triple stores and RDF libraries that are not OWL-aware.

The shortcut relation strategy provided here could provide a means of pro-
viding a “triple-friendly” view over complex OWL ontologies.

4.5 Comparison with other methods

Hoehndorf et al[6] provide a method to translate obo to owl ontologies that ex-
pands relations at the time of translation from obo to owl. This method provides
similar means of translating relations such as lacksPart to the apprpriate OWL
class expression.

However, by coupling this translation to the obo to owl translation mecha-
nism, this method is limited to users of obo-format ontologies. Many developers
of obo-format ontologies are beginning to move to OWL, but would still like to
retain shortcut relations.

Another limitation of the Hoehndorf et al method is that it is not applicable
to equivalence axioms (intersection_of tags in obo-format). They state: “Solving
this problem is subject to future research, and falls in line with the effort to pro-
vide a standard semantics for the OBO Flatfile Format that is compatible with
currently available resources and allows expressive relation assertions between
categories”.

We believe that the solution we have provided here solves this problem.
By expanding expressions rather than binary relationships we allow the use of
shortcut relations in a variety of contexts.

5 Conclusions

We have defined two annotation properties that can be used to specify shortcut
relations that can be used in intermediate OWL-DL representations that provide
a simplified view over a complex ontology. Axioms or expressions that use these
relations can be expended to a more verbose form prior to reasoning. At the
same time, the intermediate form is safe for reasoning.

We believe that these shortcut relations will assist with ontology authoring
for both novices and experts. We also believe that these relations will assist with

Nature Precedings : doi:10.1038/npre.2011.5292.2 : Posted 13 Dec 2011

interconversion between OWL and popular but less expressive formalisms and
data models, opening up OWL to a wider community of users.

6

References

References

10.

11.

12.

Wasila M. Dahdul, John G. Lundberg, Peter E. Midford, James P. Balhoff, Hilmar
Lapp, Todd J. Vision, Melissa A. Haendel, Monte Westerfield, and Paula M. Mabee.
The Teleost Anatomy Ontology: Anatomical Representation for the Genomics Age.
Syst Biol, 59(4):369-383, 2010.

. John Day-Richter, Midori A Harris, Melissa Haendel, Gene Ontology OBO-

Edit Working Group, and Suzanna Lewis. OBO-Edit—an ontology editor for biol-
ogists. Bioinformatics, 23(16):2198-2200, Aug 2007.

. Alexander D. Diehl, Alison Deckhut Augustine, Judith A. Blake, Lindsay G. Cow-

ell, Elizabeth S. Gold, Timothy A. Gondr-Lewis, Anna Maria Masci, Terrence F.
Meehan, Penelope A. Morel, NTAID Cell Ontology Working Group, Anastasia Ni-
jnik, Bjoern Peters, Bali Pulendran, Richard H. Scheuerman, Q. Alison Yao, Mar-
tin S. Zand, and Christopher J. Mungall. Hematopoietic Cell Types: Prototype
for a Revised Cell Ontology. In Proceedings of the First International Conference
on Biomedical Ontology, 2009.

H. Dietze, D. Osumi-Sutherland, and C. Mungall. Oort: The obo ontology release
tool. in prep., 2012.

C. Golbreich and I. Horrocks. The obo to owl mapping, go to owl 1.1. In Proceedings
of the OWLED 2007 Workshop on OWL: Experiences and Directions: June 6-7
2007; Innsbruck, Austria, 2009.

R. Hoehndorf, A. Oellrich, M. Dumontier, J. Kelso, D. Rebholz-Schuhmann, and
H. Herre. Relations as patterns: bridging the gap between obo and owl. BM(C
bioinformatics, 11(1):441, 2010.

M. Horridge, D. Tsarkov, and T. Redmond. Supporting early adoption of OWL 1.1
with Protege-OWL and FaCT++-. In Proc. of the OWL Experiences and Directions
Workshop (OWLEDO6) at the ISWC, volume 6, 2006.

Anna Maria Masci, Cecilia Arighi, Alexander Diehl, Anne Lieberman, Chris
Mungall, Richard Scheuermann, Barry Smith, and Lindsay Cowell. An improved
ontological representation of dendritic cells as a paradigm for all cell types. BMC
Bioinformatics, 10(1):70, 2009.

M.Horridge, N.Drummond, J.Goodwin, A.Rector, R.Stevens, and H.Wan. The
Manchester OWL Syntax. OWL: Experience and Directions 2006, 2006.

C Mungall. The obo format specification -
http://purl.obolibrary.org/obo/oboformat /spec.html. 2012.

Christopher J. Mungall, Michael Bada, Tanya Z. Berardini, Jennifer Deegan,
Amelia Ireland, Midori A. Harris, David P. Hill, and Jane Lomax. Cross-Product
Extensions of the Gene Ontology. Journal of Biomedical Informatics, 44(1):80 —
86, 2011. Ontologies for Clinical and Translational Research.

B. Peters, A. Ruttenberg, J. Greenbaum, M. Courtot, R. Brinkman, P. Whetzel,
D. Schober, S.A. Sansone, R. Scheuerman, and P. Rocca-Serra. Overcoming the
Ontology Enrichment Bottleneck with Quick Term Templates. In Proceedings of
the First International Conference on Biomedical Ontology, 2009.

Nature Precedings : doi:10.1038/npre.2011.5292.2 : Posted 13 Dec 2011

13.

14.

15.

16.

Barry Smith, Michael Ashburner, Cornelius Rosse, Jonathan Bard, William Bug,
Werner Ceusters, Louis J Goldberg, Karen Eilbeck, Amelia Ireland, Christopher J
Mungall, The OBI Consortium, Neocles Leontis, Philippe Rocca-Serra, Alan Rut-
tenberg, Susanna-Assunta Sansone, Richard H Scheuermann, Nigam Shah, Patri-
cia L, Whetzel, and Suzanna Lewis. The OBO Foundry: coordinated evolution of
ontologies to support biomedical data integration. Nat Biotechnol, 25(11):1251—
1255, Nov 2007.

S.H. Tirmizi, S. Aitken, D.A. Moreira, C. Mungall, J. Sequeda, N.H. Shah, and
D.P. Miranker. OBO & OWL: Roundtrip Ontology Transformations. In Semantic
Web Applications and Tools for Life Sciences, 2009.

Vangelis Vassiliadis, Jan Wielemaker, and Chris Mungall. Processing OWL2 on-
tologies using Thea: An application of logic programming. In 6th OWL Experiences
and Directions Workshop (OWLED 2009), 2009.

Z. Xiang, C. Mungall, A. Ruttenberg, and Y. He. Ontobee: A linked data server and
browser for ontology terms. In Proceedings of the Second International Conference
on Biomedical Ontology, University at Buffalo, NY, July 26-30, 2011, pages 279—
281, July 2011.

