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Objectives: Predict growth and associated rates

I am ecologist, not modeller. My desire is to 
generate ecological inferences. 

For example... 

! Outcomes of competitive interactions

! Rates of carbon accumulation



Rationale:  Why revisit old topic?

Recent progress in fitting routines

! nls (Nonlinear Least Squares)

! MCMC (Markov Chain Monte Carlo)

Reconsideration of the method of calculating 
RGR and other derived rates.

Reviews 
Causton, D. & Venus, J. (1981) The biometry of plant growth. 
Hunt, R. (1982) Plant growth curves: the functional approach to plant growth analysis
Heinen, M. (1999) Analytical growth equations and their Genstat 5 equivalents. Neth. J. Ag. Sci.
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Back in the day, only linear, exponential and polynomial 
forms could be fit in linear model framework. 
Now, many functions are treatable

x

x

x
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Von Bertalanffy

von  Bertalanffy 1957 Quart Rev. Biol.



Data for illustration

Agrostis capillaris

Hautier et al 2010, J Ecology Turnbull et al 2008, Ecology
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Non-asymptotic fits

Here, exponential and power-law ‘tie’, 
but power-law is generally preferred because flexible

Agrostis capillaris



Non-linear forms can be hard to fit.
Local minima confuse fitting routines

Solutions: 
MCMC search 
Brute-force search, 
Fixing parameter values, other optimization routines

Agrostis capillaris
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Asymptotic fits

Here, logistic and Gompertz provide similar fits

Cerastium diffusum



Diagnostics

Agrostis capillaris

Cerastium diffusum
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Inferences on relative growth rate (RGR)

This approach is 
invalid unless growth 
is perfectly 
exponential, which is 
unusual

Cannot be 
extrapolated because 
no underlying function

Better: Measure size 
at multiple times, and 
fit functions

!

! 

RGR=
ln(Mt+1) " ln(Mt )

#t

Cerastium diffusumAgrostis capillaris

Traditionally,



With a function, 

Unless growth is exponential 
(then RGR = r), RGR varies with time / mass

Important, since growth slows as non-photosynthetic 
biomass accumulates

Choice of form affects inferred temporal pattern of RGR
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Choice of reference mass or reference time 
also affects comparisons

Use
natural history
to choose times/masses for comparison

= Fert. matters

= Or it doesn’t



Mechanistic models for plant growth

Abiotic conditions
(Light, water availability...)

Biotic interactions
(Competition, herbivory...)

Carbon gain
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Bespoke models for 
hypothesis testing

Incorporate data 
from any source

Requires MCMC for 
parameter estimation

Example:  
Turnbull et al 2008 Ecology



Recommendations

1. Let data and natural history of system guide 
experimental design, data collection, and analysis

2. Measure few plants at each of many time points

3. Measure often when plants are growing rapidly

4. Fit functions to growth data

5. Prefer flexible forms, despite difficulty in fitting 
parameters



Code, etc available: 
tim.paine@ieu.uzh.ch


