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Heaviness perception involves a misperception of weight known, since the 19th 

century, as the Size-Weight Illusion1. The larger of two objects of equal mass is 

reported to be lighter than the smaller when they are lifted.  The illusion has been 

found to be reliable and robust.  It persists even when people know that the masses 

are equal and handle objects properly2. It has been exhibited by children of only 2 

years of age3,4. All this suggests that the effect might be intrinsic to humans. 

Although different hypotheses have been advanced to account for the illusion over 

the 100+ years it has been studied5-11, its origin remains unknown. More recently, 

people’s perception of optimal objects for long distance throwing was found to 

exhibit a size-weight relation similar to the illusion12,13, greater weights were 

picked for larger objects and they were indeed thrown to the greatest distances. 

Here we show that the perception of heaviness (including the illusion) and 

perception of optimal objects for long distance throwing are in fact equivalent. 

Thus, the size-weight illusion has a useful application: optimal objects for throwing 

are picked by a thrower as having a particular heaviness, which is the best 

heaviness learned when learning to throw14,15. Long distance throwing is a 

uniquely human ability that is understood to have enabled our species to survive 

and even thrive during the ice ages16-22. The fact that the illusion is a functional 

component of human throwing skill adds credence to the idea that it is intrinsic to 

the species. 
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Weight perception studies have sought to discover how relevant dimensions of a 

physical stimulus are scaled by the human perceptual system to produce experience of 

heaviness. Early studies quantified heaviness as a function of object weight5. However, 

in the 1890's, Charpentier1 found that object size also affected perceived heaviness. A 

larger object is perceived to be substantially less heavy than a smaller one of equal 

weight. This phenomenon is known as the “size-weight illusion” and is by far the best 

known, most reliable and robust perceptual illusion.   

Many theories have been advanced to account for the illusion in terms of either 

afferent or efferent processing. From the afferent point of view, the illusion merely 

reflects a complex sensory variable composed of size and weight. Different size-weight 

relations including density6,7, a power-law8, and an inertia tensor9 have been proposed. 

In the efferent view, the illusion is a cognitive resolution of a conflict between planned 

and updated motor commands for lifting an object. According to this expectation 

hypothesis10, a greater neuromuscular force is planned before lifting larger objects in 

response to visual and haptic size cues, and when the force actually required is less than 

expected, the object feels light. Because the expectation was assumed to come from 

average experience of larger objects as weighing more, the illusion was also considered 

to be modifiable by experience. Flanagan et al.11 demonstrated that the illusion could be 

inverted after extensive training with objects in which size and weight were negatively 

correlated.  

However, this experience-based hypothesis was undermined by other findings, 

some of which suggest that the illusion might be intrinsic to humans. The illusion is 

universally and reliably experienced by adults and children as young as 18 months3,4. 

The illusion is very robust.  Knowing that two objects are of the same weight does not 
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prevent the illusion from occurring.  It has been found to persist after an object has been 

lifted and its weight thoroughly tested with the result that lifting trajectories are 

appropriate2. 

While the origin of the size-weight illusion remains controversial, the fact that it is 

so reliable and robust suggests that it might be in some way functional in the guiding of 

action. If so, then from the evidence, it is experiential and would have to do with 

judgments about objects made in planning actions rather than with continuous online 

control of actions. So, it might serve in the perception of affordances * . Here we 

investigated the possibility that the illusion specifies an affordance for long distance 

throwing.  

Gibson24 described affordances as dispositional properties that (1) reflect potential 

relations between an animal and objects used in performing actions and (2) are 

perceptible. The functional nature of affordances provides the means by which they are 

investigated and discovered. One investigates properties of objects that are relevant to 

specific actions. Then, the perceptibility of the property is assessed and finally, the 

information allowing an affordance to be perceived must be discovered.  

An object of graspable size and liftable weight affords throwing. Bingham et al12 

investigated the perception of an affordance for throwing. In their study, spherical 

objects of different weights in a particular size were given to participants to judge the 

throwability, that is, the optimal weight for the size that could be thrown to a maximum 

distance. The task was intuitive and participants exhibited strong preferences in each of 

                                                 

* Note that the expectancy theory would seem to be about the planning of actions in a similar way, but 

instead, it is about how one perceives failures of such planning and the result is not described as serving 

any particular useful purpose. 
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four graspable sizes of objects. They hefted objects and selected larger weights in larger 

sizes. When they were asked to throw every object as far as they could, the preferred 

objects were reliably thrown to the farthest distances. This result was recently replicated 

by Zhu and Bingham14.  

Unsuccessful attempts have been made to discover the information that allows for 

detection of this affordance property13,14. Given that the ability to throw long distance 

must be learned, Zhu and Bingham15 suspected that sensitivity to information about the 

affordance might be acquired in the process. The perception and throwing of unskilled 

throwers were tested before and after they practiced throwing for a month and 

perception of the affordance was found to be acquired only after learning to throw. To 

what information did throwers become sensitive to perceive the affordance?  To answer 

this question, the learning experience of unskilled throwers was manipulated.  Object 

sizes and weights experienced during practice were limited to three sets of six objects of 

constant size, constant weight, or constant density. If throwers associatively acquired 

either a look-up table or a function relating size and weight to distance, then practice 

with objects that limited the sampling should have limited subsequent perceptual ability 

to the objects experienced.  However, the result was that the ability gained through 

practice generalized to the entire set of objects, that is, beyond the practice sets. This 

indicated that throwers acquired sensitivity to an information variable that specified the 

optimal size-weight relation. The practice sets were sufficient to allow this. 

These results left an important question: what was the information detected and 

used to judge the affordance for throwing? Bingham et al12 had noted that the size-

weight relation for the affordance resembled that for the size-weight illusion, where 

larger objects must weigh more to be perceived as equally heavy. We now explicitly 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
10

.4
58

4.
1 

: P
os

te
d 

28
 J

un
 2

01
0



5 

tested whether these two functions are the same. If so, then the solution to the question 

is simple. Throwers learn the heaviness of objects that is best for maximum distance 

throwing and then, they simply use that perceived heaviness to select objects that are 

best for throwing.  

------------------------------------ 
Insert Table 1 about here 

------------------------------------- 
Table 1 | The configuration of object weights and sizes 

 

48 spherical objects that varied in size and weight as shown in Table 1 were 

used14,15. Twelve skilled adult throwers were recruited to perform two judgment tasks 

by hefting the objects as in previous studies. Participants were first asked to select 

optimal weights in each size for maximum distance throws. Then, they were asked to 

select an object in each size that was of the same heaviness as a comparison object. Two 

different comparison objects were tested of 1" and 6" size, respectively. Participants 

were randomly assigned to one of two groups that each tested small or large comparison 

objects, respectively. The comparison object judged by each participant in the heaviness 

task was the object (in the relevant size) selected by the same participant as optimal for 

throwing, but this was not known by the participants.  

 As shown in Figure 1, there was no significant difference between the two 

judgments (throwing versus heaviness) in either of the two groups (small or large 

comparison object), indicating that the objects selected to be optimal for throwing were 

also felt to be equally heavy (F1,5 = 0.001, p > 0.05). The chosen weights increased as 

objects increased in size (F5, 25 = 84.92, p < 0.001), reflecting the standard pattern of the 

size-weight illusion.      
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------------------------------------ 
Insert Figure 1 about here 

------------------------------------ 
 

Figure 1 | The mean selected object weights for throwing judgments and heaviness 
judgments as a function of object sizes. The filled squares connected with a solid line 
represent the mean weights selected for long distance throwing in each respective size; the unfilled 
squares connected with a dashed line represent the mean weights selected as equal in heaviness 
across the respective sizes. The overlap of the two judgment lines indicates that the weights 
selected as optimal for throwing were also perceived to be equally heavy (F1,5 = 0.001, p > 0.05). 
Both judgments exhibited increasing weights with increasing sizes (F5, 25 = 84.92, p < 0.001), 
suggesting that both judgments were subject to the size-weight illusion.  
 

This is quite a remarkable result. Illusions are by definition misperceptions 

associated with dysfunction. However, we have found that the most striking, robust and 

best known illusion in the literature is actually quite functional. More than this, it serves 

in support of an ability that is both uniquely human and known to have been essential to 

the survival and successes of our species over evolutionary time16-20. Other primates and 

monkeys can throw, but only to relatively short distances25. Today, human throwing 

abilities are used primarily in sport where we celebrate the long pass by the quarterback 

to hit a receiver 30 meters down the field in American football or the throw to home 

plate or wicket from the outfield in baseball or cricket. During most of our existence, 

however, we humans used our unique throwing abilities for defence and to obtain food.  

The ability to throw objects long distance is known to have been of central importance 

to the survival of homo sapiens through the last ice age, and to the spread of humans to 

occupy habitats all over the globe, and North America in particular, where homo 

sapiens used throwing ability to hunt the existing American megafauna into extinction21-

23. The ability to throw long distance meant that a human hunter could stay beyond the 

devastating reach of a giant sloth's claws or a mammoth's tusks while striking with 

spears and stones to bring the prey down. Such throwing requires precise timing in 

motor coordination and this, in turn, is supported by the human cerebellum and 
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posterior parietal structures in the brain26. A solution to a puzzle in human evolution has 

been recently proposed. The human ancestor with the larger brain was always the one to 

succeed and survive with the sole exception of Neanderthal, whose brain was actually 

larger than that of homo sapiens. Why did homo sapiens win out despite the smaller 

brain size? Evidence now reveals structural differences, namely, homo sapiens had 

relatively enlarged cerebellum and posterior parietal cortex as compared to 

Neanderthal27. Perhaps our throwing abilities were the key. The bottom line is that long 

distance throwing is an ability as essentially human as is language. 

 Now, we find that a characteristic of human visual and haptic perception, 

previously understood as a mis-function, is actually very useful. The perception of 

heaviness according to the size-weight illusion might well be intrinsic to human 

perception given its robust and reliable presence in people across the age span. Our 

results suggest that it represents a readiness in humans to acquire both the ability to 

throw long distance and to find objects that will maximize the distances to which one 

can throw.      

Methods 

With informed consent, adult throwers were recruited from the UW campus to 

judge optimal objects for throwing as well as object heaviness. Judgments were 

analyzed using repeated measures ANOVA with the significance level set at p < 0.05.  

48 spherical objects were constructed with weights and sizes as shown in Table 1. 

These included three subsets: six objects of a constant weight (69 g) varying only in size; 

six objects of constant size (7.62 cm in diameter) varying only in weight; and six 

objects of constant density (0.3 g/cm3) varying in both size and weight. Objects 

consisted of pure Styrofoam, steel shells, or plastic shells containing homogeneously 
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distributed sprung brass wire and foam insulation.  All were wrapped with tape and 

painted yellow to yield identical surface texture and appearance. 

 

Experiment design and procedure. 12 adult throwers were recruited from the 

University of Wyoming Laramie campus after they had given informed consent. They 

all could throw a tennis ball at least 20 meters. Participants performed two judgment 

tasks involving the entire set of 48 objects. They first performed a judgment of the 

optimal weight for each object size for maximum distance throwing.   Then, they were 

randomly assigned to one of two groups to select objects of equal heaviness to a 

comparison object. The comparison objects were the objects selected for throwing by 

the participants in the smallest (Group 1) or largest (Group 2) sizes.  This was unknown 

to the participants.     

The experimenter placed 8 objects of a given size and varying in weight on a 

table. The participant held out his or her dominant hand palm up and the experimenter 

placed one object at a time in the participant's hand to be hefted briefly to feel its size 

and weight and judge its throwability. After hefting all 8 objects, the participant was 

asked to select by pointing the best 3 objects for throwing to a maximum distance in 

order from 1st to 3rd best.  6 different object sizes (ball diameter ranges from 1 inch to 6 

inch) were tested in this way in a random order. 

The same objects were used for the judgments of equal heaviness.  Participants 

were first given the comparison object to heft.  Next, participants were given all the 

objects in each of the other sizes (one size at a time and one object at a time) to heft, and 

they were asked to select the object that felt equally heavy as the comparison object. 

Again, they were asked to make a 1st, 2nd and 3rd choice.  Different sizes were tested 
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in a random order. For analysis of results, a weighted average of the 1st, 2nd, and 3rd 

choices was computed for each judgement type and participant. 
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