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Abstract

Next-generation sequencing produces high-throughput data, albeit with greater error and 

shorter reads than traditional Sanger sequencing methods. This complicates the detection 

of  genomic  variations,  especially,  small  insertions  and  deletions.  Here  we  describe 

ParMap, a statistical  algorithm for the identification of complex genetic variants using 

partially mapped reads in nextgen sequencing data. We also report ParMap’s successful 

application to the mutation analysis of  chromosome X exome-captured leukemia DNA 

samples.
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Introduction

One of the major technological advances in biology in the last few years has been the 

development of high throughput nextgen sequencing systems that produce gigabases of 

data in a single run, and allow an unbiased view of the whole genome without relying on 

prior  knowledge  about  the  disease-causing  alterations.  These  ultradeep  sequencing 

technologies produce large amounts of sequence data, which increase the sequencing 

depth and allow for better statistics in calling various genomic variations. However, they 

do so at the cost of reducing the read length and increasing the error rate relative to 

traditional  Sanger  sequencing.  Thus,  the  development  of  efficient  statistical  and 

computational methods for the high confidence call of genomic variants is needed for the 

analysis of these high throughput datasets. 

At this point, the detection of single mutations and large copy number variations using 

deep sequencing data is fairly straight forward (Shendure and Ji 2008; McPherson 2009), 

whereas the identification of small (less than 10 nucleotides) insertions and deletions is 

more challenging. A few algorithms have been developed for detecting such complex 

genomic variants using mate-pair or paired-end reads (Medvedev et al. 2009), however, 

identifying small insertion/deletions in fragment (single-end) data has proved to be very 

difficult. Mapping algorithms that are designed for very short reads have to assign large 

penalties for introducing gaps in the middle of the alignment in order to map the majority of 

the reads efficiently.  However, these methods can partially  map reads to a reference 

genome with gaps at the either end, without significantly reducing the alignment score. 

Although these gaps may be caused by systematic errors in the sequencing and mapping 
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processes, we hypothesized that gaps that appear in multiple reads at a given position on 

the  genome may  reflect  the  presence of  a  complex  genomic  variant  (e.g.  insertion, 

deletions, multiple base changes). 

Following this principle, we aimed to develop a procedure for identifying complex genomic 

variations with high confidence and built an algorithm (ParMap) capable of producing a list 

of candidates of small deletions and insertions (along with their nucleotide sequence), 

through  statistical  analysis  of  partially  mapped  reads  (Fig.  1).  Specifically,  ParMap 

calculates a measure based on the number of reads that only cover the positions adjacent 

to a gap without covering their neighboring positions in the direction of the gap, to identify 

the possible locations of genomic insertions or deletions (Fig. 2 and Methods). 

Results and Discussion

To test the ability of this method to detect novel complex genomic variants we applied 

ParMap to the analysis of SOLiD 3 chromosome X exome sequencing data from 12 T-cell 

acute lymphoblastic leukemia (T-ALL) DNA samples (P Van Vlierberghe, T Palomero, H 

Khiabanian, J Van der Meulen, M Castillo, N Van Roy, B De Moerloose, J Philippé, T 

Taghon, L Zuurbier, et al., submitted). In this experiment leukemia DNA samples were 

fragmented and ligated to adapters to generate SOLiD sequencing libraries, which were 

amplified  and  subsequently  enriched  in  chromosome  X  exonic  sequences  usingthe 

SureSelect  Target  Enrichment  System (Gnirke  2009),  a  platform which targets 5,217 

exonic  regions  encompassing  3,045,708  nucleotides  in  the  X  chromosome.   The 

Chromosome  X  exome  captured  DNA  samples  were  sequenced  with  the  Applied 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
10

.4
14

5.
1 

: P
os

te
d 

8 
Ja

n 
20

10



Biosystems SOLiD 3 platform using 1/8th of sequencing slide per sample to produced a 

total  of  105,302,787  fifty-base  long  fragment  reads.  The  SOLiD platform employs  a 

ligation based chemistry and a two-base encoding system, where each pair of nucleotides 

is reported with a different color, depending on the first base within the pair. Therefore, to 

call  a single-base change relative to the reference sequence in nucleotide-space, two 

consecutive color-space mismatches must be observed. Single color-space mismatches 

solely report errors in the reads (Homer 2009).

 

To ensure an optimum mapping of these sequencing results, we created a reference 

sequence containing all chromosome X capture targeted regions plus adjacent 50 flanking 

bases using the March 2006 human reference sequence assembly (hg18). We used the 

SHRiMP algorithm with its default parameters for mapping the reads (Rumble 2009). For 

further analysis of our dataset, we only included the reads with a maximum number of two 

color-space  mismatches  that  were  uniquely  mapped  to  the  reference  genome 

(approximately 31% of the raw reads). An average 90.1% of the reference genome was 

found covered in the samples, with a mean depth of 42 per base. Less restrictive filtering 

increased the  false  positive  rate  of  candidate  genomic  variants  without  a  significant 

increase in the coverage.

We created a candidate list  of  single-base variants for  which a minimum of  3  reads 

(consistent  with  1%  estimated  error  rate  of  this  particular  run)  should  map  to  the 

candidate’s position, with more than 75% of them calling the nucleotide change. T-ALL 

samples such as the ones analyzed in this series contain over 80% tumor cells, however a 

small fraction of contaminating normal cells is expected. Because of the possibility of this 
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contamination,  we did  not  enforce a  100% consensus among the  reads.  To  identify 

genetic alterations with the most direct impact in gene function we focused on the analysis 

of non-synonymous changes in the captured exons. 

In  this  analysis  we noticed numerous systematic  errors  that  cannot  be  corrected  by 

increasing the sequencing depth, i.e. genomic variants that are reported systematically 

beyond the statistical expectations from the estimated error rates. These systematic errors 

arise from pre-sequencing operations, ligation-based sequencing, mapping, and specific 

genomic variants in the reference genome. To minimize the number of such systematic 

errors, we combined the candidate lists from all the samples and only kept the genomic 

variations that occur in less than 3 samples at a given position. Within the 12 samples 

analyzed, we identified 66 exonic non-synonymous single-base variant candidates, which 

were not listed as already known polymorphisms in the human genome (Kuhn 2009). 

Overall, 61/66 (92%) of these candidates were confirmed via Sanger sequencing (Table 

1). 

Next, we applied the ParMap algorithm to our dataset to identify possible complex variants 

such as small insertions and deletions. Following on the selection of candidate variants 

using ParMap filtering criteria, we selected the ones that were detected in a single sample 

each. In this analysis, we found a high prevalence of systematic errors in intron-exon 

boundaries,  which  may reflect  impaired  ligation-based sequencing in  these positions. 

Therefore,  candidate  variants  located  in  intron-exon  boundaries  were  discarded  and 

excluded from further analysis. ParMap identified a total of 7 candidate complex variants 

(Table 1). Using Sanger sequencing of PCR products encompassing these sequences, 
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we confirmed four indels in four different samples, including two genomic deletions of 3 

and  6  nucleotides  and  two  genomic  insertions  of  5  and 3  nucleotides.  Notably,  the 

genomic sequences identified in  each of  these two insertions  matched the  predicted 

sequence variant in the ParMap’s results. 

In  conclusion,  we have demonstrated the successful  identification of  high confidence 

genomic variants in nextgen sequencing data using a combination of single nucleotide 

analysis  and ParMap. Overall,  89% of  our all  candidate variants were experimentally 

validated in this series. ParMap may enhance the identification of elusive complex genetic 

variants  such  as  small  insertions  and  deletions  in  nextgen  sequencing  data,  taking 

advantage of partially mapped reads that might otherwise be discarded.

Methods

In addition to the completely mapped reads and reads reporting single-base changes, the 

dataset includes partially mapped reads, with the unmatched positions marked as gaps. 

These reads either start or end with a gap region that is as long as 20% of the length of 

the read (Fig. 1). ParMap makes use of such reads and for any position p that is adjacent 

to a gap region and is not  the starting or ending position of  an exon, calculates the 

following quantities: 

1.N(p): The number of reads that cover position p.
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2.N(p±1): The number of reads that cover position p±1. (Plus, if  p is the 

position after the gap and minus, if p is the position before the gap, in the direction 

of the positive strand.)

3.N(p & p±1): The number of reads that cover both positions of p and p±1.

We define 

€  

r= N(p&p±1)
N(p)+N(p±1)−N(p&p±1),

which is an inverse measure of the number of reads that only cover the position p without 

covering its neighboring position in the direction of the gap (Fig. 2). Therefore, the smaller 

the value of  r,  the higher the chance for the gap to be due to a real change in the 

sequenced genome.  Moreover, because the reads in which position  p is adjacent to a 

gap region are already collected, referring back to each read prior to the mapping, the 

genomic sequence of the gap region can be extracted. 

We apply the following criteria to produce a list of candidates: the value of r should be less 

that 0.35 and at least 5 reads should map to p adjacent to a gap, reporting a consensus 

sequence for it. To reduce the systematic errors due to mapping artifacts, we remove the 

candidates whose gap regions cover the already known polymorphisms of the human 
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genome. We experimentally observed that less restrictive criteria increased the number of 

false positives.
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Figure Legends

Figure 1: ParMap employs reads that are partially mapped to a reference genome to 

identify genomic variations. These variations include small insertions and deletions of less 

than 10 nucleotides.  When the sequenced read (line  2)  is  mapped to  the  reference 

genome (line 1), the unmatched bases are marked as gaps (line 3), adjacent to position p 

(Methods).

Figure 2: A measure based on the number of reads that only cover position  p without 

covering its neighboring position (p±1) in the direction of the gap is calculated. In other 

words, we find the ratio of the intersection (orange area) and the union (yellow and red 

areas) of the two sets of reads that cover p or p±1 (Fig. 1). Here, N(p), N(p±1), and N(p & 

p±1) are the number of reads that cover position  p, position p±1, and both positions, 

respectively (Methods).
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Figures

Figure 1: ParMap employs reads that are partially mapped to a reference genome 

to identify genomic variations.

Figure 2: A measure based on the number of reads that only cover the position p 

without  covering  its  neighboring  position  (p±1)  in  the  direction  of  the  gap  is 

calculated.
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Tables

Table 1: Summary of the efficiency of our identification methods. In total, 89% of 

our candidates were confirmed via Sanger sequencing.

Number of 

Genomic 

Variation 

Candidates

Number of 

Confirmed 

Candidates

Percentage

Singe-base 

Analysis
66 61 92%

ParMap 7 4 57%

Total 73 65 89%
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