
PTOMSM: A modified version of Topological Overlap Measure used for predicting 

Protein-Protein Interaction Network 
Xun Huang 

School of Life Sciences, Tsinghua University, Beijing 100084, China; 
Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; 

E-mail: bioxun@gmail.com. 
 

 
Abstract 
A variety of methods are developed to integrating diverse biological data to predict novel interaction relationship between 
proteins. However, traditional integration can only generate protein interaction pairs within existing relationships. Therefore, 
we propose a modified version of Topological Overlap Measure to identify not only extant direct PPIs links, but also novel 
protein interactions that can be indirectly inferred from various relationships between proteins. Our method is more 
powerful than a naïve Bayesian-network-based integration in PPI prediction, and could generate more reliable candidate 
PPIs. Furthermore, we examined the influence of the sizes of training and test datasets on prediction, and further 
demonstrated the effectiveness of PTOMSM in predicting PPI. More importantly, this method can be extended naturally to 
predict other types of biological networks, and may be combined with Bayesian method to further improve the prediction. 
 
Keywords: network, Bayesian method, integration, PPI, Topological Overlap Measure 
 

 
Introduction 
Over the past decade, newly developed high throughput technologies have generated tremendous amounts of biological data, 
including protein interaction data, genomic data, and expression data. Several computational methods have been proposed 
to integrate protein relationships extracted from heterogeneous data sources for the purpose of inferring PPI links. Most of 
these methods are based on integrating the confidence scores of each relation subset[1, 2]. Confidence score represents the 
correlation between the subset link value and the existence of a corresponding gold standard PPI link. Specifically, when 
calculating the total score for a link between protein A and protein B, all of the confidence scores of the link between A and 
B in each subset are provided as input to an integrating function. For example, the Bayesian method has been widely used 
in the integration of different data sources, and has been shown as an effective approach[3-6]. Several integrative databases 
of protein-protein interactions have been generated with this integration approach(e.g. STRING[6-8], pSTIING[9], and 
PIPs[10]). Though these databases are quite useful for biological research, they have an obvious shortcoming: the methods 
used to generate the datasets can only identify candidate PPI links that belong to at least one of the heterogeneous relational 
subsets. Motivated by this limitation, this study aims to expand the scope of interaction discovery and identify links beyond 
those contained in the relational subsets.  
 
The topological overlap measure(TOM) is a useful approach in network neighborhood analysis[11-13], that can be used to 
filter spurious or missing connections between network nodes[14]. TOM values could reflect the relative interconnectedness 
between two nodes, an attribute which is not only determined by the direct link between two nodes, but is also influenced 
by indirect paths between the two nodes. Therefore, the use of TOM could potentially aid in discovery of indirect links.  
 
To discover links other than the known relations contained in the data sources, we extended the TOM by combining known 
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PPI data with a similarity matrix, defining Parameterized Topological Overlap Measure with Similarity Matrix (PTOMSM) 
as a score for predicting PPI links. PTOMSM is designed based on the conception that if protein A1 and B interact with 
each other, and protein A2 is similar to A1, the probability of the interaction between A2 and B tends to be higher than 
normal. This approach is somewhat similar to homology-driven identification of protein-protein interaction[15]. 
 
In this study, we choose the yeast Saccharomyces cerevisiae as a model system for our method. We transformed various 
preliminary similarities into a probabilistic score via an evaluation process, and integrated different similarities into a joint 
similarity. We next calculated the PTOMSM for each similarity (including joint similarity). Our study demonstrates that 
PTOMSM using the joint similarity is more efficient than other PTOMSMs (with individual similarities) at PPI prediction. 
Furthermore, we also compared PTOMSM with a Naive Bayesian approach[16, 17] for integrating the heterogenous 
datasets and generating the probabilistic PPI network. Our results indicate that using the same data sources, our PTOMSM 
approach is more effective than the naive Bayesian integration at prediction of PPIs. All of our studies were performed on 
different sizes of training and testing datasets. We also illustrate that PTOMSM is particularly more effective when the 
training dataset is smaller than the testing dataset.  
 
Materials and methods 
Abbreviations of some basic terms used in this study: 
TOM: Topological Overlap Measure 

PTOMSM: Parameterized Topological Overlap Measure with Similarity Matrix 

PTOMSMj: PTOMSM with joint similarity 

PTOMSM*(X): PTOMSM with similarity X(e.g. cellular localization, co-expression) 

PTOM: PTOMSM*(PPI for training) 

LPMB: Likelihood ratios calculated by Probabilistic Model of Bayesian method 

LPMNBI: Likelihood ratios Integrated by Probabilistic Model of naive Bayesian method 

LPMB*(X): LPMB for dataset X(e.g. cellular localization, co-expression) 

BPCT: Bayesian Probability to Complete a Triangle 

 
Gold standard positive and gold standard negative 
Gold standard positive PPI links for training and validation were obtained from the DIP[18], BioGrid[19] and IntAct[20] 
datasets.  
 
All the protein pairs not present in the gold standard PPI dataset were used as gold standard negative links. Despite the 
simplicity of this organization, it yields an unbiased estimate of the true distribution of positive and negative interactions, 
and is likely to be more effective than choosing gold standard negative based on different cellular localization[21]. 
 
Definition of preliminary similarities 
Based on experiential knowledge, we choose relationships from those datasets that tend to exhibit some positive correlation 
with PPI related similarity. Since the preliminary similarity values will later be transformed into final uniform similarities, 
the absolute values of the preliminary similarities and the difference between them will have little effect on the final results. 
The most important aspect of these datasets is the order of the preliminary similarity. 
 
Preliminary similarity of protein interaction 
If there is a PPI link, this preliminary similarity is 1, otherwise it is 0. Remarkably, if the PPI for training is used as this 
similarity, PTOMSM is equivalent to PTOM. 
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Preliminary similarity of homology 
Homology groups were obtained from the HomoloGene at NCBI, the Inparanoid[22], and the Kog[22] databases. The 
preliminary similarity value of homology was assigned as 1 for all proteins that belong to the same homology group and all 
others were assigned a value of 0. 
 
Preliminary similarities of three GO terms 
We use the co-occurrence in the biological process category of the Gene Ontology[23] to define the biological process 
related preliminary similarity(Sp0) via GO term of biological process in Equation (1), where SSBP is the smallest shared 
biological process GO term[17]. Likewise, we define the cellular localization related preliminary similarity (Sl0), and 
molecular function related Preliminary similarity(Sf0) in Equation (2 and 3), where SSGC is the smallest shared cellular 
component GO term, and SSGM is the smallest shared molecular function GO term. The β in Equation (1, 2 and 3) were set 
to 50 for this study..  
Sp0 = 1/(1+SSBP/β)                             (1) 
Sc0 = 1/(1+SSGC/β)                             (2) 
Sf0 = 1/(1+SSGM/β)                             (3) 
 
Preliminary similarity of co-occurrence in text 
Co-occurrence analysis is commonly applied in mining gene relations from literature[24]. We extracted co-occurrence 
relations by searching genes that are cited in the same literature abstracts. In this study, we only focus on binary 
co-occurrence relations from literature. The abstracts are all from the abstracts stored in the PubMed of NCBI. We use terms 
‘Saccharomyces AND gene’ to search PubMed, and collected 847364 abstracts by September 2009.  
 
Preliminary similarity of co-expression 
Pearson correlation coefficient (PCC) has been commonly used in previous studies for gene co-expression analysis[25]. We 
adopted the PCC to measure this similarity. Yeast microarray data were obtained from the Saccharomyces Genome 
Database in ratio format[26]. In each case, microarray based gene expression analysis was previously reported to have been 
performed for the analysis of DNA Damage[27], Cell Cycle[28], Environmental Response[29], and Essential Genes[30].  
 
Transformation of preliminary similarity to final similarity into PTOMSM using a Bayesian-fashioned 
method 
Because different types of preliminary similarity might contribute differently to the prediction of protein interactions, some 
method of standardization is necessary in order to integrate the various preliminary similarities. Here we use Bayesian 
probability to evaluate the preliminary similarity, and transform those similarities into their relevant Bayesian probabilities. 
 
First, we calculated the probability to complete a triangle of every link in the network. This value represents the probability 
that one link can correctly predict a new link with the assistance of another neighboring link. The mechanism of this 
prediction is illustrated in Figure 1. The Bayesian probability is defined in Equation (5 and 6), and we denote this 
probability as the BPCT (Bayesian Probability to Complete a Triangle). 
 
PPI2 PPI0 PPI0= ⋅                            (5) 
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Figure 1: Bayesian Probability of link to complete a triangle. 
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PPIi,j represents the link between proteins i and j; NDi is the Node Degree of Node i; Nshi,j is the number of nodes that link both 
node i and j; Solid lines denote primary PPIs. Dashed lines denote correctly those rightly predicted links. Dashed lines denote 
incorrectly predicted links. 
 
The PPI0 variable in Equation (5 and 6) denotes the adjacent matrix that represents the gold standard links of PPIs in the 
training dataset. Because we do not consider interactions between two copies of the same protein, the elements of the 
diagonal of this matrix are all zero. NprU in Equation (8) is the number of unique values in the sub-dataset. If there are few 
unique values in the sub-dataset (NprU < 10), the Sf of a link is defined as the average value of BPCT of those links with 
the same preliminary similarity. If there are many unique values in the dataset (e.g. GO group-related Similarity and PCC), 
the relation curve between the Bayesian probability and the preliminary similarity is plotted and fitted with a linear function. 
Ffit in Equation (8) denotes the fitting function. The different 'k's in Equations (8, 9, 10 and 11) refer to the different types 
of similarity. Sfi,j,k in Equation (8) represents the specific similarity used in PTOMSM. Likewise, St in Equation (11) 
represents the joint similarity, which will also be used directly in calculating PTOMSM. 
 
Integration of different datasets using a naive Bayesian method 
In order to illustrate the effect of our method, we have to compare it with some standard method, and we chose Bayesian 
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method. The naive Bayesian method described in [16, 17] was used to integrate various datasets. Preliminary similarity in 
each dataset was binned into discrete intervals. The likelihood ratio (Lr) of each interval can be calculated from the positive 
and negative matches to the gold standard. Next, the integrated LrT between two proteins is calculated as the product of all 
the Lr values of the link in the heterogenous datasets. The calculation of LrT can be expressed as shown in Equation (4) , in 
which fi denotes the feature value(binned preliminary similarity) in the i-th dataset. LPMB is used to denote the Lr in 
predicting PPI, and LPMNBI is used to denote the LrT in predicting PPI.  

1
1 1

( | )( ... ) ( )
( | )

N N
i

N i
i i i

P f posLrT f f Lr f
P f neg= =

= =∏ ∏       (4) 

 
Developing a modified version of the Topological Overlap Measure 
Topological Overlap Measure 
The pairwise topological overlap measure (TOM) reflects the relative interconnectedness between the two nodes[31]. This 
property is determined by both the direct link between the two nodes and the indirect paths between the nodes. The TOM is 
defined in equation (12). The TOM is generally used on unweighted network[11, 32]. However, it can be applied to 
unweighted networks as well (e.g. MTOM)[12]. Because MTOM is somewhat complicated, this study only compared 
PTOMSM to the weighted TOM.  
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Topological Overlap Measure with Similarity Matrix 
Motivated by the TOM[31], we defined the PTOMSM as shown in Equation (13). In Equation (13), PPIij is the primary 
protein-protein interaction value between protein i and protein j, Suj is the similarity between protein j and protein u. α is a 
constant that is optimized in the training. We also defined the Parameterized Topological Overlap Matrix without any 
additional Similarity Matrix (PTOM) as shown in Equation (14). 
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Evaluation 
Definition of indicator of prediction effectiveness 
A better prediction should provide more relations with higher reliability. We define a variable, R, in Equation (15 and 16) as 
an indicator of the effectiveness of prediction, where AUC is the area under the precision-recall curve(PRC), NposT is the 
total number of all gold standard positive PPI links in the network, Precision0 is the average Precision in the network, and n 
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is the total number of nodes in the network. 

0
NposTR AUC

Precision
= ⋅                       (15) 

0
( 1)

NposTPrecision
n n

=
⋅ +

                      (16) 

 
Cross-validation 
The primary PPI are divided into N sets of the same size (N-fold cross-validation). In order to compare the influence of the 
relative size of the samples on predictive strength, we used two kinds of validation under several different values of N: 
1) Using 1 of the N sets for training, the (N-1) remaining sets for testing (denoted as Sets(1:N-1), Rsize=1/(N-1) ); 
2) Using (N-1) of the N sets for training, the 1 remaining set for testing (denoted as Sets(N-1:1), Rsize=N-1 ). 
To succinctly present our results in this paper, we mainly showed the results from the studies on Sets(6:1), and the result for 
the other Ns are presented in the Supplementary Materials. 
 
Results 
Fitting the relationship between Preliminary Similarity and BPCT 
We found that the Preliminary Similarity of cellular localization displays an obvious positive correlation with BPCT. 

Moreover, the BPCT value for the Preliminary Similarity of cellular localization is much higher than BPCT  (see 

supplemental data). This suggests that the similarity matrix of cellular localization may improve the prediction of indirect 
links via PTOMSM. This result is also in accordance with the results presented in Table 1.  
 
Table 1. Prediction efficiency of PTOMSM and Bayesian integration (Sets(6:1)). The results at the optimal value of α are 
presented for PTOMSM. 

Type of matrix R AUC NposT Precision0

TOM 233100 0.01511 92160 0.005974 

LPMB*(Co-Text) 56810 0.00899 59990 0.009497 

LPMB*(Co-expression) 101300 0.02045 32310 0.006523 

LPMB*(Cellular localization) 195100 0.04134 50060 0.0106 

LPMB*(Molecular function) 93870 0.01361 57240 0.008302 

LPMB*(Biological process) 187100 0.01753 78720 0.007377 

LPMB*(Homology) 19230 0.00738 18560 0.007118 

LPMNBI 1090000 0.07497 90850 0.00625 

PTOM 540300 0.03502 92160 0.005974 

PTOMSM*(Co-Text) 735100 0.04765 92160 0.005974 

PTOMSM*(Co-expression) 754000 0.04887 92160 0.005974 

PTOMSM*(Cellular localization) 2015000 0.1306 92160 0.005974 

PTOMSM*(Molecular function) 1153000 0.07475 92160 0.005974 

PTOMSM*(Biological process) 1607000 0.1041 92160 0.005974 

PTOMSM*(homology) 249100 0.01615 92160 0.005974 

PTOMSMt 2523000 0.1635 92160 0.005974 

 
Optimization of the parameter α 
In the training process, the parameter α in Equation (13) is adjusted in order to achieve optimal prediction. We obtained the 
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PRC curves of PTOMSMs with different ‘α’s, and calculated the AUC and R of each PRC curve (Such PRC curves can be 
seen in supplemental material). We found that there is positive correlation between the R value for the training data and R 
value for the testing data (Figure 2). In other words, if the value of R for a training dataset has a high value, the value of R 
for a testing dataset with the same α tends to be higher. Specifically, the value of α that provides the maximum value of R 
for the training data is likely to be similar to the α value that provides the maximum value of R for the testing data. This 
characteristic of the R-α curve can serve as the basis for choosing an optimal value of α with the training data.  
 

 
Figure 2: The influence of the value of α in PTOMSM on the value of R in training and in testing(Sets(6:1)). 

The circles denotes evaluation with the training dataset, and the crosses denote evaluation with the test dataset. 
 
Effect of different similarities 
As shown in Table 1 and Figure 4, the PTOMSM with joint similarity (PTOMSMj) is the most efficient at predicting PPI, 
indicating the validity of integration. What's more, the similarities based on cellular localization, biological process, 
molecular function and co-expression, have a greater effect than other similarities on PPI prediction by PTOMSM. This 
finding is unsurprising, as the relationship between Co-expression, Co-Text and PPI-related similarity is less direct, so there 
tends to be a greater level of 'noise' in these two datasets. Interestingly, the PTOMSM with homology-generated similarity 
performed the worst in PPI prediction. This may be due to the scarcity of links in the similarity matrix, which could result in 
a sparse PTOMSM matrix. Consequently, this sparse matrix could not cover very many true PPI links. The performance of 
this similarity metric may also be due to a lack of homology between many proteins (or that the homology has not been 
identified).  
 
Comparison of PTOMSM and LPMNBI 
We calculated the LPMBs and LPMNBI and evaluated them with a test PPI dataset. The indicators of prediction effect are 
presented in Table 1 and Figure 4, from which we can see that the value of R is the largest for the case of PTOMSMj, 
indicating that PTOMSMj is more effective at PPI prediction than LPMNBI.  
 
To examine PPI discovery by PTOMSMj and LPMNBI in more detail, we selected PPI candidates according to different 
cutoffs of final score assigned by the PTOMSMj and LPMNBI analyses. As shown in Figure 3a, PTOMSMj discovers many 
more PPI links at the same precision or TP/FP than does LPMNBI. Moreover, PTOMSMj discovers many more total PPI 
links than LPMNBI (Figure 3b). We also found that both methods discover the majority of the PPI links at a high 
cutoff(Rank > 0.9), indicating that best discovery efficiency (more True Positive and less False Positive) can be achieved by 
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choosing a high cutoff value.  

 
Figure 3: Comparing PTOMSMt and LPMNBI(Sets(6:1)). 

(a) Two Dimensional Histogram displaying the precision at which the gold standard positive PPIs were discovered. The colors 
denote the logarithm of density of correctly discovered PPI links. Precision1 indicates the precision of PTOMSM, and Precision2 
indicates the precision of LPMNBI. (b)Crosses in the figure denote PPIs discovered only by PTOMSMt. Circles denote PPI 
discovered only by LPMNBI. Asterisks denote PPI discovered by both PTOMSMt and LPMNBI. The rank in abscissa indicates 
that when a link is assigned a score by LPMNBI(or PTOMSM) that is higher than x percent of all the links, the rank of that link is 
x. When a cutoff of rank is chosen, those links with a higher rank than the cutoff are regarded as positive in our prediction. 
 
The influence of the sizes of the training and testing datasets 
A paradox in statistics-related prediction is that if the training sample is comparatively large, the prediction tends to be more 
accurate, but less valuable. On the other hand, if the training sample is comparatively small, the prediction tends to be less 
accurate, but more valuable. Therefore, we endeavored to examine the influence of dataset size on prediction.  
 
As can be seen in Figure 4, on the whole, cellular localization, biological process, and molecular function-related 
PTOMSMs exceed Co-Text, Co-expression, and Homology related PTOMSM in PPI prediction. The rank of PTOM (PPI as 
similarity) among the other PTOMSMs appears quite different from the other metrics. If the training dataset is relatively 
small, PTOM behaves as one of the worst in PPI prediction; conversely, if the training dataset is relatively large, PTOM is 
one of the best predictors of PPI. We assume that when there are fewer 'seed' links (PPI links for training), and 'fruit' PPI 
links (PPI links for test) are more abundant, there is a greater chance for the similarity links (like 'antennae') to grasp the PPI 
links in the test set. On the other hand, in PTOM, both the 'seed' links and the 'antennae' links are PPI links used in the 
training. As a result, if few PPI links are used for training, there will be less chance to form cliques with more than three 
proteins, and PTOM will perform poorly at discovering the remaining PPI links (PPI for test). This effect of the relative size 
of the training and test dataset additionally illuminates the advantage of PTOMSMj over PTOM, as it is generally more 
valuable to be able to discover new PPI links when comparatively few PPIs are known.   
 
The sizes of the training and testing datasets also have significant influence on Bayesian integration. As Figure 4 shows, 
both PMBLs and PMNBIL decrease in their utility of prediction as Rsize increases. On the other hand, the R values for 
PTOMSMj were significantly larger than the R values of PMNBIL, suggesting that PTOMSMj is more effective at PPI 
prediction than PMNBIL regardless of the change of the sizes of the training and testing datasets.  
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Figure 4: The influence of Rsize on prediction. 

All the PTOMSMs presented in the figure use optimal values of α. R in ordinate is an indicator of the effectiveness of prediction, 
and is de fined in Equation (15). 
 
Discussion 
Traditional approaches to PPI prediction that integrate diverse datasets can only identify candidate PPI links that already 
exist in at least one of the integrated sub-datasets. Although many of these methods effectively integrate a large mass of 
heterogenous data into high-confidence network, many true links remain undiscovered when using these approaches. To 
increase the scope of selection, we proposed a method called PTOMSM, which is a modified version of the TOM[32]. 
PTOMSM combines known PPI links with heterogenous relationships and identifies candidate PPI links that do not exist in 
either the gold standard PPI dataset or in the heterogenous relationship datasets.  
 
We studied the influence of the training and testing dataset size on prediction, finding that almost all of the PTOMSMs and 
Bayesian integration perform better in predicting PPI when the training dataset is small. The only exception is PTOM, 
which performs extraordinarily well when the training dataset is big. Because PTOM only employs the information of gold 
standard PPI links, it can be inferred that PPI related similarity provides better predictive power to PTOMSM for PPI 
prediction than do other similarity metrics when the size of training dataset is big. On the other hand, when the training 
dataset is small, PTOM perform much worse than PTOMSMj, indicating that the utilization of a variety of information 
sources, in addition to PPI alone, is necessary to enhance the prediction of PPIs when there are much more unknown PPIs 
than known PPIs.  
 
In summary, our PTOMSM approach is effective in PPI prediction in two respects. First, PTOMSM using the joint 
similarity performs better than PTOMSM using any individual similarity, indicating the effectiveness of integration. Second, 
when using the six relationship datasets in combination with PPI dataset, the PTOMSM method shows better predictive 
power than the traditional naive Bayesian method, because PTOMSM could identify more reliable PPI links. In all 
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likelihood, this method could also be applied to prediction of other regulatory links, such as transcriptional regulation, a 
field of inquiry that is part of our future work. Additionally, this prediction method may be generalized to discover 
additional indirect links in a manner similar to the generalization of TOM to GTOM[32]. Although our studies demonstrate 
that PTOMSMj exhibits some merits in predicting PPI, our findings do not imply that PTOMSMj will perform better than 
LPMNBI in all cases. It is possible that the utilization of other datasets, such as orthology interaction and domain 
interaction, may enable LPMNBI to outperform PTOMSMj. Therefore, we expect an approach combining PTOMSM and 
LPMNBI could identify more reliable candidate links.  
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