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Abstract

We outline the structure of an automated process to

both align multiple bio-ontologies in terms of their

genomic co-annotations, and then to measure the

structural quality of that alignment. We illustrate

the method with a genomic analysis of 70 genes

implicated in lung disease against the Gene Ontology.

Introduction

Ontologies are commonly aligned based on similar

annotations 3, 7, requiring validation of the quality of

the induced alignment. In this short paper we make

describe an approach to automated annotation-based

bio-ontology alignment combined with subsequent

measurement of the quality of those alignments. We

do so using an example from lung disease genomics.

We begin with a list of 70 genes implicated in

lung diseases. These are annotated to the Biological

Process (BP) and Molecular Function (MF) branches

of the Gene Ontology (GO 4). The Cross Ontology

Analytics tool (XOA, http://xoa.pnl.gov,10, 12) is then

used to generate proximities between pairs of nodes in

the BP and MF branches. The XOA scoring allows

generation of putative alignments between BP and

MF nodes, and then Joslyn et al.’s order-theoretical

approach6 is used to measure the structural quality of

the generated alignments.

Lung Disease Genomics

The impact of genomics to study classes of diseases

has yet to be fully realized. Research about lung

diseases, focused on the cancers and other pathologies

of specific tissue types, will benefit from systems

analysis of cellular pathways and processes implicated

in the presentation of disease states 9. Genomic

and proteomic analysis via ontological representations

of gene product location and function has enabled

the construction of predictive functional networks

awaiting experimental validation5.

We identified a set of 70 genes through our

work in lung development and disease to evaluate

the contribution of ontological alignments to fur-

ther refined experimental hypotheses. We iden-

tified these 70 genes through expression analysis

of mouse lung samples representing different de-

velopmental stages. The gene list is available at

ftp://ftp.informatics.jax.org/pub/

curatorwork/ICBO09/lung dev genes.txt. This de-

fined set was chosen to be representative of molecular

systems implicated in lung development and function.

The 2/26/09 version of mouse annotations

(ftp://ftp.informatics.jax.org/pub/reports/

gene association.mgi) yields 1937 lines of GO

annotations, including 424 distinct BP annotations, of

which 388 were experimental annotations from mouse

systems. There were 80 distinct MF annotations,

40 with experimental support. Overall, there are

62 genes with experimental BP annotations and 50

genes with experimental MF annotations. 48 genes,

included in the results of the previous sentence, had

both MF and BP experimental annotations.

Alignment Generation

XOA automatically generates links between BP and

MF nodes based on their common annotations. In-

formation theoretical approaches8 are effective within

one hierarchy. But because they require that similarity

between two GO codes be computed in terms of

the informational content of the most immediately

dominating parent GO code, they cannot link GO

codes across distinct gene subontologies. The vector

space model approach obviates this limitation by

computing the similarity between two GO codes as

the cosine of vectors that encode the gene annotation

associated with the two GO codes1. XOA combines

these two approaches by turning relational links across

GO codes into hierarchical links12.

We model semantic hierarchies as finite, bounded,

partially ordered sets (posets) P = 〈P,≤〉 2, with
nodes a ∈ P as ontology concepts related by is-a

links through ≤. The XOA similarity between the

GO node a ∈ P and the GO node a′ ∈ P ′ is then

XOA(a, a′) := max
(

max
b∈P

(sim(a, b) cos(a′, b)) ,

max
b′∈P ′

(sim(a′, b′) cos(a, b′))
)

,

where cos(a, a′) denotes the cosine measure11 between
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GO nodes a ∈ P, a′ ∈ P ′ in the GO node × gene

annotation matrix, and sim(a, b) denotes Resnik’s
information theoretical similarity measure 8 between

GO nodes a, b ∈ P. An XOA analysis of the GO
nodes annotated to our 70 test genes reveals 1970

BP-MF pairs ~l := 〈a, a′〉 which are significant, with
p ≤ 5%. Each such pair of anchors is a potential
link between BP and MF.

An ontology alignment is a mapping f :P → P′

taking anchors a ∈ P in a semantic hierarchy P =
〈P,≤〉 to those a′ ∈ P ′ in another P′ = 〈P ′,≤′〉. But
a BP node a ∈ P which has a high XOA score with an
MF node a′ ∈ P ′ is also likely to have a high XOA
score with other MF nodes b′ ∈ P ′. The complete

set of 1970 links ~l yields a many-to-many alignment
relation F ⊆ P ×P ′. We need an alignment function

f :P → P′ with all left anchors appearing only once,

so we sort the links by XOA to select the highest-

scoring links 〈a, a′〉 where a or a′ appears. These 36

one-to-one links are shown in Table 1.

Alignment Evaluation

We measure the structural properties of f shown

in Table 1 (see 6 for more information). But our

primary criterion is that f should not distort the metric
relations of concepts, taking nodes that are close

together and making them farther apart, or vice versa.

For two ontology nodes a, b ∈ P, their lower distance
is dl(a, b) := | ↓a| + | ↓ b| − 2 max

c∈a∧b
| ↓ c|, where

↓x = {y ≤ x} is the set of all descendants of x, and
a∧ b is the set of greatest lower bounds (glbs) below
a and b. If a and b lack a glb, we assume a bottom
node 0 ∈ P which is below all the leaves. The dual

upper distance du(a, b) = | ↑a|+ | ↑b|−2 max
c∈a∨b

| ↑ c|
is also available, where ↑x = {y ≥ x} is the set of all
ancestors of x, and a∨b is the set of least upper bounds
(least common subsumers). Upper distance may

appear more natural, but is not generally preferable for

technical reasons related to the desire for e.g. siblings

deep in the hierarchy to be closer together than siblings

high in the hierarchy. While in general it may be

preferable to use both in combination, in this paper

we use lower distance only.

We can measure the change in distance between a, b ∈
P induced by f as the distance discrepancy

δ(a, b) := |d̄l(a, b) − d̄l(f(a), f(b))|,

where d̄l(a, b) := dl(a,b)

diamd(P)
∈ [0, 1] is the normalized

lower distance between a and b in P given the diam-
eter diamd(P) := max

a,b∈P
d(a, b). In this case, we have

diam(BP) = 14659, diam(MF)= 8260. Finally, we can

measure the entire amount of distance discrepancy at

a node a ∈ P compared to all the other anchors b ∈ P
by summing

δf (a) :=
∑

b∈P

δ(a, b) =
∑

b∈P

|d̄l(a, b)−d̄l(f(a), f(b))|.

Note that we use δf to indicate that this is an overall

discrepancy of a with respect to the entire alignment
f . Also note that since f is one-to-one, it is invertible,
so ∀a ∈ P, δf (a) = δf (f(a)) and ∀a′ ∈ P ′, δf (a′) =
δf (f−1(a′)). Thus we can denote δf (~l) = δf (a) for
~l = 〈a, f(a)〉, which is also shown in Table 1.

Discussion and Further Work

Fig. 1 shows an abstract representation of a portion

of the GO involving the top four scoring XOA links

and the top two δf links. In general, we are pleased

with the quality of the links provided by the XOA

scores coupled with the one-to-one link filtering. It

is a good sign that the nodes that did come up as

significant are ones that make sense in the light of the

gene list context (development). With one exception,

the top 6 to 8 linked nodes represent molecules and

processes associated with cell motility and with known

regulators of cellular differentiation, such as the

hedgehog signaling pathway. The frequency of nodes

associated with motility underscore the importance of

cellular migration during differentiation.

The distribution of XOA vs. δf is shown in Fig. 2. It

can be seen that the XOA scoring method produces

a strong alignment, with links having generally low

δf scores. There are two exceptions which deserve

further study to improve the analysis:

BP:GO:0007154 cell communication

MF:GO:0000062 acyl-CoA binding

BP:GO:0000187 activation of MAPK activity

MF:GO:0004672 protein kinase activity

To interpret this, for a given one-to-one link ~l =
〈a, f(a)〉 between a BP node a and MF node f(a), the
XOA score measures the co-annotation of a and f(a),
while the δf score meaures the distance of ~l from all
the other links in virtue of f , that is, the distance of a
from all other BP anchors b, and dually the distance
of f(a) from all other MF anchors f(b).

The lower distance dl(a, b) involves the numbers
of nodes below a, b, and both of them. Thus

from Fig. 1 we can see that both “BP:GO:0007154

cell communication” and “MF:GO:0004672 protein

kinase activity” have unusually many nodes below

them (341 and 105 respectively). This makes them

effectively “far away” from the other nodes in BP

and MF, while their corresponding anchor in the other
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XOA δf BP Node MF Node

10.14 0.070 GO:0006637 acyl-CoA metabolic process GO:0016290 palmitoyl-CoA hydrolase activity

9.85 0.071 GO:0032927 positive regulation of activin receptor signaling pathway GO:0050431 transforming growth factor beta binding

9.57 0.072 GO:0050677 positive regulation of urothelial cell proliferation GO:0042056 chemoattractant activity

9.13 0.072 GO:0007228 positive regulation of hh target transcription factor activity GO:0005113 patched binding

8.66 0.071 GO:0045723 positive regulation of fatty acid biosynthetic process GO:0008009 chemokine activity

8.53 0.082 GO:0035023 regulation of Rho protein signal transduction GO:0005099 Ras GTPase activator activity

8.00 0.079 GO:0048010 vascular endothelial growth factor receptor signaling pathway GO:0005172 vascular endothelial growth factor receptor binding

7.51 0.087 GO:0050674 urothelial cell proliferation GO:0005104 fibroblast growth factor receptor binding

7.44 0.076 GO:0016049 cell growth GO:0005160 transforming growth factor beta receptor binding

7.41 0.233 GO:0048678 response to axon injury GO:0019899 enzyme binding

7.39 0.103 GO:0007178 transmembrane receptor protein serine/threonine kinase signaling pathway GO:0004702 receptor signaling protein serine/threonine kinase activity

7.33 0.115 GO:0033144 negative regulation of steroid hormone receptor signaling pathway GO:0003690 double-stranded DNA binding

6.72 0.177 GO:0009967 positive regulation of signal transduction GO:0048185 activin binding

6.52 0.080 GO:0007169 transmembrane receptor protein tyrosine kinase signaling pathway GO:0004714 transmembrane receptor protein tyrosine kinase activity

6.42 0.080 GO:0014044 Schwann cell development GO:0004675 transmembrane receptor protein serine/threonine kinase activity

6.40 0.103 GO:0045941 positive regulation of transcription GO:0003713 transcription coactivator activity

6.33 0.075 GO:0048012 hepatocyte growth factor receptor signaling pathway GO:0005017 platelet-derived growth factor receptor activity

6.31 0.089 GO:0045893 positive regulation of transcription DNA-dependent GO:0016563 transcription activator activity

6.27 0.071 GO:0042993 positive regulation of transcription factor import into nucleus GO:0015460 transport accessory protein activity

6.20 0.183 GO:0001558 regulation of cell growth GO:0019838 growth factor binding

6.08 0.072 GO:0007171 activation of transmembrane receptor protein tyrosine kinase activity GO:0005161 platelet-derived growth factor receptor binding

6.05 0.071 GO:0030949 positive regulation of vascular endothelial growth factor receptor signaling pathway GO:0005111 type 2 fibroblast growth factor receptor binding

5.75 0.070 GO:0006919 caspase activation GO:0019834 phospholipase A2 inhibitor activity

5.57 0.078 GO:0048706 embryonic skeletal development GO:0005024 transforming growth factor beta receptor activity

5.50 0.415 GO:0000187 activation of MAPK activity GO:0004672 protein kinase activity

5.46 0.101 GO:0006816 calcium ion transport GO:0005262 calcium channel activity

5.36 0.776 GO:0007154 cell communication GO:0000062 acyl-CoA binding

5.30 0.144 GO:0006468 protein amino acid phosphorylation GO:0004674 protein serine/threonine kinase activity

5.21 0.072 GO:0051795 positive regulation of catagen GO:0001540 beta-amyloid binding

5.19 0.093 GO:0016481 negative regulation of transcription GO:0016564 transcription repressor activity

5.17 0.070 GO:0051450 myoblast proliferation GO:0005021 vascular endothelial growth factor receptor activity

5.04 0.072 GO:0050890 cognition GO:0019855 calcium channel inhibitor activity

5.01 0.073 GO:0000122 negative regulation of transcription from RNA polymerase II promoter GO:0003702 RNA polymerase II transcription factor activity

4.85 0.072 GO:0007184 SMAD protein nuclear translocation GO:0046332 SMAD binding

4.84 0.071 GO:0001707 mesoderm formation GO:0045545 syndecan binding

Table 1: One-to-one alignment links ~l = 〈a, f(a)〉 for p ≥ 5%, sorted down by XOA score, and showing δf (~l).
Underlined links are illustrated in Fig. 1.

Figure 1: The portion of the BP (left) and MF (right) GO branches involving the top four XOA and top two δf

links. Only the anchors are shown with their GO IDs (see Table 1 for descriptions). Matching nodes are indicated

by color and link numbers. Ancestors are shown, up to the BP or MF root, but all interior nodes are collapsed.

Below each anchor is the number of descendant nodes. There are no common nodes below any pair of anchors.
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ontology is close to its comrades. This is clear in

Fig. 1, and thus our method identifies these links

which are clearly significant by XOA, but also distant

from the other links.

Figure 2: XOA(a, f(a)) vs. δf (a).

δf provides a measure only about ontology structure,

and there may be reasons in ontology design or

annotation for high δf to be preferable, e.g. if it

were important that annotations be made high in the

structure in some cases. The results would also be

different if there were common nodes below pairs

of anchors, which is entirely possible in the GO

DAG structure with multiple inheritance, especially

if the anchors were higher. Finally, note that the

number of descendants is correlated both with level

in the GO, and the information content (probability)

of a node used in semantic similarity calculation.

These correlations need to be explored in future work.

Further work for a full paper includes:

• There are potential difficulties of mixing exper-
imental and inferential annotations, as reported

here, these should be analyzed separately.

• The analytical pipeline needs to be tested for
sensitivity at multiple points, especially the fil-

tering to one-to-one links: it is likely that

there are links which re-use an anchor which

have only a slightly different XOA score, but

would produce a preferable mapping according

to δf . Additionally, the alignment measurement

method6 originally was designed to work on

many-to-many alignment relations F ⊆ P × P ′,

so extensions in this direction may be desirable.

• We have begun analysis on the distribution of δf

as a function of p-value cutoff.

• Other aspects of the alignment measurement
methodology6 need to be incorporated, including:

reconciling the use of upper distance together

with lower distance; and the additional use of an

order discrepancy measure, which rather than

being sensitive to the distances between links,

measures order violations (e.g. mapping siblings

to parent-child links) implied by an alignment.
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