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In biology, spandrels are phenotypic traits that evolve through their underlying 

developmental, genetic, and/or structural links to another trait under selection1, 2, 3. 

Despite the importance of the concept of spandrels in biology, empirical examples of 

spandrels are exceedingly rare at the organismal level2, 3.  Here we test whether 

body size evolution in insular populations of a snake (Elaphe quadrivirgata) is the 

result of an adaptive response to differences in available prey, or the result of a non-

adaptive spandrel resulting from selection on gape size. In contrast to previous 

hypotheses, Mantel tests show that body size does not coevolve with diet. However, 

gape size tightly matches diet (birds vs. lizards) across populations, even after 

controlling for the effects of body size, genetic, and geographic distance. Moreover, 

gape and body size show a strong degree of phenotypic covariation. Thus, the 

dramatic insular body size variation among E. quadrivirgata populations is at least 
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partially caused by its underlying phenotypic covariation with gape size rather than 

the result of direct selection on overall body size. 

 
Understanding the adaptive nature of phenotypic variation in natural populations is a 

central goal of evolutionary biology4, 5. Island biota have played a prominent role in this 

endeavor because island-dwelling organisms often display a remarkable range of body 

sizes, from dwarfs to giants, across island archipelagoes. For example, carnivorous 

komodo dragons (Varanus komodoensis) have evolved remarkable differences in 

maximum adult body size among four islands of the Lesser Sunda region6, which are 

believed to reflect differences in available prey size among islands. Case (1978) showed 

that many insular snake species tend toward dwarfism, which he suggested was caused by 

a reduction in food availability on islands compared to the mainland7. More 

contemporary reviews, however, show that island snake body sizes tend to be bimodal in 

their distribution8, 9, with giants evolving on islands with larger prey sizes and dwarves on 

islands with smaller prey sizes. 

Although numerous examples exist of body size co-varying with prey size in 

insular snakes8, 9, 10, body length is at best only weakly involved in the feeding process in 

these highly specialized vertebrate predators. Specifically, most snakes use their mobile 

jaw elements to swallow prey whole. Consequently, maximum gape size primarily 

determines the size, shape, and type of prey that can be successfully ingested11, 12. One 

would thus expect maximum gape size in snakes to exhibit a stronger adaptive response 

to differences in local prey availability than body size. So why does insular gigantism and 

dwarfism seem to go hand-in-hand with available prey size in snakes?  

We hypothesize that insular gigantism and dwarfism in snakes is a ‘spandrel’ of 



3 
 

selection on gape size. Architecturally, a spandrel is a tapering triangular space between 

an arch and a rectangular enclosure that arises as a natural by-product of mounting a 

dome on rounded arches1, 2. In evolutionary biology, a spandrel is a phenotypic trait that 

evolved through its underlying developmental, genetic, functional, and/or structural link 

to another trait under selection1, 2, 3. Although this concept has received a significant 

amount of attention from evolutionary biologists since its inception 30 years ago1, 

empirical examples of spandrels at the whole-organismal level are exceedingly rare2, 3. In 

snakes, gape and body size often exhibit strong phenotypic and genetic covariation, both 

within species over ontogeny and among species13. Therefore, selection on gape size for 

foraging on different prey types may drive a non-adaptive, albeit correlated, evolutionary 

response in body size. Here we test this hypothesis using morphological, dietary, and 

genetic data for seven populations of an insular Japanese snake (Elaphe quadrivirgata) 

that exhibit replicated patterns of insular gigantism and dwarfism.    

Our previous work on this snake has shown that E. quadrivirgata populations in 

the Izu archipelago, Japan exhibit pronounced differences in maximum adult body size 

(snout-vent length) from dwarves on Oshima (817 mm max SVL) to giants on 

Tadanaejima (1620 mm max SVL)14 (Fig. 1). Furthermore, these dramatic differences in 

maximum body sizes tightly match the size of available prey among islands14. 

Specifically, insular gigantism occurs on two islands (Mikurajima & Tadanaejima) and in 

both cases snakes feed on large, nestling seabird prey and their eggs (prey mass range = 

20 - 50g). By contrast, populations exhibiting insular dwarfism (e.g., Oshima) are 

restricted to consuming small to medium-sized lizard prey (prey mass range = 2 – 15g)14. 

Furthermore, analysis of mitochondrial DNA reveals limited genetic differentiation 
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among populations (0 – 1.3%; see supplemental information); therefore, body size has 

diverged in an extremely rapid manner among snake populations on the Izu islands. For 

example, snakes from the adjacent islands of Kozushima and Tadanaejima are genetically 

indistinguishable from one another yet exhibit considerable differences in maximum 

adult body size (Kozushima, mean ± 1 SE, SVL [in mm] = 1145 ± 15.6; Tadanaejima = 

1405 ± 20.9), diet14, growth trajectory and life span 15.  

 Morphometric analysis of snakes from lizard versus bird-eating islands show that 

snakes from the two bird-eating islands have significantly larger adult body (F1, 256 = 

20.1, P = 0.0001) and gape sizes (F1, 256 = 82.2, P = 0.0001 [Fig. s 2a,b & 3]) than the 

five lizard-eating islands (MANOVA; prey: Wilks’ Lambda = 0.756, F2, 255 = 41.4, P = 

0.0001). Moreover, differences in gape size between bird and lizard-eating islands 

become even more significant after adjusting for differences in overall body size 

(ANCOVA; F1, 254 = 47.8, P = 0.0001 [Fig. 2c]). Hence, there has been replicated 

evolution of small and large gape sizes in accordance with diet in E. quadrivirgata.  

Three-way Mantel’s tests accounting for genetic and geographic distances among 

populations further confirm this result. Specifically, gape size is strongly and 

significantly correlated with diet (birds vs. lizards) across all populations (Table 1), even 

after controlling for genetic distance. Although the three-way Mantel’s test controlling 

for geographic distance is not statistically significant (Table 1), it is very close to being so 

(P = 0.06). As the number of Izu islands this species inhabits is relatively small (n = 7), 

we checked the robustness of the geographic distance effect by increasing the number of 

permutations to 100,000. When doing so, the strength of the correlation between gape 

and diet after accounting for geographic distance becomes slightly stronger (Mantel’s r = 
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0.65, P = 0.047), and hence statistically significant. Additionally, gape size becomes even 

more strongly related to diet when holding variation in body size constant across 

populations (Table 1). By contrast, insular body size variation is not significantly 

correlated with diet, genetic, or geographic distance among populations (Table 1). 

However, two-way Mantel’s tests show that body size is significantly and strongly 

correlated with gape size across populations (Mantel’s r = 0.75-0.80, P < 0.05 in all 

comparisons; Table 1). Selection for large gape to feed on massive bird prey or for small 

gapes to feed on small lizard prey will therefore result in concomitant changes in body 

size among populations of E. quadrivirgata. Overall, this analysis strongly suggests that 

the replicated evolution of insular gigantism and dwarfism in E. quadrivirgata is not an 

adaptive response to diet as previously hypothesized, but rather a spandrel of selection on 

gape size. 

  

METHODS SUMMARY  

We collected snakes from the seven major (Kozushima, Mikurajima, Niijima, Oshima, 

Shikinejima, Tadanaejima and Toshima) Izu islands, Japan this species inhabits (Fig. 1; 

see supplemental information for sample sizes) from late April to early May 2006-2008. 

We stayed between 1-8 days at each locality and collected snakes by hand by walking 

along roads or paths between 0800 and 1700 h. Sex was determined by either examining 

the external shape of the tail base or by everting the hemipenes. To avoid 

pseudoreplication, we gave each captured snake a unique mark to facilitate future 

identification. 
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 For each captured snake, we recorded snout-vent length (SVL), maximum head 

width with the quadrate bones flared laterally at the quadrato-supratemporal joint (Fig. 3), 

and length of the lower jaw. We used these two head measurements to compute a gape 

index that represents the cross-sectional area as the area of an ellipse with major and 

minor axes equal to jaw length and head width, respectively16. Snout-vent length and the 

computed gape index were used in all statistical comparisons among populations. 

Populations were categorized according to their main dietary item based upon long-term 

mark-recapture data published elsewhere14.  

 We obtained tissue samples for a total of 261 individuals of Elaphe quadrivirgata 

from these seven localites. To capture the genetic diversity within each population, we 

sampled a large number of individuals (range = 16 – 57, median = 35). We amplified the 

entire 1117 base pair cytochrome b gene in two overlapping fragments using the primers, 

H14910: 5’– GAC CTG YGA TMT GAA AAA CCA CYG TT –3’17, EQintR: 5’- AAG 

TGG AGG GCR AAG AAT CGA GTT AAG GT -3’, EQ-mH2: 5’- AGC TTT GTC 

TTA CAA GGA CAA CGC -3’, and EQ-mL2: 5’- CCA TGA GGA CAA ATA TCA 

TTC TGA G -3’ using standard PCR techniques. PCR products were cleaned using 

ExoSap-IT (USB Corp.). Purified templates were dye-labeled using BigDye™ (ABI) and 

sequenced on an ABI 3077™ automated DNA sequencer using the same primers. 

Nucleotide sequences were examined and aligned by eye and an open reading frame for 

this gene was verified using MacClade version 4.0818. The mean uncorrected genetic 

distances between each of the nine populations was calculated using the “Mean distance 

between groups” function in MEGA version 419. 
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We tested for adaptive relationships between morphology and diet using Mantel 

tests with 9999 permutations of pairwise difference matrices among all localities20. The 

morphological matrices represent the Euclidean distance between a pair of localities, 

calculated using the mean population value for either SVL or gape index. For diet (birds 

or lizards), the difference matrix contained a “0” if diet between two populations was the 

same, and a “1” if they were different. We controlled for mean genetic and/or geographic 

distance using three-way Mantel tests (see Table 1).  
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Figure 1 Map of the main island of Japan (Honshu) and the Izu islands indicating 
the seven localities sampled in this study. Populations are coloured according to 
diet: Blue = lizard-eating, Red = bird-eating. 
 
Figure 2 (a) Bar-graphs showing mean ± 1 SE snout-vent length (mm), (b) gape 
index (mm2), and (c) body size-adjusted gape index for adult snakes collected 
from bird vs. lizard-eating islands. Body size-adjusted gape index was calculated 
using the residuals from an ordinary least-squares regression of log SVL (x-axis) 
versus log gape index (y-axis). Snakes from bird-eating islands have significantly 
larger adult body (F1, 256 = 20.1, P = 0.0001) and gape sizes (F1, 256 = 82.2, P = 
0.0001) than snakes from lizard-eating islands.   
 
Figure 3 Photographs of an adult Kozushima lizard-eating (left), and a 
Tadanaejima bird-eating (right) snake taken before and after compression of the 
quadrate bones. 
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Table 1 | Mantel test results (α = 0.05). Matrix A represents the pairwise 
dietary difference matrix between populations (0 = diets are the same; 1 = 
diets are different) or the distance matrices for mean body size or mean 
gape size among populations. Matrix B represents the distance matrices 
for mean body size, mean gape size, mean genetic or geographic distance 
among populations. Matrix B was used to test for significant correlations 
between the variables included in matrices B and A. Matrix C was used to 
take into account the potentially confounding influence of another 
correlated variable when testing for correlations between matrices A and B. 
See Methods Summary for details on how the difference matrices were 
constructed. Significant results are indicated in bold.  
 

 

 
 
  
 

Matrix A Matrix B Matrix C Mantel r-value P-value 
Diet Body size  - 0.29 0.38 
Diet Body size  Genetic 0.54 0.11 
Diet Body size  Geographic 0.21 0.54 
Diet Body size Gape size -0.39 0.24 
Diet Gape size - 0.65 0.05 
Diet Gape size Body size 0.68 0.04 
Diet Gape size Genetic 0.73 0.03 
Diet Gape size Geographic 0.63 0.06 
Diet Geographic - 0.26 0.44 
Diet Geographic Genetic 0.44 0.20 
Diet Genetic  - -0.17 0.61 
Diet Genetic Geographic -0.41 0.22 

Body size  Geographic - 0.42 0.22 
Body size  Geographic  Genetic 0.10 0.73 
Body size Genetic - 0.64 0.07 
Body size Genetic  Geographic 0.53 0.12 
Body size Gape size - 0.75 0.04 
Body size Gape size Genetic 0.80 0.04 
Body size Gape size Geographic 0.75 0.03 
Gape size  Geographic - 0.22 0.50 
Gape size  Geographic  Genetic 0.10 0.73 
Gape size Genetic - 0.24 0.46 
Gape size Genetic  Geographic 0.15 0.61 
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