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Abstract
The number of genome-scale metabolic models has been rising quickly in recent years, and 
the scope of their utilization encompasses a broad range of applications from metabolic 
engineering to biological discovery. However the reconstruction of such models remains 
an arduous process requiring a high level of human intervention. Their utilization is 
further hampered by the absence of standardized data and annotation formats and the 
lack of recognized quality and validation standards.

Plants provide a particularly rich range of perspectives for applications of metabolic 
modeling. We here report the first effort to the reconstruction of a genome-scale model of 
the metabolic network of the plant Arabidopsis thaliana, including over 2300 reactions and 
compounds. Our reconstruction was performed using a semi-automatic methodology 
based on the integration of two public genome-wide databases, significantly accelerating 
the process. Database entries were compared and integrated with each other, allowing us 
to resolve discrepancies and enhance the quality of the reconstruction. This process lead to 
the construction of three models based on different quality and validation standards, 
providing users with the possibility to choose the standard that is most appropriate for a 
given application. First, a core metabolic model containing only consistent data provides a 
high quality model that was shown to be stoichiometrically consistent. Second, an 
intermediate metabolic model attempts to fill gaps and provides better continuity. Third, a 
complete metabolic model contains the full set of known metabolic reactions and compounds 
in Arabidopsis thaliana.
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We provide an annotated SBML file of our core model to enable the maximum level of 
compatibility with existing tools and databases. We eventually discuss a series of 
principles to raise awareness of the need to develop coordinated efforts and common 
standards for the reconstruction of genome-scale metabolic models, with the aim of 
enabling their widespread diffusion, frequent update, maximum compatibility and 
convenience of use by the wider research community and industry.
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Introduction
Metabolism is perhaps the best characterized of all molecular interaction networks in 
biology. Large amounts of data relating to metabolic reactions are available to date, but 
despite this wealth of information metabolic phenotypes can still not be accurately 
predicted (Sweetlove, 2008). Knowledge of plant metabolism in particular remains 
fractional and efforts to engineer plant metabolism have so far largely failed. A 
comprehensive understanding of plant metabolism yet has the potential to bring valuable 
advances in the generation of pharmaceutical products, the production of key secondary 
metabolites of commercial interest, the improvement of yield and nutritional quality of 
crops.

Although Arabidopsis thaliana has been widely used as a model plant, its metabolic 
network has not been studied in great details and at a large scale. There has been renewed 
interest in A. thaliana metabolism recently. More than 170 secondary metabolites from 
seven different classes have been identified in A. thaliana (D’Auria & Gershenzon, 2005), 
whose putative functions cover the defense against pathogens and herbivores, UV 
protection, resistance to oxidative stress, auxin transport, etc. Glucosinolates are known 
for their benefits to human nutrition and were found to play a fundamental role in the 
defense response against microbial and fungal pathogens (Clay et al., 2009; Bednarek et al., 
2009). Biosynthesis pathways of tocochromanols, a group of lipid antioxidants that are 
essential in human nutrition, have raised promising interest (Dörmann, 2007). A. thaliana 
was also used as a model plant to study polyamine metabolism, which plays an essential 
role in stress tolerance (Alcázar et al., 2006), and flavonoid production, which inhibit or 
stimulate cell proliferation in different human cancer cell lines (Woo et al., 2005).

A major step towards understanding the metabolic phenotypes of an organism is the 
construction of a comprehensive model of its metabolic network. While metabolic 
pathways are convenient abstractions to represent the main routes of chemical 
transformations, their definition is generally arbitrary. The pathway paradigm fails to 
provide an integrated view of interactions and control mechanisms, which act across and 
with no regard of pathway boundaries. For that reason, many large-scale metabolic 
networks have been constructed in recent years, most notably for microorganisms 
(Heinemann et al., 2005; Oh et al., 2007; Resendis-Antonio et al., 2007; Andersen et al., 2008; 
Herrgård et al., 2008; Suthers et al., 2009) but also for animals and humans (Sheikh et al., 
2005; Duarte et al., 2007; Ma et al., 2007). The applications of such models are plentiful and 
encompass metabolic engineering studies to design strains overproducing desired 
products, the prediction of genes responsible for orphan reactions, the determination of 
active reactions for a given environmental condition, the identification of coupled reaction 
sets, and evolutionary studies (Feist & Palsson, 2008). Genome-scale metabolic 
reconstructions were also used to predict potential new antibiotic targets (Lee et al., 2009).

The reconstruction of a large-scale metabolic model remains a long process, requiring a 
high level of human input. A lot of information about metabolic reactions is available in 
public databases, compiled through extensive curation of the biochemical literature. 
However each database has its limitations, and therefore models produced automatically 
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from one of these databases generally contain numerous inaccuracies and are 
incompatible with other applications. The most common sources of problems are the non-
uniqueness of metabolite identifiers (some compounds being represented by generic 
classes such as “alcohol”), unbalanced atomic species arising from an incorrect 
stoichiometry or formula of one or more reactants, incorrect or missing cofactors, and 
enzymes catalyzing more than one reaction (Poolman et al., 2006). For that reason, several 
sources of data need to be confronted and assembled in order to obtain a more reliable 
model . The likelihood that the same error would appear in two independent sources 
should be of an order of magnitude smaller than the frequency of errors in any database. 
This simple idea has lead us to develop an original methodology for metabolic network 
reconstruction based on the integration of two databases.

In the case of Arabidopsis thaliana, the two most extensive sources of metabolic reaction 
data are Kegg (Kanehisa et al., 2008) and AraCyc (Zhang et al., 2005). The concept for the 
construction of our model is based on the fact that no database currently contains fully 
accurate information about the enzymes, reactions and metabolites present in an 
organism. In addition, there are still gaps in the knowledge about many parts of the 
cellular composition, leading to different lacks in databases. A reconstruction using only 
one source of data would naturally copy errors and gaps into the reconstructed model. By 
creating an intersection between two databases, differences can be identified and taken 
into account for further curation. The resulting process can be defined as semi-automatic, 
as the extraction and comparison of data between databases can be largely automated, but 
manual curation remains necessary to analyze and solve discrepancies between them.

Another important and often ignored aspect of metabolic model reconstruction is that 
different sources of data have different levels of certainty. A reaction consistently described 
by several independent sources should have a higher degree of reliability than a reaction 
described by a unique source. For this reason, we here present three different models of A.  
thaliana metabolism corresponding to decreasing levels of confidence (Figure 1). The core  
(yellow) model contains only compounds and reactions which have been reliably identified 
in both databases and whose description is identical in both of them. The intermediate  
(green) model contains compounds and reactions found in only one database, but with a 
strong connection to the core model so that the absence of a perfect match is likely to be 
due to minor inaccuracies. The complete (blue) model contains all remaining compounds and 
reactions.

Methods
In order to map metabolites between Kegg and AraCyc, several features of the data were 
taken into account. Two compounds were defined as being identical only if all features 
were positively matched. These features included compound names,·chemical formulae 
and structures, and enzymes catalyzing reactions where the considered metabolites 
participate.

Compound name similarity

Names of metabolites may differ between databases for several reasons. Many chemical 
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compounds are commonly known under multiple names, and all of their names are not 
necessarily indicated in all databases. Furthermore, here is no universal and common 
identifier between Kegg and AraCyc, as compounds are sometimes referred by their 
ChEBI (Chemical Entities of Biological Interest; Degtyarenko et al., 2008), CAS (Chemical 
Abstracts Service; Buntrock, 2001) or PubChem (Austin et al., 2004) identifier. For example, 
there are five different names listed for the Kegg entry C00022 (Pyruvate, Pyruvic acid, 2-
oxopropanoate, 2-oxopropanoic acid, pyroracemic acid), and nine different possibilities 
for the same compound in AraCyc (pyruvate, BTS, alpha-ketopropionic acid, acetylformic 
acid, pyroracemic acid, 2-oxopropanoic acid, pyruvic acid, 2-oxopropanoate, 2-oxo-
propionic acid). If at least one of these entries is the same in both databases, the 
identification of matching metabolites is straightforward. However there are many cases 
where no perfect match can be found. For example the Kegg compound C10434 is named 
5-O-Caffeoylshikimic acid, and the same compound in AraCyc has the name 
caffeoylshikimate.

For this reason a string similarity algorithm, originally developed for the identification of 
gene/protein name similarity, has been employed to compare metabolite names (Tsuruoka 
et al., 2007). This algorithm uses logistic regression to compute the similarity between 
strings by incorporating a variety of features. A training data set has to be supplied in 
order to teach the program which differences can be treated as similar and which ones are 
not allowed. It is important to use features that can well characterize a string pair by 
capturing the similarity between a variety of variations while highlighting the difference 
between terms which are not synonymous. The considered features are character bigrams, 
prefixes and suffixes, numbers, acronyms, common and different tokens. An appropriate 
training set was prepared by processing sets of multiple names of the same metabolite in 
each of the databases. We found that the characteristic differences that occur between 
metabolite names are essentially of a very similar nature as those occurring between 
protein names, allowing the algorithm to perform efficiently. The result of this process 
consisted in a list of matched names with an associated of their identity.

Chemical structure similarity

The formula of a metabolite theoretically confines the search for matching metabolites 
considerably. However it is not usable as a unique identifier. Two metabolites can have the 
same global formula and be completely different chemically because of the various 
possible structures of atoms. For example, 2-carboxy-D-arabinitol 1-phosphate, L-
galactose-1-phosphate, D-hexose 6-phosphate and alpha-D-mannose 1-phosphate all have 
the same formula C6H13O9P. On the other hand, two metabolites that are identical may be 
represented by slightly different chemical formulae, either because an error is present in 
one source or because of chemical modifications (such as pH-dependent breakdowns of 
carboxylic groups).

All chemical structure processing was implemented in Pipeline Pilot workflows (Hassan et  
al., 2006). Input structures from KEGG and AraCyc were first converted to canonical 
SMILES, a unique line representation of two-dimensional molecular structure (Weininger 
et al., 1989). Exact structural matches occurred where SMILES strings were identical.
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In previous metabolic network reconstructions it was observed that equivalent metabolites 
differed across sources in a number of ways. These included stereochemical differences 
(due to varying levels of detail about chiral centres or configurations about double bonds), 
tautomeric variants (where proton localization differs), and by charge state. To identify 
differences  of  these  types  SMILES  strings  were  matched  after  purging  stereochemical 
information from structure,  or after calculation of the canonical tautomer, or following 
recalculation of ionization at pH 7.4.

One further important way in which equivalent metabolites from different sources were 
noted to differ was by simple structural errors in their representation, such as incorrect 
bonding  or  missing  functional  groups.  Providing  that  the  majority  of  the  structure  is 
correctly specified then corrections for errors of this type can be suggested by standard 
cheminformatics  molecular  similarity  measures  (Willett,  2006)  (here  using  the  ECFP_4 
molecular fingerprint and Tanimoto similarity metric).

Whereas exact matches of the original canonical SMILES strings provides an unambiguous 
mapping  of  metabolites  across  data  sources,  the  other  types  of  matches  are  only 
approximate (they may or may not be correct) and so require further manual checking. 
The  approximate  matching  algorithms  do,  however,  significantly  reduce  the  manual 
checking workload.

Complete process

An iterative approach was adopted to integrate the different features of metabolite 
identification (Figure 2). The first step consisted in creating a list of mapped metabolites as 
a starting point. Those metabolites have been allocated by searching for Kegg references in 
AraCyc. For some of its compounds AraCyc provides the unique Kegg identifier, allowing 
the undoubted matching of a first set of compounds. The next step consisted in searching 
for all reactions in both databases that contain those compounds. More specifically, we 
considered those reactions where all compounds were already identified or only one was 
missing. Reactions where all compounds were identified could subsequently be compared, 
and if all compounds and the catalyzing enzymes were the same, the reactions were 
accepted as being the same. In those reactions where one compound was missing, the 
known compounds were compared to each other. If two reactions in AraCyc and Kegg had 
the same number of metabolites and all known metabolites were the same, the 
respectively unknown compounds in each reaction were accepted as candidates for being 
identical. If the catalyzing enzyme in both reactions was the same, and the name strings 
had a high probability of being similar, and the structures or formulae were equal, then 
two candidate compounds were accepted as being identical.

At the end of the first iteration step, new compounds were added to the list of matched 
compounds and a new iteration was started. The whole process was repeated several 
times until no additional matched compounds could be found. During the process, 
compounds that gave a positive result in some but not all of the before-mentioned features 
were copied into a separate list that was manually examined. The positive results of these 
checks were added to the list of compounds in order to improve the outcome of the next 
iteration.
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The final lists of matched compounds and reactions were given new unique identifiers for 
the new model. These matched compounds and reactions constitute the first or core  
(yellow) metabolic model. Compounds and reactions that were not matched in both 
databases were assigned to the second or third model depending on an additional process. 
In the intermediate (green) model, we included reactions for which either the full set of 
substrates or the full set of products belonged to the core model. Such reactions are likely 
to be valid as they have a strong connection to the core model, but may be insufficiently or 
inconsistently described resulting in discrepancies between databases or their absence in 
one of them. Compounds involved in such reactions and not already included in the core 
model were also added to the intermediate model. All remaining compounds and 
reactions were included into the complete (blue) model.

A general problem in metabolic models is caused by the fact that many compounds have 
different protonation states depending on the pH. There is no pH consistency in formulae 
found in databases, and AraCyc does not represent protons in reactions. As a consequence, 
we neglected differences in proton content between formulae and did not represent 
protons in reactions either. A strict balance of hydrogen atoms thus cannot be expected in 
our models.

Stoichiometric consistency validation

Incorrect definition of reaction stoichiometries often results in stoichiometric 
inconsistencies – a common type of modelling error, defined as contradictions between the 
fundamental physical constraints of mass positivity and mass conservation (Gevorgyan et 
al., 2008). An example is shown below:

R1 : A  B↔

R2 : A  B + C↔

In this network, the metabolite C cannot be assigned any positive molecular mass without 
violating the mass balance in the whole system. Stoichiometric inconsistencies are often 
caused by violations of atomic balance, by ambiguous generic metabolite definitions (e.g. 
“primary alcohol”) and by inclusion of polymers with variable polymerization degrees 
and units (e.g. starch and protein).

Stoichiometric consistency validation involves inspection of the left null-space (the null-
space of the transposed stoichiometry matrix) and may include the following optional 
steps: Firstly, the stoichiometric consistency of the full network is verified. If the network is 
inconsistent, the non-conserved metabolites (Nikolaev et al., 2005) are detected (e.g. C in 
the above example). Further, for each non-conserved metabolite, the minimal inconsistent 
net stoichiometries involving it are calculated (these are defined as net stoichiometries 
with empty sets of substrate or products, e.g. by subtracting the reaction R1 from R2, we 
obtain   C). Finally, the elementary leakage modes (minimal linear combinations of∅ ↔  
reactions resulting in inconsistent net stoichiometries) can be detected, e.g. (-R1, R2) in the 
above example. The localization of such minimal inconsistent subnetworks helps to detect 
input errors in the reactions.
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Construction of SBML model

An SBML version of the core model was constructed using libSBML (Bornstein et al., 2008). 
The model is MIRIAM compliant (Le Novère et al., 2005), with all compartments, species 
and reactions annotated with ontological terms, allowing their unambiguous identification 
and interpretation by third party software tools. Metabolites have been annotated with 
ChEBI and Kegg terms, along with InChI strings (Stein et al., 2003), while all enzymes are 
provided with an annotation linking them to the appropriate gene in the TAIR database 
(Huala et al., 2001).

Network visualization and analysis

A network was constructed from the complete (blue) model for topological analysis and 
visualization. In this network representation, compounds are nodes and reactions are 
edges. All substrates of a given reaction were connected to all products of that reaction. 
Isolated compounds were not included in the network representation. The Cytoscape 
software was used for network visualization (Shannon et al., 2003), and the 
NetworkAnalyzer plugin for Cytoscape was used for topological analysis (Assenov et al., 
2008). Network properties of the three models are summarized in Table 1. The meaning of 
the parameters shown in Table 1 is briefly explained hereafter (Dong & Horvath, 2007).

The number of connected components indicates how many disjoint subnetworks the network 
is broken into. A self-loop is a node connected to itself. The number of shared neighbors 
between two nodes is the number of nodes that are neighbors of both of them. The shortest  
path length, also called the distance between two nodes is the smallest number of edges that 
have to be crossed to go from one edge to the other. The characteristic path length is the 
average distance and the network diameter is the largest distance between two nodes in the 
network.

The connectivity of a node is the number of edges connected to it. The network density is a 
measure of how densely the network is populated with edges. A network that contains 
only isolated nodes has a density of 0, whereas a clique has a density of 1. The network  
centralization is a measure of how strongly a network is focused around central nodes. 
Networks resembling a star have a centralization close to 1, whereas decentralized 
networks have a centralization close to 0. The network heterogeneity measures the variance 
of the connectivity and reflects the tendency of a network to contain hub nodes. The 
clustering coefficient of a given node n is a ratio between the number of edges between the 
neighbors of n and the maximum number of edges that could possibly exist between them. 

The betweenness centrality Cb(n) of a node n is computed as follows:

Cbn=
2

N−1N−2 ∑s≠n≠t
st n
 st

,

where s and t are nodes in the network different from n, σst is the number of shortest paths 
from s to t, σst(n) is the number of shortest paths from s to t that n lies on, and N is the total 
number of nodes in the connected component that n belongs to. The betweenness 
centrality of each node is a number between 0 and 1. It reflects the amount of control that a 
node exerts over the interactions between other nodes in the network. A node acting as a 
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bridge between different communities has a high betweenness centrality, while a node that 
lies inside a community has a low one.

The closeness centrality Cc(n) measures how close a node n is to others in the same 
connected component. It is defined as follows:

C c n=
N−1

∑
m≠n

Lm ,n ,

where L(n, m) is the length of the shortest path between n and m, and N is the total number 
of nodes in the connected component that n belongs to. The closeness centrality is a 
measure of how fast information can spread from a given node to other reachable nodes in 
the network.

Results

Metabolic models of A. thaliana

We present three metabolic models of A. thaliana corresponding to different levels of 
confidence. The core (yellow) metabolic model only contains compounds and reactions 
that have been unambiguously identified and matched in the two databases 
(Supplementary File 1). These metabolites and reactions are expected to have been well 
characterized and experimentally observed, and are more likely to play an important role 
in the plant. This model is expected to cover most of the core metabolism of Arabidopsis  
thaliana (Table 1).

The intermediate (green) model additionally contains reactions from both databases where 
either the full set of substrates or the full set of products belongs to the core model. 
Compounds involved in these reactions and not already included in the core model were 
also added to the intermediate model. Such reactions and compounds have a strong 
connection to the core model, but their confidence status is lower since they have not been 
unambiguously matched between in both databases. The fact that a compound or reaction 
was found in only one database may be due to several factors: (i) our reconstruction 
algorithm may have failed to find the corresponding compound or reaction in the second 
database; (ii) a metabolite may be represented by a generic class in one database but by a 
specific compound in the other; (iii) one database may contain an inaccuracy, so that a 
metabolite or a cofactor is missing or incorrect in a reaction; (iv) a reaction or compound 
may indeed be absent from one database. Some of these causes might lead to the 
occurrence of double entries in the intermediate model.

All remaining reactions and compounds were added to the complete (blue) metabolic 
model, so that a comprehensive data set of all metabolic reactions and compounds 
described in A. thaliana and reactions contained is presented. This model should be 
considered as a development set whose validity needs to be confirmed from additional 
sources.

For a better understanding of the different cases that result in the attribution of 
compounds and reactions to different models, several examples are shown in Figure 3. 
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The sucrose phosphate phosphohydrolase reaction (a) is entirely yellow because it is 
identically described in both databases and all compounds were successfully matched to 
each other. So is the ribulose bisphosphate carboxylase reaction (b), even though it is 
described with two protons on the right hand side in Kegg but without in Aracyc, because 
we decide to ignore protonation states. The pyruvate kinase reaction with GTP/GDP as 
cofactors (c) is green even though all its substrates and products are yellow, because only 
Kegg describes the possibility of GTP/GDP involvement. Another pyruvate kinase reaction 
involving ATP/ADP is described in both databases and is included in the core (yellow) 
model. The acetyl-CoA synthetase reaction and acetyl adenylate (d) were not found in 
AraCyc, they are included into the intermediate (green) model because both acetyl-CoA 
and AMP are unambiguously identified. The carbon-sulfur lyase reaction (e) is blue 
because neither substrate nor product are known by AraCyc. The sphingolipid 
biosynthesis reaction (f) is blue because it uses generic metabolite classes in AraCyc that 
cannot be matched to specific metabolites in Kegg.

Detailed coverage of metabolic pathways

We investigated the distributions of enzymes belonging to the three metabolic models 
among Kegg pathways (Supplementary File 2). In most of the carbohydrate metabolism 
pathways, the core (yellow) metabolic model covers between 70% and 80% of all enzymes 
attributed by Kegg to these pathways. This proportion generally rises above 85% in the 
intermediate (green) model. In nucleotide metabolism pathways, 87% of the enzymes are 
covered by the core model and 91% by the intermediate model. For amino acid 
metabolism and secondary metabolites biosynthesis, these values are most of the time 
between 50% and 70% in the core model and 75% in the intermediate model. Lipid 
metabolism has a lower coverage with 40% to 60% of enzymes being in the core model and 
around 70% in the intermediate model. It is not surprising that core metabolic pathways 
are generally better covered, as these pathways should have been the most intensively 
analyzed experimentally and most accurately described.

As an illustration of the different levels of quality of our reconstructed models, we 
describe the case of the citrate and glyoxylate cycles in detail (Figure 4). Most parts of the 
citrate cycle and the glyoxic shift have been reliably identified through the semi-automatic 
process and were included into the core (yellow) model. The remaining gaps are filled in 
the intermediate (green) model. The factors leading to some reactions and compounds not 
being included into the core model are detailed below:

(i) The succinate dehydrogenase reaction between succinate and fumarate was not 
included into the core model due to an ambiguity between various forms of ubiquinones 
and ubiquinols acting as cofactors. These compounds are represented by generic classes in 
Kegg, but by specific ubiquinone-8 and ubiquinol-8 compounds in AraCyc.

(ii) The transition between 2-oxoglutarate and succinyl-CoA is represented by a direct 
alpha-ketoglutarate dehydrogenase reaction in AraCyc. This reaction is not present in 
Kegg, which instead represents the transition by three different steps involving 3-carboxy-
1-hydroxy-propyl-thiamine diphosphate and succinyldihydro-lipoamide-E.

(iii) Similarly, the transition between isocitrate and 2-oxoglutarate via oxalosuccinate is 
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represented in Kegg but not in AraCyc. The direct isocitrate dehydrogenase reaction does 
appear in both databases.

Stoichiometric consistency validation

The intermediate (green) and complete (blue) metabolic models unsurprisingly contain 
many stoichiometric inconsistencies because these models contain generic metabolite 
classes (e.g. “alcohols”). In the core (yellow) metabolic model however, the only non-
conserved metabolite detected was molecular hydrogen. This inconsistency inevitably 
follows from skipping protons from reaction definitions and currently cannot be resolved, 
given the inaccuracies in the input data. Since hydrogen interconversions are generally not 
relevant for applications of metabolic models, we conclude that the stoichiometric 
consistency validation of the core model was successful.

Network properties

We analyzed the topological properties of the reconstructed metabolic models in order to 
verify whether they were compatible with those of previously reported models of other 
species (Table 1 and Figure 5). Different network representations can be used to represent 
systems of metabolic reactions, and the values of network parameters depend on the 
chosen representation. In this work metabolites were represented as nodes and reactions 
as edges. As the directionality of metabolic reactions is generally subject to ambiguity, 
edges were set to be undirected. Two metabolites were connected by an edge if they 
participate as substrate and product respectively in the same reaction. Common small 
molecules such as ATP, NADH, water, etc, were not removed from the network 
representation.

Distributions of the most important network properties are plotted in Figure 5 for the 
complete (blue) metabolic model. The intermediate (green) and core (yellow) metabolic 
models exhibit similar distributions. Average network parameters are shown for the three 
networks in Table 1. The connectivity distribution of our metabolic model has the same 
allure, resembling a power-law, as universally observed in metabolic networks (Jeong et  
al., 2000; Wagner & Fell, 2001; Almaas, 2007). The average clustering coefficient is our 
models is close to 0.2, to be compared with reported values of 0.20 for E. coli, 0.23 for S.  
cerevisiae, and 0.28 for H. pylori based on the same network representation (Almaas, 2007). 
The average path length in our models is close to 3, which is the same as observed in many 
other metabolic networks based on the same network representation (Jeong et al., 2000). It 
is worth noticing that this value becomes significantly higher when common small 
molecules are removed from the network (Ma & Zeng, 2003) or when an atomic 
representation of metabolism is adopted (Arita, 2004).

The top ten hubs for the three metabolic models are listed in Table 2. The connectivity of 
these hubs logically increases from the core to the complete models, but their ranking is 
only marginally affected by the difference in confidence levels between models. Water 
remains the most highly connected molecule in all cases, and nine out of ten molecules 
consistently appear the top ten ranking for all three models. These hubs include most of 
the ubiquitous small molecules found in other metabolic models, when they are not 
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removed.

A graphical network representation of the complete (blue) metabolic model is provided in 
Figure 6.

Discussion
The number of published genome-scale metabolic models has grown rapidly in recent 
years. After the first models reconstructions were published for E. coli and S. cerevisiae  
(Edwards & Palsson, 2000; Förster et al., 2003) the number of such reconstruction has been 
growing quickly in recent years, covering many microorganisms, animals and human. A 
comprehensive description of the motivations and applications of such reconstructions has 
been presented by Feist and Palsson (2008). These applications include network property 
analysis, metabolic engineering, biological discovery, phenotypic assessment, and 
evolutionary analysis.

No large-scale reconstruction of the metabolic network of a plant has been undertaken 
previously, and yet many of the applications mentioned before take even higher relevance 
in plants. Metabolic engineering is of particular significance in plants and offers promising 
perspectives to improving production yields, enhancing the nutritional value of crops, and 
generating valuable molecules for pharmacology and energy production. High-quality 
and comprehensive models of plant metabolism will be crucial to allow these applications 
to be developed. The metabolic networks of plants are of a higher complexity than those of 
most other living species; it is therefore both relevant and timely to start investing efforts 
in the construction of such models.

However many issues presently hamper the use of genome-scale metabolic models by the 
wider research community and industry. These issues include:

(i) A limited usage of standardized formats, nomenclatures and annotations. Most 
metabolic models are published in spreadsheet format, using customs identifiers and 
nomenclature. This is a considerable obstacle for the transfer of these models to other 
applications and for the comparison of different models.

(ii) Limited coordination between different reconstruction efforts. One such coordination 
has recently lead to the publication of a consensus metabolic model of S. cerevisiae 
(Herrgård et al., 2008), and a similar effort is currently under way for the human metabolic 
network (Mo & Palsson, 2009).

(iii) The absence of update mechanisms enabling the integration of the latest scientific 
discoveries by the wider research community into existing models.

(iii) The absence of universal quality and validation standards.

Although this work does not claim to address all these issues, we introduced in this work 
a few principles seeking to propose avenues for solutions and to raise awareness about 
current limitations. First, we provide an annotated SBML version of the core (yellow) 
metabolic of A. thaliana (Supplementary File 3). SBML has become the de facto standard for 
systems biology models and allows them to be used by the widest range of tools. 
Standardized annotations following SBO specifications ensure that metabolites and 
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enzymes can be easily identified and linked with existing databases. However, for such 
formats to be universally adopted by the biochemical research community, efficient and 
user-friendly tools will need to be developed allowing the easy input and conversion of 
models to a well annotated and standardized format.

While large international meetings have proven successful to confront and integrate 
different existing metabolic models, mechanisms allowing a convenient integration of 
models as they are developed would be more efficient. We showed that by confronting 
and integrating two independent sources, we were able to semi-automatically reconstruct 
a core metabolic model of A. thaliana, whose quality is comparable to existing manually 
reconstructed models of other species. Such mechanisms could be generalized by the use 
of common repositories, following the models used for gene sequences or protein 
structures, allowing users to deposit new models and enhance existing ones through a 
seamless integration process.

Last, all applications using genome-scale metabolic models do not necessarily require the 
same level of data quality. For network analysis, a relatively straightforward or automatic 
reconstruction may be sufficient, while for metabolic engineering or experimental design a 
highly accurate and well-annotated model is generally necessary. It is therefore important 
to keep track of the sources and validation level of data used in reconstructions, so that 
users are able to select the data with the appropriate level of confidence for their 
application. As a first step towards such a process, we here provide three models with 
different levels of confidence. The core (yellow) model has the highest confidence level 
and was proven to be stoichiometrically consistent, but has some gaps. For applications 
such as Flux Balance Analysis, a more continuous model can be preferable even though 
some reactions might be of a lower confidence level. The intermediate (green) model 
attempts to suit such needs by filling gaps through the inclusion of partial information. 
The complete (blue) model eventually contains the largest amount of available 
information, but with the restriction that some reactions may be unconfirmed and the risk 
of duplications.

Conclusion
In this work, we simultaneously introduced the first large-scale model of the metabolism 
of the plant Arabidopsis thaliana and a methodology allowing an efficient semi-automatic 
construction of metabolic models via the integration of different data. The integration of 
different data sources significantly enhances the quality of a reconstructed model and 
leads to quality standards that are comparable to manual reconstructions. A long-term and 
coordinated international effort will be desirable to provide comprehensive and accurate 
genome-scale metabolic models of plants, and to provide the standards and infrastructure 
allowing a widespread diffusion, frequent update, maximum compatibility and 
convenience of use of such models by the widest research community and industry.
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Tables

Table 1: Network properties of the three metabolic networks.

The meaning of the parameters given in this table is explained in the Methods section.

Core (yellow)
model

Intermediate (green)
model

Complete (blue)
model

Number of nodes 770 1207 2288

Number of edges 2255 3792 6547

Network density 0.008 0.005 0.002

Network heterogeneity 2.223 2.623 3.362

Number of self-loops 0 8 31

Clustering coefficient 0.215 0.233 0.189

Connected components 6 5 28

Network diameter 8 8 10

Network centralization 0.288 0.301 0.271

Average path length 3.114 3.158 3.286

Average connectivity 5.857 6.270 5.696
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Table 2: Hubs of the three metabolic networks.

Core (yellow) model Intermediate (green) model Complete (blue) model

Metabolite Degree Metabolite Degree Metabolite Degree

Water 227 Water 369 Water 628

ATP 117 Oxygen 169 Oxygen 270

ADP 107 NADP 160 ATP 229

NADPH 89 NADPH 158 NADP 219

Orthophosphate 88 ATP 155 NADPH 218

NADP 84 ADP 128 Carbon dioxide 192

Carbon dioxide 81 Carbon dioxide 118 Diphosphate 182

Oxygen 79 Orthophosphate 102 ADP 159

Diphosphate 77 Diphosphate 101 NAD 143

NAD 60 NAD 89 NADH 140
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Figure legends

Figure 1: Presentation and size of the three metabolic models.

Figure 2: Steps of the model building process.

Figure 3: Examples of reactions and their attribution to different confidence levels.

(a) Sucrose phosphate phosphohydrolase is identically described in both databases. (b) 
Ribulose bisphosphate carboxylase has a discrepancy in hydrogen content but protons 
involvement is ignored. (c) All substrates and product are validated in both database, but 
the pyruvate kinase reaction with GTP/GDP as cofactors is only described in one database. 
(d) Acetyl adenylate and the acetyl-CoA synthetase reaction are only found in one 
database. (e) Both substrate and product are only found in one database. (f) Both sides of 
the reaction involve generic compound classes which are only used by one database.

Figure 4: Attribution of reactions and compounds in the tricarboxylic acid cycle.

Most reactions and compounds in the tricarboxylic acid cycle belong to the core (yellow) 
model. Succinate dehydrogenase, ketoglutarate dehydrogenase, and the transition 
between isocitrate and 2-oxoglutarate via oxalosuccinate belong to the intermediate 
(green) model. The transition between 2-oxoglutarate and succinyl-CoA via 
succinyldihydro-lipoamide-E belongs to the complete (blue) model.

Figure 5: Topological properties of the complete (blue) metabolic model.

(a) Node degree distribution. (b) Average clustering coefficient distribution. (c) 
Betweenness centrality. (d) Closeness centrality. (e) Shared neighbors distribution. (f) 
Shortest path length distribution. See methods section for an explanation of network 
parameters.

Figure 6: Graphical network representation of the complete model.

Nodes belonging to the core model are colored in yellow. Nodes added in the intermediate 
model are colored in green. Nodes added in the complete model are colored in blue.
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Supplementary Files

Supplementary File 1: Compound and reaction data of the core (yellow) metabolic 
model.

The first sheet contains the list of compounds and the second sheet the list of reactions. 
Each compound is identified by a local identifier consisting of “Ath_C” followed by a four-
digit number, its Kegg identifier and AraCyc name. Each reaction is identified by a local 
identifier consisting of “Ath_R” followed by a four-digit number, its Kegg identifier and 
AraCyc name. The stoichiometry column describes the reaction using local compound 
identifier. Substrates and products are separated by the equal (“=”) sign. The stoichiometry 
is always explicitly written even when it is one. The enzyme column lists the enzymes 
catalyzing each reaction by their EC number.

Supplementary File 2: Distribution of enzymes in the three metabolic models for each 
Kegg pathway.

The first two columns give the Kegg identifier and name of each pathway. The columns in 
yellow give the number of enzymes from this pathway attributed to the core metabolic 
model and its percentage in relation to the total number of enzymes contained in the 
pathway. The columns in green give the number of enzymes attributed to the intermediate 
metabolic model and its percentage in relation to the total number of enzymes. The blue 
column gives the number of enzymes contained in the complete model, which is equal to 
total number of enzymes contained in the pathway.

Supplementary File 3: Annotated SBML file of the core (yellow) metabolic model.
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