

Challenges in whole-genome annotation of pyrosequenced eukaryotic genomes

Advancing Science with DNA Sequence

3rd IBC, April 17, 2009 Alan Kuo* and Igor Grigoriev DOE Joint Genome Institute *akuo@lbl.gov

This work was performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396.

Introduction

- Pyrosequencing technologies such as 454 and Solexa sequence DNA at much higher rate and lower cost than traditional Sanger technology.
- 454 is now mature enough to be used for **eukaryotic** genome sequencing and assembly.
- What will be the effect on **annotation**??
- A simple experiment to assess assemblies that use 454 reads.
- Successful production annotation of 2 assemblies that use 454.

454 technology

1. prepare adapter-ligated ssDNA library

2. clonally amplify on 28 µm beads

3. Load beads and enzymes in PicoTiterPlate[™]

4. Sequence by synthesis on the 454 Instrument

Images from Stephen Kingsmore, NCGR

454 vs. Sanger

	Sanger	454	
Mbp per run	0.3	100	High coverage
US\$ per kbp	\$1.0	\$0.1	coverage
Read length (nt)	800	240	Poor assembly of repetitive regions
Paired ends distance (kb)	40	3	Many small gaps
Error rate (%)	0.1	0.5	Frameshifts genes

Homopolymer stutter

What is the effect of the stutter on automatic annotation?

The test bed

- Aspergillus carbonarius
- Ascomycote fungus
- Small (< 40Mbp)
- Haploid
- Well-known close relative: *Aspergillus niger* genome sequenced and annotated by JGI 2006

Experimental design

Vature Precedings:doi:10.1038/npre.2009.3191.1:Posted 28 Apr 200<mark>9</mark>

What is a ' minipipe' ?

Aspergillus assemblies

8
N N
Id
8
ñ
ğ
ste
2
<u>.</u>
9
2
ດ.
ĝ
Ř
ē
d
8
B
<u>.</u>
5
ö
ъ
S
D C
ğ
ğ
2
പ
ň
at
-

o

	niger	Hybrid	454-only
Assembly size (Mbp)	37.2	34.9	32.2
# scaffolds	143	873	78
N50/L50 (# / Mbp)	6/2.0	8/1.8	10/0.9
Total gap space (Mbp)	2.4 (6%)	2.5 (7%)	0.5 (2%)
# gaps		556	1482
Ave. gap size (nt)		4420	367
Std. dev. gap size (nt)		6068	294

minipipe results

	Hybrid	454-only	
# Genewise models	9730	9595	
Model density (# / Mbp)	279	297	
Models with 'X' (frameshift)	1048 (11%)	1161 (12%)	
# aligned niger proteins	10494 (94%)	10406 (93%)	
<pre># niger proteins < 80% covered (truncated)</pre>	2710 (16%)	4115 (27%)	

Sanger fixes 454 errors

An error, but not in the hybrid

JGI Portal view gw1.00866.2.1 To Genome Browser **Hybrid** 1 14736 14736 Ξ 492 1475 , 1966 , 2457 , 2948 , 3439 , 3931 , 4422 , 4912 983 **454-only** _ Start %ID Score Description [taxName] End Len 1 4912 4912 100% 100% 24950 Aspca2_GWR_jgi|Aspca2|1 gw1.00066.1.1 [Aspergillus carbonarius] 1 4913 4914 100% 88% 22181 JGI_Aspergillus_niger_jgi|Aspni1|36871 fgenesh1_pg.C_scaffold_2000300 [Aspergillus niger] **Hybrid IGCATCAAAAGCTGCTGCTGC** ASKAAAA: À S К À Å Å Å ASKX **454-only** CTECTECTECE! *IGCATCAAAA* protein view gene view

Production annotation of hybrid assemblies

- Yeasts Candida tenuis and Spathaspora passalidarum
- do xylose -> ethanol
- Tiny haploid genomes, few introns

 Well-known close relative: *Pichia stipitis* genome released by JGI 2006 н

454 vs. Sanger, round 2

	Sanger	Old 454	New 454
Mbp per run	0.3	100	450
US\$ per kbp	\$1.00	\$0.10	\$0.02
Read length (nt)	800	240	450
Paired ends distance (kb)	40	3	20
Error rate (%)	0.1	0.5	??

Data from Joann Mudge, NCGR

Quality of yeast assemblies

	Pichia	Spatha	tenuis
Assembly size (Mbp)	15.4	13.3	10.7
# scaffolds	9	47	25
N50/L50 (# / Mbp)	4/1.8	4/1.7	3/1.2
Total gap space (Mbp)	0.0 (0%)	0.3 (2%)	0.2 (2%)
' X' rate (frameshifted)	2.0%	3.4%	2.4%
% Pichia proteins aligned		95.7%	94.6%
% Pichia aligned proteins <80% covered (truncated)	<	3.2%	5.8%

Production yeast annotations

	Pichia	Spatha	tenuis
# genes	5841	5726	5452
Gene density (# / Mbp)	378	431	507
Avg. gene length (nt)	1627	1472	1459
Avg. protein length (aa)	493	478	477
# exons / gene	1.4	1.3	1.2
% genes w/ Pfam	62.4	71.3	73.4
% genes w/ SwissProt	88.3	91.9	92.3

Unexceptional – A GOOD THING!

Conclusion

- 454 techonology poses challenges to both assembly and annotation.
- Hybrid assembly helps resolve many of these challenges, including correction of many 454 sequence errors.
- The JGI Annotation Pipeline successfully annotated 2 yeasts of bioenergy significance.
- Hybrid assemblies of small eukaryotic genomes can be suitable substrates for production annotation.

Acknowledgments

JGI

- Assembly
 - Alla Lapidus
 - Brian Foster
- Annotation
 - Andrea Aerts
 - Asaf Salamov
 - Frank Korzeniewski
 - Xueling Zhao
- Informatics staff

Our collaborators

- Aspergillus
 - Scott Baker
 - Giancarlo Perrone
- Yeasts
 - Audrey Gasch
 - Dana Wohlbach
 - Tom Jeffries
- NCGR
 - Stephen Kingsmore
 - Joann Mudge

JGI Annotation Pipeline

