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SUMMARY

Chromatin structure undergoes many changes during the cell cycle and in 

response to regulatory events. A basic unit of chromatin organization is the 

nucleosome core particle. However, very little is known about how 

nucleosomes are arranged into higher-order structures in vivo, even 

though the efficiency and precision of cell division imply high levels of 

structural organization. We propose abandoning the current paradigm of 

chromatin organization based on thermodynamics of the lowest energy 

state and replace it with the idea of a topologically restrained, high-energy 

structure. We propose that DNA is subject to a recursive topological 

restraint, and is anchored by hemicatenates that are part of the 

chromosomal scaffold. Long-distance cis-regulation of transcription is a 

natural consequence of recursive topological restraint. This new theory of 
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chromatin structure has a multitude of consequences for key aspects of 

cellular biology.

INTRODUCTION

In all higher Eukaryota, mitotic cell division proceeds through virtually the same 

steps at the macroscopic level and in terms of the proteins involved (Francis, 

2007). Decades of studies have established the basic facts about chromatin: 

DNA being wrapped around the nucleosome cores (Luger et al., 1997), multiple 

origins of replication (Costa and Blow, 2007), lack of any interpretable 

nucleosomal arrangements when using in situ electron microscopy (Maeshima 

and Eltsov, 2008), and, nevertheless, chromatids being organized with a single 

DNA sequence advancing along their axis. The very regularity of large-scale 

structures during mitosis and lack of entanglement between DNA chains require 

underlying, robust organization, which has escaped elucidation until now 

(Belmont, 2006).

The discussion of chromatin structure (Maeshima and Eltsov, 2008; Tremethick, 

2007; van Holde and Zlatanova, 2007) has been so far dominated by an implicit 

assumption that higher-order structure of chromatin is formed by the 

thermodynamically-driven association of nucleosome core particles and other 

chromosomal proteins. In this view, which we refer to as the associative 

paradigm, chromatin is in a lowest energy state, which is inherently stable unless 

conditions are severely perturbed. By definition, such thermodynamic states have 

no memory of how they were achieved, while epigenetics requires a form of such 
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memory to exist. Epigenetic mechanisms discussed in the literature involve 

covalent modification, either of DNA by methylation or of histones by many 

known modifications. Both routes create memory routes that have serious 

limitations or faults. DNA methylation patterns are not conserved even in 

Metazoa (Mandrioli and Borsatti, 2006), so they cannot be the principal driver of 

highly conserved epigenetic mechanisms, e.g. cell differentiation. Single 

nucleosomes are unstable even on the timescale of one second (van Holde and 

Zlatanova, 2006), so memory of histone modifications requires extremely stable 

higher-order structures that would stabilize individual nucleosomes. Here we 

arrive at the underlying paradox in the current understanding of chromatin 

structure: cellular processes require a high level of chromatin organization, while 

the associative paradigm of chromatin assembly would make such structures 

stable and easy to observe, which is not the case (Supplemental Discussion 1 

and 2).

Another unsolved problem is how the dynamic and flexible chromatin structure 

avoids DNA entanglement without any observed barriers between chromatids 

(Branco and Pombo, 2007). Avoiding entanglement cannot be driven 

thermodynamically, since tangled and unmixed states can differ by just minimal 

structural changes, without significantly affecting their energy. As for chromatin 

protein complexes, even the largest are much smaller than the scale of the 

chromosome, and so lack the ability to identify the necessary spatial reference 

on that scale. Also, non-equilibrium sources of motion, e.g. ATP-driven 

translocases (Flaus et al., 2006), lack both spatial and sequence landmarks that 
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could be used to avoid intermingling of chromatids by designating a particular 

DNA fragment to its segregated localization. In higher Eukaryota such landmarks 

cannot be invoked, because if they existed, they would have a very strong 

genetic signature, and such a signal has never been observed. The conclusion is 

that, within the existing paradigm of chromatin organization, there is no route to 

avoid entanglement.

It has been recently recognized that ongoing studies of chromatin structure 

increase the number of contradictions and that even the most basic assumptions 

need to be re-analyzed (Belmont, 2006). In this spirit, the main idea we pose 

here is the need to abandon the associative paradigm of chromatin organization, 

and to replace it with kinetically-imposed structural restraints. The flexibility of 

such topological restraints allows the structure to be dynamic and to have many 

geometric forms. This change of paradigm allows the constrained structure to be 

a high-energy state that is defined by the history of its construction and 

rebuilding. In contrast to structures subject to the associative paradigm of 

assembly, our proposed basic structure unravels after only a single double strand 

DNA (dsDNA) break, and for this reason may not have been noticed in typical 

chromatin experiments.

Two main questions need to be addressed: 1) what types of structural restraints 

organize chromatin structure and 2) how are such topological restraints imposed 

and maintained with very low error level? Many types of topological restraints 

have been already considered as possibly existing in eukaryotic chromosomes 

(Supplemental Discussion 3), but they are insufficient to explain the higher-order 
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chromatin structure and observed chromatin dynamics. Any explanation has to 

consider that individualization and resolution of chromatids are fast and 

essentially error-free, with even the seemingly inconsequential error of sister 

chromatid exchange happening at the rate of only 10-10 per base pair (Gutierrez 

et al., 1983).

The main idea we introduce defines how nucleosomes are packed into a basic 

linear structure, which we shall call a chromosome filament. One argument for 

the postulated filament structure comes from observations of long-distance cis-

transcriptional-regulation in Eukaryota. Such regulation requires a continuous 

DNA chain between a regulatory element and the start of transcription. In the 

associative paradigm, the only approach to explain cis-regulation involved 

mechanistically trans, through-space interactions. The only cis aspect of that 

explanation is the local concentration increase of the cis-acting transcription 

factors, which fits poorly with their observed low sequence-specificity. In contrast, 

we propose a structure with intrinsic structural interdependencies resulting in 

long-range cis effects. Subsequently, we explain how the filaments are controlled 

by their end structures, and we make several arguments why hemicatenates 

(Gaillard and Strauss, 2006) are involved there. Finally, we discuss the 

association of filaments into a large-scale chromosomal structure and how it may 

be responsible for the observed cell cycle dynamics.

RESULTS

INTRODUCTION OF THE RECURSIVE TOPOLOGICAL RESTRAINT
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We consider a novel type of dsDNA-based topological restraint that involves 

recursion and that can be created without breaking or unwinding the double DNA 

helix, and so does not directly involve topoisomerases. This restraint is based on 

extruding a dsDNA loop through one of previously made dsDNA loops, in a 

manner analogous to knitting or crocheting (Fig. 1). The stability of such 

structures is based on linear recursion: the topological stability of one loop is a 

consequence of its being extruded through another topologically stable loop. The 

starting and ending points of the recursion involve other types of topological or 

metastable restraints, which anchor the entire structure. Notably, such 

topologically restrained structures allow for internal rearrangements redistributing 

any tension. Crocheted or knitted fabrics have an obvious (but hard to formalize) 

property that allow them to emerge from a washing machine as individual pieces, 

in contrast to bundles of unknitted yarn, which would become a tangled mass.

Since spatial separation requires cohesive organization of an object and not 

necessarily its maximum compaction, our model considers individualization and 

condensation as separate events.

FORMATION OF THE RECURSIVE TOPOLOGICAL RESTRAINT

Chromatin remodeling complexes containing SWI2/SNF2-like ATPase domain 

(Flaus et al., 2006), work by extruding DNA loops out of nucleosomes (Lia et al., 

2006; Strohner et al., 2005; Zhang et al., 2006; Zofall et al., 2006). To create a 

knitted structure, it is sufficient to spatially and temporally coordinate this activity, 

so that loops are extruded one through another in the proper order. Multi-subunit 

chromatin remodeling complexes (Aalfs and Kingston, 2000) can coordinate loop 
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extrusions by covalently modifying and structurally entangling histone tails. The 

size of these complexes, in excess of 20 nm, allows for the extrusion of a loop to 

be coordinated with structural features in its closest environment. Repeating the 

extrusion of a loop through a loop made earlier establishes a recursive restraint. 

In this process many possible patterns could be created, analogous to these of 

knitted fabrics, but it is not yet possible to assign particular patterns to different 

types of chromatin. One of the simplest possible arrangements with 22 nm width 

that agrees with EM data (Caravaca et al., 2005; DuPraw, 1965; Rattner and 

Hamkalo, 1978), consists of two rows of nucleosomes with DNA strands wrapped 

around each nucleosome extruded through a dsDNA loop made two 

nucleosomes earlier in the sequence (Fig. 2).

In traditional associative models, a chromatin sub-structure could locally unfold 

randomly, due to thermal and mechanical movements. Such unfolded structures 

could associate with other chromatin strands and not necessarily fold back to 

their original conformation. In addition, any opening of higher chromatin 

structures during mechanical stretching would make a single unit of dsDNA the 

weakest link. Conversely, the proposed recursively restrained structure has 

relatively high resistance to mechanical stretching, since external tension is 

redistributed along the intertwined dsDNA strands (Fig. 2C) wrapped around 

nucleosomes, and relaxing the tension allows the structure to revert to its original 

state. Thus, a thermodynamically driven randomization process is not possible in 

the structure that we propose, obviating the problem of intermingling 

nucleosomal strands.
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To create the proposed knitted structure, one ATP molecule is hydrolyzed for 

every one to three DNA base pairs of the extruded loop (Hopfner and Michaelis, 

2007). This amount of free energy is high to create tight dsDNA bends (Fig. 2C). 

Due to the energy stored in these bends, the knitted structure has significantly 

higher energy than a topologically unrestrained one. As long as the end restraints 

hold and the dsDNA is continuous, this energy will be stored indefinitely. When 

the restraint is relaxed, the stored energy will drive the unwinding process 

needed for replication, transcription and repair. Likewise, a dsDNA break will also 

result in unwinding the structure on a scale limited by the end restraints, with 

huge consequences for interpreting experimental data.

A structure formed by a recursive restraint can be unraveled by reversing the 

operations that created it. If the structure is symmetrical with respect to both its 

ends, it can unravel from either end (Fig. 2), whereas in asymmetrical structures 

the unraveling would have to proceed in the direction opposite to the way the 

structure was formed. Many biological functions may require the unraveling of 

topological restraint and asymmetry would introduce additional steps in otherwise 

unidirectional processes such as transcription. Because we cannot find evidence 

for such additional steps, we propose the simplest symmetrical structure of a 

recursive restraint (Fig. 2C).

Since even a single dsDNA break in the filament would result in uncontrolled 

unwinding of the structure, we expect the length of the filament to be limited by 

end restraints to a size consistent with the repair mechanism capabilities. In our 
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model, the hemicatenate-based end restraints defining the filament size belong 

to the next, higher level of chromatin organization.

HIGHER LEVELS OF CHROMATIN ORGANIZATION

One of the previously proposed higher levels of chromatin organization involves 

chromosomal loop structures 100-1000 nucleosomes long (Paulson and 

Laemmli, 1977). The observed properties of eukaryotic replication suggest that 

these loops may be replication units (Dijkwel et al., 1979). It has been proposed 

that they are joined at their bases into a chromosomal scaffold (Adolph et al., 

1977), the structure and dynamics of which still remain enigmatic (Belmont, 

2006). Our description of such a structure expands the idea of hemicatenates 

(Fig. 3) as DNA-based topological restraints involved in the formation of the 

chromosome scaffold (Gaillard and Strauss, 2006), together with scaffold-bound 

proteins (Mirkovitch et al., 1988).

We anticipate a particular form of hemicatenates acting as topological end 

anchors for the chromatin filaments and, with some additional level of 

organization, forming the chromosome scaffold. A combination of loop extrusion 

with hemicatenates allows us to explain the spatial coordination of strand 

differentiation within the DNA duplex during replication. In one of the possible 

arrangements, which creates a topological differentiation of strands within 

dsDNA, either the first or the last extruded loop of dsDNA in the filament inserts 

itself between two strands of straight DNA belonging to the same chromatid (Fig. 

3B). In another possible structure, the straight dsDNA fragment plays the role of 
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an insert in the extruded loop of dsDNA (Fig. 3C). In our view, these 

hemicatenate-based DNA loop structures, spatially coordinated, form the long-

sought chromosomal scaffold, the properties of which are regulated by large 

protein complexes (ORIs, cohesin, lamins, HMGB1, topoisomerase II, p53, 

Polycomb-group, SATB1) known to recognize topologically distinctive structures 

of DNA (Zlatanova and van Holde, 1998). These hemicatenate-loop structures 

are very likely to be nuclear matrix attachment regions (MARs). MARs are 

located at the base of chromosomal loops and have high base-unpairing 

potential (Bode et al., 2006) correlated with high AT content (Liebich et al., 2002), 

without, however, any other characteristic sequence motifs found in higher 

Eukaryota. There are indications that an unknown, structural component of the 

chromosome controls MARs, ORI (Gilbert, 2004) and transcription initiation, and 

we propose the hemicatenate-based topological construction of the chromosomal 

scaffold for this role.

So far, the most studied form of dsDNA-based topological restraints are dsDNA 

knots observed in plasmids, viruses and phages (Arsuaga et al., 2005). Knots 

were not discussed in the context of eukaryotic chromatin, since the problem of 

keeping them small enough to be recognized and resolved by topoisomerase II 

prior to replication was never addressed, and without it, highly complex catenates 

would form, which would then be hard to unravel during the chromatid 

separation. However, strain inherent in the proposed chromatin filament could 

provide a force that would keep dsDNA knots tight enough to be recognized by 

protein complexes. We cannot entirely exclude the possibility of dsDNA knots 
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being involved in organizing a specific form of chromatin, but we do not expect 

chromatin to be primarily organized by them. Hemicatenates have a number of 

advantages over dsDNA knots as topological constraints organizing chromatin. 

Bases around a hemicatenate are paired, keeping its structure tight, so it can be 

recognized as a special form of DNA. Hemicatenates can migrate when a force 

provided by the chromatin remodeling complex is applied; without it, however, 

they should stay in a particular area of DNA sequence, characterized by high 

unpairing potential. Replication of a hemicatenate without its prior unraveling by a 

topoisomerase would create a simple catenate between sister chromatids, which 

may be a desired outcome, as catenates are known to keep sister chromatids 

together (Nasmyth, 2001).

The highest level of the chromatin compaction process during mitosis is the 

spiralization of chromatids as observed using light microscopy (Boy de la Tour 

and Laemmli, 1988; Ohnuki, 1968). Along with spiralization and the topologically 

restrained chromosomal scaffold, another level of organization must exist to 

explain striking changes in chromatin structure, which occur during transcriptional 

regulation and the cell cycle. In our model, this third level of chromatin 

organization is defined by chromosomal loops folding dynamically into more 

complex structures through the side-by-side association of basic filaments (Fig. 

4B). We expect that at least two different schemes of filament-to-filament 

association exist: one, which involves side-by-side association of consecutive 

chromosomal loops, and a second, analogous to the Greek-key motif in protein 

folding (Fig. 4B). We interpret the changes of chromatin organization during 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
08

.2
67

2.
1 

: P
os

te
d 

17
 D

ec
 2

00
8



12

mitosis as predominantly involving transformations between these two 

organizational schemes. From the beginning to the middle of prophase, side-by-

side association of consecutive loops dominates, creating long tubular structures. 

Each chromatid would create one such structure, with cohesin molecules and 

DNA catenates densely connecting the sister chromatids along their axes before 

spiralization. After passing the G2/M checkpoint, the majority of these 

connections are broken, allowing the chromatids to undergo a change into a 

large-scale corkscrew shape, leading to metaphase chromosomes. The later 

compaction into a final mitotic chromosome involves the loss of highly regular, 

middle-of-prophase organization of chromosomal loops.

We postulate that the filament-to-filament association is stabilized by a novel, 

protein-based topological restraint, in which threading the histone tail through the 

nearby nucleosome (Fig. 5) stabilizes association of filaments or a turn within a 

filament. In this model, histone tails are caught in holes between dsDNA and the 

histone octamer of another nucleosome during chromatin formation or 

remodeling, with a covalent modification trapping the tail on the other side of the 

hole (Fig. 5). Due to their size, ubiquitination and SUMOylation are natural 

candidates for anchoring tails in another nucleosome. Protein tail-based kind of 

topological restraints have not been considered to date, in part because it is 

known that nucleosomes in arrays are not very stable (van Holde and Zlatanova, 

2006). In our model, a recursively restrained filament can provide a substantial, 

internal tension that keeps nucleosomes stable, at least until ionic strength and 

divalent ions are present in sufficient amounts, allowing covalent modifications of 
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chromatin proteins to be used as the third type of topological restraint, after 

knitting and hemicatenates.

DISCUSSION

REPLICATION IN THE CONTEXT OF THE PROPOSED MODEL

Semi-conservative replication has a mechanistic explanation in eubacteria, which 

start their replication from a single origin (ORI), with chromosomal segregation 

assisted by a strand-specific sequence signal (Wang et al., 2005). However, the 

mechanism of semi-conservative replication in Eukaryota and Crenarchaeota, 

which use multiple ORIs, has not been explained. In these cases, the spatial 

destination of each of the original strands at all replication forks in the 

chromosome must be coordinated, so that each original strand paired with a 

newly synthesized, complementary one, will end up as a distinct entity. To 

achieve the coordination, the same DNA strand needs to be identified 

simultaneously in all the ORIs, even if the two DNA strands in a chromatid are 

wrapped around each other millions of times. We can deduce how this happens 

without sequence-specific signals from the classic observations of 

diplochromosomes.

Many experiments of replication mechanism have been performed on cells 

inhibited so that they could not separate and segregate chromosomes. Such 

cells passed through another cell cycle and during the next mitosis formed well-

ordered diplochromosomes with four chromatids (Fig. 6). The connection network 

between chromatids created after the first of the two replications prevented the 
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unwinding of new chromatid pairs created during the second replication. This 

indicates that unwinding is not used during the initial resolution of sister 

chromatid pairs. The individualization and resolution without unwinding to 

facilitate them indicates that during replication the newly synthesized chromatids 

are moved to their territories in a coordinated manner, sideways relative to their 

axes (Manuelidis and Chen, 1990).

The spatial pattern of diplochromosomes has 2-fold symmetry, with four 

chromatids parallel to each other forming only side-by-side interactions. Each of 

the chromatid pairs related by the 2-fold symmetry originates from the duplication 

of a chromatid during the last DNA replication. If all four chromatids were 

identical in a physical sense, the connections by catenation would form either 

between all possible six pairs or between none of them. The presence of only 

three groups of connections (Goyanes and Schvartzman, 1981) between the 

neighboring chromatids of diplochromosomes indicates that chromatids with the 

same sequence possess characteristics that differentiate them. A distinguishing 

characteristic of newly synthesized pairs of chromatids is that they are copies of 

complementary DNA strands, i.e. strands with different sequences. However, 

introducing labeled nucleotides into the medium during the first cell cycle, but not 

the second, resulted in the two outward (Fig. 6) chromatids being labeled 

(Goyanes and Schvartzman, 1981; Schwarzacher and Schnedl, 1966), proving 

that sequence difference is not the explanation for the segregation mechanism. 

Irrespectively of which DNA strand was used as a template for the last-cycle 
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replication, its position was symmetrically equivalent to the position of the other 

strand (Fig. 6).

While this pattern of labeling was known 40 years ago, the state of knowledge 

about chromatin did not allow for its interpretation, and later the pattern was 

assumed to be a rule of nature, without much discussion of the mechanics 

behind it. These astonishing observations clearly point to the existence of a 

memory mechanism that identifies which DNA strand in a duplex was 

synthesized during the last replication, and which one was synthesized earlier. 

This information is then used during the subsequent DNA replication to spatially 

coordinate chromatid segregation at multiple replication forks.

Our chromatin model provides a basis for a mechanistic explanation of many 

experimental observations regarding replication. First, it identifies the 

hemicatenate-containing structural element of DNA as defining the origins of 

replication. In higher Eukaryota, the ORIs are spread through the genome and 

defined in a controlled fashion not directly determined by the sequence (Costa 

and Blow, 2007; Gilbert, 2004; Remus et al., 2004). The structure of the 

hemicatenate involves the formation of single-stranded DNA, which facilitates the 

creation of a pre-priming complex. Proteins known to bind to hemicatenates, e.g. 

p53 and HMGB1, are also known to interact with ORIs (Stros et al., 2004). 

Plasmid (Lucas and Hyrien, 2000) and viral (Laurie et al., 1998) replication in 

Eukaryota involves the formation of hemicatenates.
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It is well established that eukaryotic replication has more common features with 

Archaea than with Eubacteria. Like Eukaryota, the most closely related archeal 

organisms, Crenarchaeota, have to solve the problem of coordinated segregation 

of multiple replication bubbles. Remarkably, it has been recently discovered that 

the ORI structures in Sulfolobus solfataricus contain a hemicatenate (Robinson 

et al., 2007), suggesting that the hemicatenate mechanism is evolutionarily 

conserved.

INDIVIDUALIZATION AND DNA CONTINUITY AT G2/M CHECKPOINT

The mechanistic explanation of individualization in Eukaryota has been 

approached from three directions: as a consequence of condensation (Marko 

and Siggia, 1997), of condensation combined with helical winding (Swedlow and 

Hirano, 2003) and, in a toy model, as a consequence of threading DNA through 

condensin-based complexes (Nasmyth, 2001). All three proposed models start 

from an assumption that is not valid for eukaryotic cells. Condensation is 

completed after the individualization stage (Leblond and El-Alfy, 1998), so it 

cannot be the primary factor driving individualization. Individualization errors are 

subject to strong selection pressure, because consequences of chromosomal 

translocations are highly negative. If condensation drove the individualization, the 

selection pressure would be toward maximizing the impact of condensation and 

so it would be completed by the time of individualization, which is not the case. 

Helical winding cannot explain individualization because in Eukaryota, unlike in 

Prokaryotes, the required gyrase activity is not present (Ullsperger and 

Cozzarelli, 1996). In the third case, a condensin-based complex was proposed in 
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an illustrative model, accompanied by a discussion why it was a poor candidate 

(Nasmyth, 2001). Neither condensation nor helical winding can sufficiently 

explain the extremely low level of errors during individualization. A major difficulty 

for any explanation of individualization lies in the fact that both light and EM in 

situ observations of chromatin show a lack of separation between the chromatin 

strands of neighboring chromosomes during interphase (Branco and Pombo, 

2006). However, it is obvious that different chromosomes are topologically 

distinct, even in the presence of erroneous catenates between them. 

Connections between chromatids do not prevent individualization and resolution: 

the initial resolution of sister chromatids occurs in spite of the presence of a large 

number of catenates between them, and diplochromosomes form even if their 

parent chromatids are joined by catenates (Goyanes and Schvartzman, 1981). 

Individualization and resolution in the presence of catenates is so difficult to 

account for in the traditional, associative models of the chromosome, that the 

issue has not been even discussed.

The literature lacks an explanation of a mechanistic link between dsDNA 

continuity defined on a protein-size scale, and the observed continuity of 

individualized chromatids on a scale almost a thousand times larger. The 

recursive topological restraint is a unique mechanism of propagating continuity 

conditions between these scales by the recursive nature of the restraint rather 

than its exact topology. Our model of chromatin organization emphasizes dsDNA 

continuity, as this is necessary to preserve the topological restraint. The self-

threading filament structure would make the entanglement of chromatin 
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originating from two different chromosomes much less likely, due to the filament’s 

smoothness and elasticity preventing the formation of tension knots. The tubular 

arrangement created by simultaneous, side-by-side association of chromosomal 

loops, proposed to form during the G2/M checkpoint, explains the distributive 

character and the consequent speed of the individualization.

After passing the G2/M checkpoint, the cell makes an irrevocable commitment to 

go through the rest of mitosis (Mikhailov et al., 2005). The breaking of the 

majority of connections before the final spiralization of chromatids is an 

irreversible operation, involving the decatenation of DNA linkages between sister 

chromatids and displacement of cohesin molecules coupled to the chromosome’s 

structural reorganization, resulting in partial separation of chromatids by 

hundreds of nanometers. We propose that the formation of individualized and 

initially resolved chromatids is a necessary and sufficient condition for the G2/M 

checkpoint, in which the topology of chromatin is verified mainly by a dsDNA 

continuity check. In a topologically restrained chromatin filament structure, any 

dsDNA break would release energy stored in this structure, leading to immediate 

unwinding of the filament up to the point of its end restraint. The unwinding would 

both trigger of the dsDNA repair mechanisms, causing the delay of the 

checkpoint, and prevent the loops attached to the chromosome scaffold from 

organizing into the observed regular, tubular structures.

TOPOLOGICAL CONTROL IN EPIGENETICS AND TRANSCRIPTION
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Chromatin structure is central to transcriptional regulation, developmental control 

and epigenetics; however, the three-dimensional geometry involved in controlling 

them remains enigmatic. One of the unexplained phenomena is the mechanism 

of action and inheritance of cis-acting elements. In the existing view of chromatin 

structure, it is difficult to understand how cis-acting elements execute their action 

when separated from the transcription start by thousands or even a million of 

base pairs (Lettice et al., 2002) and how they can be inherited, given highly 

dynamic nature of protein factors. The most striking and yet unexplained 

example of cis-control is co-linearity of chromosomal location of genes critical for 

development and of their expression positions along anterior-posterior axis 

(Burke et al., 1995). The fundamental departure of the recursive topological 

restraint idea from the associative proposition is that recursion propagates 

control of the three-dimensional state to the end anchors of the restrained 

structure. That means that protein factors associated with the end anchors can 

exercise their control over the whole topologically restrained segment without any 

direct interactions with its interior. Since these end anchors are presumed to 

involve hemicatenates, they are inherently stable even though their associated 

protein factors are dynamic. Moreover, the inheritance of such topological 

restraints at anchor points during DNA replication is mechanistically plausible 

given the complexity of ORI mechanism. Cis-control at a distance is then a 

natural consequence of recursive topological restraint. Within that idea, the 

developmental control would require only a mechanism of precise repositioning 

of end anchor restraint at an appropriate moment. Repositioning would involve a 
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synchronized action of chromatin-remodeling translocases and 

topoisomerase(s), for which there are many possible candidates. Repeated 

repositioning of such a restraint in the same direction during serial formation of 

metamers in chordates would explain the co-linearity between chromosomal 

location of Hox genes and their activation in metamers. The proposed 

hemicatenate-based boundaries of transcriptionally active chromatin would 

correspond to chromatin insulators, which have many of the characteristics 

agreeing with hemicatenate properties in our model, e.g. DNAse I 

hypersensitivity, scaffold-like organization and interactions with nuclear lamina in 

MAR-like fashion (Brasset and Vaury, 2005; Capelson and Corces, 2004).

In vertebrates, Hox genes form strongly conserved clusters, featuring not only 

spatial but also temporal co-linearity (Crawford, 2003; Kmita and Duboule, 2003), 

which suggests the involvement of not yet defined biological clock mechanisms. 

We propose the existence of a novel type of clock mechanism, based on 

repositioning of the transcription control elements, most directly indicated by 

metameric oscillation that controls Hox genes (e.g. in chick embryos, the period 

of metameric oscillation is 90 minutes and the oscillation lasts for about three 

days (Pourquie, 2004)). Co-linearity of Hox gene controls has many independent 

manifestations: it shows simultaneously in four clusters, with homologous genes 

being synchronized (Crawford, 2003); the genes are switched on in groups that 

correspond to a linear segment in the genome; the genes are transcribed from 

the same strand of DNA; the position of the first gene to be switched on in a 
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segment is advancing linearly with the consecutive formation of metamers, 

creating patterns of temporal and spatial co-linearity.

The simultaneous appearance of all these co-linearities and their strong 

preservation in evolution has a natural explanation in what we propose here: that 

it is driven by unidirectional repositioning of a particular hemicatenate, which is 

the master Hox control element. Metameric oscillation drives the repositioning of 

hemicatenates controlling Hox genes involved in the development of anterior-

posterior axis, and afterwards the control advances at much more sporadic 

times. The repositioning may happen either by a unit of uniform length or by 

advancing to a new sequence landmark. Temporal co-linearity is also observed 

for many other developmental gene clusters and typically involves long time 

periods. What is still unknown is what triggers the putative repositioning of a 

transcription control in such cases. We speculate that it may involve multi-level 

chromatin timers, where advancing a timing element in one region of the genome 

to its end triggers two actions: a rebooting of that timer and an advance of a 

different, higher-scale timer by one clock unit. Such timers could cascade 

providing the ability to measure arbitrarily long periods of time.

Transcription has to involve other levels of control, probably associated with 

different stages of chromatin topological organization. The repositioning of 

hemicatenates explains only the relocation of insulator elements, without 

addressing the mechanism of unravelling the structure between insulators. We 

propose the likely possibilities for some of the steps that occur during 

transcription by RNA polymerase II.

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
08

.2
67

2.
1 

: P
os

te
d 

17
 D

ec
 2

00
8



22

An early step in enabling transcription requires the removal of DNA topological 

linkage between the insulator and the filament knit. At this stage the filament is 

not yet unravelled due to some other, presumably protein-based anchoring. This 

first step could be accomplished with topoisomerase II (Ju et al., 2006), without 

changing the structure of the hemicatenate. To prevent DNA from tangling, we 

expect that the filament unravels only just prior to the passage of RNA 

polymerase II, and it is recreated afterwards (Andersson et al., 1982). All these 

steps presumably involve the chromatin-remodelling complexes also destroying 

and forming the previously described protein-based topological restraints (Fig. 5). 

This view agrees with the start of transcription by eukaryotic RNA polymerase II 

involving complex chromatin structure changes (Li et al., 2007) and requiring 

many more steps than the equivalent process in prokaryotes.

EVOLUTIONARY CONSIDERATIONS

Chromatin structure and cell cycle transformations of chromosomes are 

remarkably similar in plants and animals. Considering that they diverged very 

close to the last common eukaryotic ancestor (Cavalier-Smith, 2002), the 

chromatin structure of higher Eukaryota must be the ancestral state, even for 

organisms in which chromatin is differently organized today (Livolant and 

Bouligand, 1978). For example, in budding yeast a number of cell cycle 

simplifications occurred, with concurrent reduction of genome and chromosome 

size, with the largest chromosome having only 1.5 Mb. In many organisms, 

including mammals, sperm cells lost nucleosomes in their highly regularly 

arranged chromatin. We still expect that such chromatin has all the levels of 
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topological restraints present, since it can easily revert to normal chromatin upon 

fertilization. Dinoflagellates evolved hierarchically coiled chromosomes, which 

lack nucleosomes during the whole cell cycle. Long-known EM images of their 

striking chromosomal pattern inspired the extension of hierarchical coiling idea to 

other Eukaryota. Based on the precise large-scale organization of dinoflagellate 

chromosomes, we expect them to be built around multilevel topological restraints 

as well.

SUMMARY

The body of observations on individualization has provided us with the main 

assertions leading to the proposed hierarchy of chromatin structure. Any 

proposed mechanism of individualization must explain how erroneous mixing 

between DNA fragments, either from different chromatids or from distant parts of 

the same chromatid, is avoided. Traditional, implicitly associative models do not 

resolve this problem at any level of structural hierarchy. Our model solves the 

problem of entanglement at the lowest level by invoking a recursive topological 

restraint of the basic chromatin filament to prevent the association of different 

DNA strands. The springy character of the filament reduces the formation of 

tension knots that could potentially stop individualization. At a higher level of the 

structural hierarchy, we address the unexplained appearance of chromatids as 

long, tubular structures during the initial stage of prophase. To explain how the 

interphase chromatin proceeds to such shapes, we propose that filaments are 

organized by additional topological restraints. The second level of restraint is 

based on hemicatenates, which anchor loops created from the basic filament 
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along the chromatid axis. At the third level of restraint, we propose that filament 

loops interact side-by-side, with the possible involvement of additional non-

scaffold hemicatenates (Fig. 3A). Highly regular side-by-side interactions of loops 

create long tubular structures that undergo spiralization after the G2/M 

checkpoint, when most regular aspects of side-by-side interactions are lost in 

order to accomplish maximum chromatin compaction. This last stage is achieved 

with the help of protein factors, in particular condensin and histone H1; however, 

experiments show that such protein factors are not necessary for 

individualization, even if they improve its efficiency (Supplemental Discussion 3). 

The involvement of hemicatenates is needed not only to form the chromosome 

axis; without them it would be hard to explain the observed order of 

diplochromosomes and the synchronized, distributive character of sister-

chromatid resolution.

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Discussion and Supplemental 
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FIGURE LEGENDS

Figure 1. The simplest form of recursive topological restraint based on dsDNA. 

Starting from unrestrained dsDNA loops (left), the second loop is extruded 

through the first loop. Extruding the third loop through the second one and then 

the fourth loop through the third one leads to a crocheted structure. For clarity, 

the dsDNA wrapping around histone cores is not shown in the first three views. 

The right view shows a structure that includes histone cores. The figure depicts a 

recursive topological restraint simpler than the structure we expect to exist.
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Figure 2. The chromatin filament structure. (A) dsDNA-based recursive 

topological restraint of a knitted type and its schematic representation showing 

twofold symmetry. (B) The simplest form of symmetric structures with two rows of 

loops threaded through each other. We show a schematic representation of the 

topology of such a basic chromatin filament. Nucleosomes in neighboring rows 

are translated 1/2 repeat along the filament axis. Color is used only to visualize 

which strand in a crossing pair is above and which is below. The structure is 

fivefold intertwined, with two up and down loops contributing four units, and the 

fifth being the connecting segment (shown in orange). (C) The dimensions of the 

basic filament are shown with the nucleosomes present. The real structure is 

expected to be more compact that the one visualized in this panel, with the 

periodic unit of one nucleosome and its linkers being about 200 base pairs. The 

DNA strands were loosened here to better show the details of topology.
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Figure 3. Hemicatenates as structures differentiating strands within dsDNA. (A) 

The simplest form of hemicatenate, in which two fragments of dsDNA separated 

in sequence are interlocked. The single DNA strands from both fragments that 

are interlocked (pink) are topologically differentiated from strands that do not 

create catenates (blue). (B) A second type of hemicatenate. If we consider only 

the structure of hemicatenate on the right side of the dotted line, it cannot 

differentiate the strands within dsDNA, as both blue and pink strands can 

potentially have the same interactions with a fragment of dsDNA passing 

between them. However, introducing an unknot, as presented on the left side of 

the dotted line, differentiates single DNA strands involved in this structure. 

Additionally, the hemicatenate stabilizes the structure of unknot, since the unknot 

structure unravels without topoisomerase involvement in the absence of 

hemicatenate. (C) An alternative form of interaction between the hemicatenate 

and the unknot, with the same consequences as in (B).
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Figure 4. Higher levels of chromatin folding. (A) Chromosome scaffold with loops 

built from the basic filament. (B) Two possible modes of loops associating into 

tubular structures, which are further compacted into higher-level structures. The 

cross-sections of possible folds (roll structure, Greek key structure or comb-like 

structure) are presented for the one tube mode or double-roll structure for the 

two- tube mode. (C) Spiralization of a squeezed tube structure into the final 

chromatid. Note that these pictures are not drawn to scale. In particular, we 

expect consecutive loops in (B) to be very close to each other, even as close as 

when nucleosomes are placed on top of each other.
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Figure 5. The third, protein-based level of topological restraint in chromatin 

organization. (A) Nucleosome structure (PDB code: 1KX5) is presented in two 

views, together with ubiquitin (PDB code: 2ZCC) and SUMO1 (PDB code: 

2UYZ), known to covalently modify histone H2B tail. Histone H3 is shown in red, 

histone H4 is shown in green, histone H2A is shown in blue, and histone H2B is 

shown in yellow. (B) Some holes between histone core and DNA strands present 

shown in detail. These particular holes extend through both dsDNA strands 

wrapped around the nucleosome core. Other types of holes are harder to 

visualize, as they bend around one of the dsDNA helices. Both types of holes are 

large enough to accommodate an extended polypeptide conformation. (C) How a 

protein modification may lock two nucleosomes together with the histone H2B tail 

being modified.
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Figure 6. Formation of diplochromosomes. Complementary strands within 

chromatids are labeled A and B, with the subscript corresponding to the 

replication cycle when the strand is synthesized and with the asterisk signifying 

labeling. Diplochromosomes are formed when cells proceed through spiralization 

of chromatids (A1*B0 and A0B1*) without detaching the chromatid pairs, and do 

not proceed through anaphase and cytokinesis. After the first replication, the cell 

doubles its ploidy level, with every chromatid being labeled on one strand. This 

cell can undergo another round of replication without segregation of chromatids, 

resulting in chromosomal quadruplexes. In quadruplexes connections exist only 

between three pairs of chromatids, creating the characteristic, planar pattern with 

two-fold symmetry that is observed both in plants and animals. If the label is not 

present in the medium during the second replication, the resulting pattern will 

contain two labeled chromatids in outside positions of the quadruplex. This 

pattern indicates the existence of a mechanism of coordinated differentiation of 

strands within chromatids.
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SUPPLEMENTAL DISCUSSION

S1. PREVIOUS MODELS OF METAPHASE CHROMATIN STRUCTURE

The basic features of all currently discussed models were introduced by DuPraw 

in 1965 (DuPraw, 1965). The chromatid structure in this model was built from a 

single 23 nm fibril, coiled irregularly into elongated chromosomes. At that time, 

the nature of the 23 nm fibril could not be even addressed, as the nucleosome 

structure was not known. With time, the DuPraw’s model got refined and 

modified in a number of directions, to include newly acquired microscopic, 

biochemical and genetic data, and the fibril width changed to 30 nm. However, 

the models still imply the association between nucleosomal units as the main 

source of chromatin organization. Three categories (Daban, 2000) of 

[G] Supplemental Text and Figures
Click here to download [G] Supplemental Text and Figures: BorekOtwinowskiSupplementalData.doc
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2

chromosome structure models have been discussed: models containing loops, 

hierarchical helical models, and models built from irregular substructures. In 

these models, the basic nucleosomal strand folds into 30-nm fiber of helical 

symmetry, repeating a single nucleosomal unit in a solenoid (simple helical fiber) 

model (Finch and Klug, 1976) or a double-start helical fiber model (Worcel et al., 

1981), or repeating a double nucleosomal unit in a two-start twisted model 

(Williams et al., 1986). Some authors considered zigzag-type models of basic 

fiber (Bednar et al., 1998), but barely addressed the issue of what could keep 

such loose conformation organized and densely packed (Adkins et al., 2004).

The next, intermediate level of chromatin organization is where the structure has 

been described only in the most schematic terms, so it is not easy to classify the 

proposed models. We shall consider the differences between them in terms of 

symmetry of geometric arrangements. Some of the models assume helical 

symmetry at the intermediate levels, with basic 30-nm fiber helically coiled into 

thicker helical fiber in radial-array model (Manuelidis and Chen, 1990) or 

hierarchically coiled in the rosettes model (Filipski et al., 1990). Similar concepts 

were described by other authors using different schematic pictures (Cook, 1995; 

Pienta and Coffey, 1984). Other models follow the approach of DuPraw and 

assume asymmetrical, not well-defined assemblies of loops, either organized by 

anchoring in a core, scaffold structure in the radial loop model (Marsden and 

Laemmli, 1979; Sheval and Polyakov, 2006) or only in general terms stating 

hierarchical folding of chromosomes (Belmont et al., 1989; Kireeva et al., 2004; 

Wanner and Formanek, 2000). The last stage of organization, supercoiling into a 
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3

metaphase chromatid, is either an explicit part of, or at least can be made 

consistent with, all the above models. 

However, all these models were results of interpreting particular types of 

experiments rather than an attempt to propose a structure that would explain all, 

or at least a majority, of the published data. One of the main problems with these 

models is that the structures proposed were either vague, starting with the 

original DuPraw model, or, being superficially specific, like the rosettes, they 

lacked support in EM images. These models attempted only to describe the 

geometry of chromatin, barely addressing the mechanisms that would produce 

the described structures. Regular, high-order structures, postulated in some 

models, were never observed by electron microscopy, and no explanation was 

provided of how irregular, intermediate-level structures can fold into well-defined 

shapes of mitotic chromosomes. 
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S2. METAANALYSIS OF EXPERIMENTAL DATA ON CHROMATIN 

STRUCTURE

High interest in the determination of chromatin structure resulted in a large 

number of observations by electron microscopy published over more than 50 

years. There was a significant effort to study chromatin under native conditions in 

situ, but it did not result in an interpretation of nucleosomal arrangements. 

Alternatively, the partially unfolded chromatin was employed to gain insight into 

its possible substructures. Many aspects of chromatin preparation can impact 

such observations: the continuity of the DNA in chromatids, the pH of solutions 

used and their ionic strength, with particular significance of divalent ions 

concentrations (Giannasca et al., 1993), the use of cross-linking agents 

(Goyanes et al., 1980), protein denaturing fixatives, intercalators, RNAses, 

DNAses (Abuelo and Moore, 1969) and proteases (Abuelo and Moore, 1969; 

Goyanes et al., 1980). Moreover, the chromatin structure organization changes 

during the cell cycle, from the least organized in S-phase to the most organized 

in prophase, and the most studied – and most condensed – in metaphase. 

Additionally, some cell types incapable of division are clearly unique in terms of 

having pronounced, fibrous chromatin substructures. Together, all these factors 

contributed to an overwhelming lack of consistency in the interpretation of 

visualized substructures. Among others, the following substructures were 

described: multi-stranded (multineme) chromosomes (Callan, 1992), fibers of 

widely varying size and regularity (Abuelo and Moore, 1969; Adolph, 1980; 

Barnicot, 1967; Belmont et al., 1989; DuPraw, 1965; Goyanes et al., 1980; 
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Laughlin et al., 1982; Rattner, 1986; Rattner and Hamkalo, 1978b; Ris, 1966; 

Stubblefield and Wray, 1971; Wanner et al., 1991; Zentgraf and Franke, 1984), 

tubular structures (Bak et al., 1977; Earnshaw and Laemmli, 1983; Stubblefield 

and Wray, 1971), plates (Caravaca et al., 2005), rosettes (Okada and Comings, 

1979) and granules (Hozier et al., 1977; Lafontaine and Chouinard, 1963; 

Zentgraf and Franke, 1984). Due to the great variety of results, the starting point 

for metaanalysis are the observations of chromatin studied under the most 

native-like conditions.

The least disturbed structure is the one observed by electron microscopy 

performed on cryo-vitrified, intact, unstained cells (Bouchet-Marquis et al., 2006; 

Konig et al., 2007; McDowall et al., 1986; McEwen et al., 1998). These studies, 

conducted over more than 20 years, including the use of tomography with 

nucleosome-level resolution, concluded only that chromatin has a mottled or 

finely granular appearance. The most recent research described chromatin in 

prematurely condensed chromosomes as forming "aligned arrays" (Konig et al., 

2007), without, however, visualizing the DNA connecting nucleosomal particles, 

which prevented a detailed interpretation. The aligned arrays seen on a larger 

scale can be also described as having mottled appearance, consistent with 

previous observations. No helical substructures on the scale of tens of 

nanometers were observed, even though they should have been easily 

recognized at the data resolution. Together, these studies have not produced a 

“positive result”, i.e. a model of how chromatin threads through space, so they 

left little impact on the wider perception of the problem. 
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A very broad group of electron microscopic observations are in situ experiments 

involving fixation and staining of cells. They typically show a grainy image of 

chromatin that could also be labeled as having mottled appearance, without 

prominent features pointing out to any type of chromosomal arrays at the scale 

below a hundred of nanometers. Lack of resolution is definitely not the limitation 

in these experiments, since very regular chromatin structure with periodicity of 

4.8 nm has been observed for condensed bacterial chromosomes (Frenkiel-

Krispin et al., 2001). Densely packed chromatin in cells not capable of division, 

and thus never undergoing individualization, has been observed to have highly 

regular structure. In sperm cells that have densely packed DNA, very regular 

arrays of chromofilaments with dimensions around 7 nm and spaced with 18 nm 

periodicity were already observed in 1957 (Yasuzumi and Ishida, 1957). Regular, 

columnar chromatin structures with spacing of 36 nm were also observed in 

erythrocytes (Zentgraf and Franke, 1984), a type of cells disposing of the nucleus 

in their development. However, even for those cells, DNA could not have been 

traced in these structures.

As in situ experiments did not provide the hoped for information, another 

approach applied was to study isolated chromosomes. To loosen the 

chromosome structure, low salt conditions were typically used. The experiments 

show bunches of intertwined, twisted and coiled fibrils ranging from 3 to 50 nm, 

with the most common range of 10 to 20 nm (Barnicot, 1967; Ris, 1966). Most 

remarkably, after partial trypsin digestion, a 20 nm thread gave an impression 

that it contained four parallel dsDNA-sized chains (Ris, 1966). These studies 
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have been followed by a large number of their variants in the following decades. 

Originally, a strong impression of multi-chain (multineme) construction of 

chromatid was perceived (Abuelo and Moore, 1969; Barnicot, 1967; Konig et al., 

2007; Ris, 1966; Stubblefield and Wray, 1971), even if subsequent experiments 

and genome sequencing proved that the chromatid consists of a single dsDNA 

chain. The observation of multi-strand substructures pointed to questions 

essentially ignored later: whether the observed fibrous chromatin substructures 

consist of one contiguous DNA fragment or a group of DNA segments separated 

in sequence, and whether DNA threads back and forth through the fibril rather 

than advancing in a helical fashion (Ris, 1966). 

Another approach to studying the isolated chromosome was to remove all 

proteins from it using high salt concentration. Such chromosomes formed a 

characteristic pattern of dsDNA chains winding back and forth over a large area 

of grid, clearly preserving some aspects of original chromosomal organization, 

and gave rise to the radial loop models (Paulson and Laemmli, 1977). In some of 

such spreads particular care was taken to avoid single and double strand breaks 

in DNA (Mullinger and Johnson, 1979, 1980) and these show many signs of 

topological restraint presence in chromosomes, among others a strikingly clear 

visualization of the chromosomal axis represented by the presence of about 30 

parallel dsDNA chains (Figures 2, 4 and 17 in (Mullinger and Johnson, 1980)). 

The bundles of these DNA chains pass through a series of constriction points, 

where it is impossible to trace the continuity of a particular chain. The constriction 

points are also the place from which a large number of long side loops originates. 
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8

Our interpretation is that DNA chain segments between the constriction points 

are either part or extension of the matrix attachment region (MAR), with 

constriction points being the location of the putative hemicatenate restraints. 

Interestingly, chromosomal loops become much shorter close to telomeres. The 

peritelomeric regions are also characterized by a thousand times higher sister 

chromatid exchange (SCE) rates (Rudd et al., 2007). The combination of higher 

rates of SCE and shorter loops indicates that scaffold elements need to be 

stabilized by adjoining elements, and telomeres are clearly deficient in this role.

Some observations of isolated chromatin were so peculiar that they left little 

impact on subsequent discussions of chromatin structure, and yet they are 

among the strongest indicators of the nature of chromatin organization. These 

publications were mostly passed by because they didn’t fit into the existing 

paradigm. In a series of articles, a very consistent picture of Drosophila and 

human chromosome, built of long, apparently hollow tubular structures. was 

presented (Bak et al., 1977; Bak et al., 1979; Zeuthen et al., 1979). The 

publications did not mention that these structures rarely appeared in preparations 

of mitotically arrested cells, the point made only in a personal letter of F. Crick to 

A. Klug (Crick, 1977). We interpret these tubular structures as images of 

prophase chromosomes, since the same letter states that the cells were not well 

synchronized, so low-level contamination with prophase cells was to be 

expected. The peculiarity of these structures raised a suspicion of them being a 

contaminant; however, we have observed structures of similar, elongated shape, 
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9

which are clearly chromosomes, as they stain with a number of DNA-specific 

dyes. 

Another remarkable result was published recently, where plates and other 

structures were observed in metaphase chromosomes obtained under close-to-

physiological ionic strength conditions (Caravaca Guasch, 2004; Caravaca et al., 

2005). These plates were only 6-7 nm thick, so they could only be formed by 

nucleosomes lying flat, in side-by-side arrangement. Also in this work, thin, flat 

filaments of the same 22 nm width as recursively restrained chromatin filament 

that we propose, were observed. Some of these filaments were seen to bend 

smoothly, which would strongly indicate that mechanical tension is being 

redistributed by a topological restraint over distances on a scale of hundreds of 

nanometers. We interpret Caravaca’s plates as being made by side-by-side 

filaments association rather than, as suggested in the article, a geometrically 

impossible proposition of these 6.7 nm thick plates (Caravaca et al., 2005) being 

built from granules of 35 nm thickness (Bartolome et al., 1994; Caravaca et al., 

2005). 

Experiments with mechanically disrupted cells showed the linear, ribbon-like 

arrangements of tightly packed nucleosomes, in which single nucleosomes could 

be recognized (Rattner and Hamkalo, 1978a, b, c, 1979). The linear 

arrangements have the width of 20-30 nm; the images suggested side-by-side 

interactions of 2 to 3 nucleosomes, depending on the position within the ribbon. 

The authors stated that the observed structures do not agree with either helical 

fiber-based models or the models assuming hierarchical associations. These 
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images can be interpreted as the proposed nucleosomal filament that lost some 

of its nucleosomes, lying flat on the EM grid. It is less clear, and it may vary from 

image to image, if the recursive restraint is present in the visualized structures. 

To loosen the structure of isolated chromosomes, solutions with relatively low 

ionic power were often used. Such treatment resulted in partial decondensation, 

unraveling substructures potentially relevant to chromatin organization. These 

substructures predominantly contained groupings of irregular loops, radiating 

from the center of a chromatid. In particular, such arrangements were observed 

in perpendicular slices through the chromosome (Adolph, 1980; Marsden and 

Laemmli, 1979). The width of the strand forming the loops was reported as 20 

nm (Adolph, 1980) or in 20 to 30 nm range (Marsden and Laemmli, 1979). The 

dimensions 20 - 30 nm were considered in good enough agreement with the 

dimensions of either short chromatin fragments, purified after nuclease 

treatment, or reconstituted nucleosomal aggregates; so all these structures were 

assumed to be the same.

This assumption is, however, troublesome on a number of grounds. The 

nucleosomal arrays observed in vitro forming “30 nm (helical) fiber” (Finch and 

Klug, 1976; Robinson et al., 2006) have not been seen in situ in eukaryotic cells 

capable of division (Tremethick, 2007; van Holde and Zlatanova, 1995). The 

fibrils observed in chromatin loosened in situ or in isolated chromosomes tended 

to be closer to 20 nm in diameter, and the reconstituted nucleosomal arrays had 

diameters 30 to 40 nm (Giannasca et al., 1993; Robinson et al., 2006) and 

sometimes more. As a compromise, the notion of “30 nm fiber” became popular 
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(Finch and Klug, 1976), with almost any observed property, e.g. size, diameter, 

pitch etc. of such a structure being highly uncertain (van Holde and Zlatanova, 

2007). The only property not questioned was the helical nature of the fiber, made 

from a single chain of dsDNA, which implied that the ends of the fiber are the 

most distant in DNA sequence. The assumption of helical symmetry of the 30 nm 

fiber was restricted to two possibilities: a helix built from one-nucleosome repeat, 

and a helix built from two-nucleosomes repeat (Robinson et al., 2006). The 

validation of the previous interpretations was limited to comparing the individual, 

non-reproducible (in terms of EM image-averaging methods) projection images to 

a small group of theoretical models. The discussed models ignored any possible 

arrangements allowing for dsDNA intermingling, even if such geometry were 

equally consistent with the electron microscopy data. Models that intermingle two 

distinct dsDNA chains would require only minor adjustment to the positions of 

DNA linkers compared to a single-chained fiber, and it is known that the lengths 

of DNA linkers in chromatin are quite variable (Compton et al., 1976). Another 

ignored possibility was that of a fiber built from a nucleosomal-array hairpin 

squeezed in a corkscrew shape, with DNA linkers positioned in essentially the 

same place as in the case of helical fiber made of mixed dsDNA chains. The 

structures proposed in our topologically restrained model cannot be considered 

with respect to these data, as reconstitution conditions do not lead to recursive 

topological restraint and digestion conditions destroy it. 

So far, none of the microscopic observations has directly provided enough 

information to create a trustworthy model of chromatin structural hierarchy. 
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However, both microscopic and biochemical data present patterns indicating the 

nature of this hierarchy. In many experiments, chromosomes show remarkable 

resilience to harsh treatment (e.g. boiling in 50% acetic acid (Engelhardt, 2000)), 

with their global architecture preserved. Experiments with trypsin and proteinase 

K showed that even if elastic response of chromosomes changed, their overall 

structure was preserved (Poirier and Marko, 2002a, b; Pope et al., 2006). One 

interesting feature of all microscopic observations is that if separate nucleosomal 

particles can be observed in the chromatin substructures, the higher levels of 

structural hierarchy cannot be identified and, conversely, if higher levels of 

hierarchy can be seen, the nucleosomes are not visible as separate entities. It is 

clear that this generally observed pattern is not due to resolution limitations of 

electron microscopy methods. In our model, such correlation can be explained. 

We assume that in the native filament nucleosomes are packed so tightly that 

they cannot be resolved by EM. Potentially there are two aspects impacting the 

transformation of the proposed filament into structures with visible nucleosomes: 

one possibility is the loss of a small fraction of histone cores, without losing the 

recursive restraint; another is the loss of topological restraint. In both cases we 

expect looser packing of nucleosomes and their repositioning resulting in the 

detachment of the protein complexes anchored in nucleosomal holes, 

consequently making the nucleosomes visible. 

Another common feature of many electron microscopic experiments is the 

presence of fibrous structures of various widths, often in parallel bunches (Kume 

and Maruyama, 1986; Rattner, 1986; Wanner and Formanek, 2000; Wanner et 
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al., 1991). These structures do not show any signs of internal, on 30 nm or 

similar scale, helical substructures and, if seen as part of higher-level helical-like 

arrangements, they appear as a bunch of parallel fibrils coiling up together. We 

interpret these fibrous structures as bunches of parallel filaments; such bunching 

could result in observations of thick fibers of essentially any width, unlike 

hierarchical coiling models that would produce large-scale structures of a 

particular geometry. 

Our model explains why in situ observations did not lead to structural models: 

following the path of DNA in the recursively restrained filament requires higher 

resolution than available in electron microscopy and most of the higher-level 

structures that we propose lack sufficient regularity to be recognized without any 

expectation of what to look for. 

One of the aspects of chromatin structural hierarchy is the question how 

centimeters long dsDNA molecule packs into a micron size chromosome. In post-

prophase, nucleosome density in chromosomes is quite high, and it was already 

noticed that the past chromatin models have problems in achieving the observed 

density due to complex angular arrangements of nucleosomes generating gaps 

in spatial packing (Daban, 2003). An advantage of our model comes from the 

ease of efficiently packing flat ribbon filaments, both side-by-side and on top of 

each other. In the middle of prophase, chromatid is built from regular 

arrangements of filament loops related to tubes observed by Bak et al. (Bak et 

al., 1977) This regular prophase structure is twisted during spiralization, with 

twisting generating a wringer effect. It leads to squeezing out empty spaces and 
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destroying rather than creating regularity in the resulting structure. High-density 

packing in general does not require a regular structure, which means that highly 

condensed state of chromatin can be based on structures without well-defined, 

visible, regular pattern at the EM resolution.
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S3. THE LEVEL OF COHESIN, CONDENSIN, TOPOISOMERASE II AND 

HISTONE H1 INVOLVEMENT

Some forms of DNA-based topological restraints have already been discussed in 

the literature, i.e. helical winding, hemicatenates, knots and catenates. 

Condensin, cohesin and topoisomerase II may create a temporary topological 

restraint by holding together two distal DNA fragments from the same or different 

chromatids. A similar restraint can also be created by complexes of multi-strand 

DNA with proteins (Zlatanova and van Holde, 1998) 

All those protein-based structural restraints mechanically stabilize the structure of 

chromatin, but do not have by themselves activities allowing them to 

hierarchically organize it (Belmont, 2006). However, the proposed, topological 

restraints based on DNA can introduce such hierarchy, defining the sites of 

attachment for topoisomerase II and condensin, with these proteins dynamically 

modulating the three-dimensional structure of chromosomes during the cell cycle.

Cohesin, condensin and topoisomerase II clearly contribute to the 

individualization and segregation processes, but the question is: to what extent? 

Cohesin is a protein complex that forms a ring joining two dsDNA chains of sister 

chromatids. This bridging structure is created during DNA replication, so 

recognition of which strands should be kept together by cohesin is determined by 

the replication complex (Uhlmann and Nasmyth, 1998). The cohesin involvement 

explains how the chromatids are kept together, but it is not enough to explain 

how chromatids self-organize into well-defined structures. Topoisomerase II has 
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three distinct activities: topoisomerase II knotting-unknotting activity, 

topoisomerase I-like activity that is very efficient in relaxing helical tension 

(Salceda et al., 2006), and the third one - holding two different DNA strands 

together (Bojanowski et al., 1998; Earnshaw and Heck, 1985). This last activity is 

analogous to the functions of cohesin and condensin. Both condensin and 

topoisomerase II can keep DNA strands together; however, the activity telling 

them that a particular pair of DNA strands should be kept together, as opposed to 

a large number of possible but counterproductive connections, has not been 

identified. Considering the number of broad genetic screens, such activity, were it 

specific to the cell cycle, should have already been recognized. In particular, we 

do not expect that any chromosomal proteins (Uchiyama et al., 2005) with 

unknown functions could be responsible for this critical aspect of 

individualization. Experimental data show that both topoisomerase II (Carpenter 

and Porter, 2004) and condensin (Hudson et al., 2003; Vagnarelli et al., 2006) 

are dispensable for the process of mitotic condensation. Condensin localizes to 

the chromosome axis after individualization (Kireeva et al., 2004). In 

individualization, topoisomerase II is required only to perform decatenation, both 

in the process of the separation of sister chromatids and in the correcting of 

erroneous connections between chromatids of different chromosomes (Wood 

and Earnshaw, 1990). Nevertheless, topoisomerase II is a critical protein, 

localized at the bases of chromosomal loops (Earnshaw and Heck, 1985), 

involved in transcription and potentially other processes (Zlatanova and van 

Holde, 1992). 
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We have not found any indications that histone H1 is involved in the formation of 

the recursive topological restraint. Histone H1 is often implicated in the 

organization of chromatin; however, its function is very different from core 

histones. In some lower eukaryotes, histone H1 is involved in DNA repair and is 

dispensable for cell division (Downs et al., 2003; Harvey and Downs, 2004); in 

Xenopus, depletion of H1 resulted in individualized, but not spiralized, 

chromosomes (Maresca et al., 2005). We presume that histone H1 involvement 

in the late stages of chromatin condensation is due to its role as molecular glue, 

stabilizing gaps and bends in densely packed filaments. Such a non-orthodox 

view agrees very well with the observed stabilization of irregular chromatin fibers 

by histone H1, studied in reconstituted chromatin, and with histone H1 

compacting chromatin that have lost topological restraint, and so helping to repair 

the damaged DNA. Histone H1 role as a molecular glue also explains how such 

a fast evolving, mostly low-complexity protein can play an important role in the 

highly conserved process of chromatin organization (Kasinsky et al., 2001). 

Since we postulate a different role for histone H1 than so far assumed, in this 

article we do not differentiate the terms ‘nucleosome’ and ‘nucleosome core 

particle’ and use simply ‘nucleosome’.
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