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Background and Motivation

(1) CO2 can be stored  in coal, in aquifer and in mature oil reservoir.  We 
will try it in new reservoir taking advantage its flooding capability to 
speed up recovery.

(2) In gas condensate formation, when the reservoir pressure around 
production wells drops below the dew point pressure, liquid 
hydrocarbon phase called condensate is formed and decrease gas 
productivity significantly. CO2 injection will keep pressure level higher 
to delay or relieve this problem.

(3) Can seismic signal catch the front when the density contrast is not so big 
in gas condensate wells than in aquifer ?
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(1) Reservoir simulation: 
      Model the CO2 EOR and sequestration by the compositional simulation using CMG/GEM. 
           PVTSIM is used for fluid characterization with Peng-Roberson Equation of State.            
          Geochemical effect would be neglected in short term EOR process.

(2) Rock physics conversion

           Gassmann equation (Gassmann, 1951; Mavko, 1998) is used to convert reservoir properties to seismic properties. 
          Fluid properties are computed using the empirical formula (Batzle and Wang 1992; Vargaftik, 1975). 

(3) Seismic modeling. 
      Poststack seismic data  using  the  simple convolution model now. 
           In future, we would extend to pre-stack seismic modeling using finite difference. 

Method
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Flow chart

Formation properties Fluid properties Relative permeability

Reservoir simulation

Phase density Phase composition Pressure

Rock physics conversion

Seismic modeling

Vp Vs Vp 

Seismic Data  

Attribute analysis  
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Reservoir model

 One quarter of the 5-spot well pattern.

 50*50 cells. 

 Homogenous and isotropic  

 The permeability is 20md 

 Porosity is 0.14. 

 The producor at bottom left corner, BHP =800 psi. 
 
 The injector at top right corner, BHP= 6000psi.    

injector

producer
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Reservoir model

9 components fluid model

Component 
 

Mole 
% 

MW 
 

Tc 
(R) 

Pc 
(Psia) 

Accentric 
factor 

N2 0.76 28.014 227.16 492.32 0.040 

Co2 1.54 44.01 547.56 1069.87 0.225 

C1 81.7 16.04 343.08 667.2 0.008 

C2-C3 9.68 34.15 593.25 673.58 0.118 

C4-C6 2.90 67.62 819.95 499.15 0.231 

C7+_1 1.7 111.64 1017.23 374.47 0.395 

C7+_2 1.12 175.76 1191.30 278.61 0.594 

C7+_3 0.6 305.44 1472.60 215.23 0.910 
 

 Table 1  Characterized fluid properties using PVTSIM with PREOSN
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Simulation Results

            
                                  (a1)                                             (a2)                                                 (a3)                                            (a4) 

            
                            (b1)                                               (b2)                                                   (b3)                                           (b4)    
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                                  (a1)                                             (a2)                                                 (a3)                                            (a4) 

            
                            (b1)                                               (b2)                                                   (b3)                                           (b4)    

Simulation Results

Figure 1. Simulation and rock-physics conversion results for 4 production steps. 
(a1-a4) gas saturation; (b1-b4)CO2 composition 
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                                (c1)                                         (c2)                                                      (c3)                                          (c4) 

            
                                (d1)                                         (d2)                                                      (d3)                                          (d4) 

Simulation Results

Figure 1. Simulation and rock-physics conversion results for 4 production steps. 
(c1-c4)gas density; (d1-d4) P-wave velocity
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                               (e1)                                             (e2)                                                   (e3)                                          (e4) 

            
                              (f1)                                             (f2)                                                     (f3)                                           (f4) 

Figure 1. Simulation and rock-physics conversion results for 4 production steps. 
(e1-e4) S-wave velocity; (f1-f4) density.   

Simulation Results
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                 (a1)                                         (a2)                                                      (a3)                                          (a4) 
 

       
               (b1)                                          (b2)                                                      (b3)                                          (b4) 

Figure 2.  Seismic modeling results. 
(a1-a4) amplitude slice of poststack seismic data; 
(b1-b4) amplitude slice of poststack seismic data with 10% random .

Simulation Results
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Comparison between Fig.1 and Fig.2 shows that seismic signal 
with adequate precision could monitor both the CO2 injection 
front and the condensate blocking area.
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Figure 3.  Mole fraction in produced gas phase (SC) 

Simulation Results
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Figure 4.  Mole fraction in produced oil phase (SC)

Simulation Results
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Figure 3 and Figure 4 shows CO2 mole fraction in produced gas and oil phase. 
CO2 breaks through in about 40 days. 

Figure 5 shows cumulative gas and oil production by CO2 EOR and by natural 
depletion. When CO2 breaks through, difference in the cumulative gas is not big. 
But the cumulative oil production increased significantly, because CO2 injected 
keeps the formation pressure higher than that in natural depletion. More heavy 
components are flooded out, which otherwise would drop out as condensate in 
formation. This is verified in Figure 4, where C18-C20 parallels the CO2 in mole 
fraction in produced gas.
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Figure 5.   Cumulative production, CO2 EOR vs natural depletion 

Simulation Results
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Figure 6 shows cumulative CO2 injected and produced and gas 
production rate. 

After CO2 breakthrough, the gas rate does not vary much. And the 
cumulative CO2 injected tend to parallel to the cumulative produced. 
That means the CO2 is almost cycling in the two wells. The early CO2 
injection serves as EOR and storage. It would be better than injection 
starts after formation is depleted where CO2 EOR capacity has been 
seriously compromised and wasted.
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Figure 6.  Cumulative CO2 injected and produced. 

Simulation Results
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 The combined CO2 EOR and sequestration at the very beginning has 
advantage over natural depletion and storage after natural depletion. It will 
speed up the recovery process while simultaneously store CO2.

 Seismic survey with adequate precision can monitor the condensate 
zone and CO2 front  in gas condensate formation. 

Conclusion
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