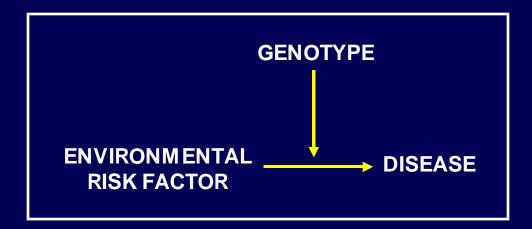
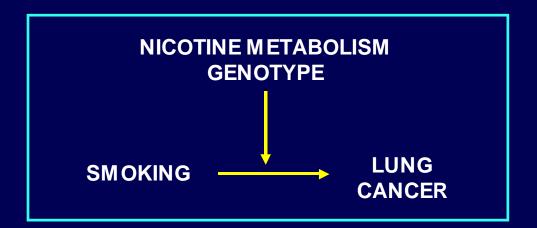
Gene-Environment Interaction: Definitions and Study Designs

Ruth Ottman, Ph.D. G.H. Sergievsky Center and Departments of Epidemiology and Neurology Columbia University

Overview

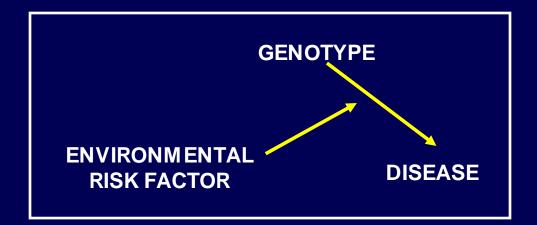
- Definitions of interaction
- Examples of plausible models
- Study designs
- Importance of measurement scale

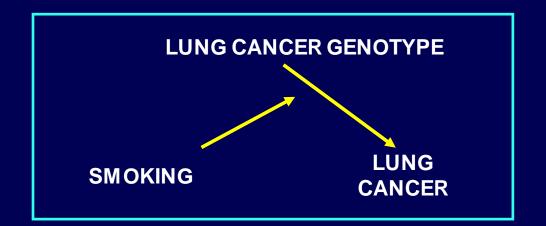

Gene-Environment Interaction

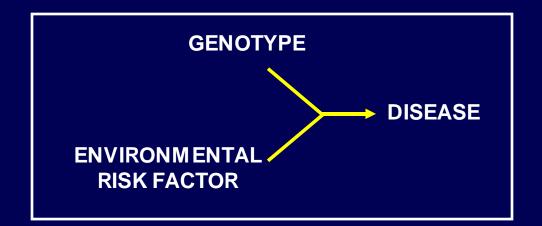

- Definition: A different effect of an environmental factor in people with different genotypes
- Examples: People with different genotypes could differ in...
 - susceptibility to the health effects of exposures such as smoking, drinking, not exercising, etc.
 - responses to life events such as trauma
 - responses to medications (pharmacogenomics)

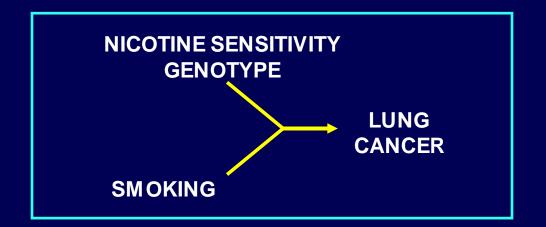
Statistical Definitions of Interaction

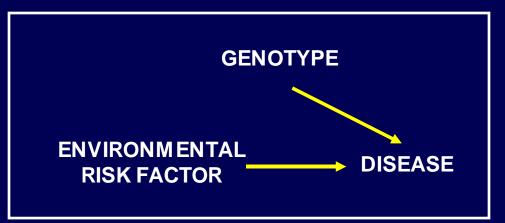
Model	Interpretation
No interaction	The same effect of the exposure in people with different genotypes
Synergistic interaction	Greater effect of the exposure in people with a genotype of interest than in people with other genotypes
Antagonistic interaction	Smaller effect of the exposure in people with a genotype of interest than in people with other genotypes

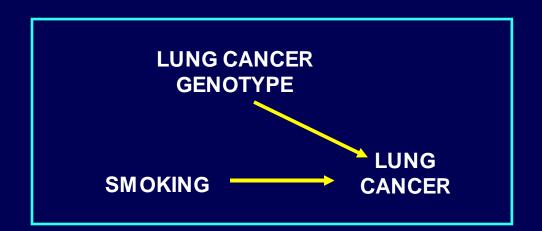

Model 1: Genotype Exacerbates Effect of Risk Factor




Model 2:


Risk Factor Exacerbates Effect of Genotype


Model 3: Both Genotype and Risk Factor Required



Model 4:

Combined Effect of Genotype and Exposure Greater than Expected from Individual Effects

Observational Study Designs in Epidemiology

Prospective Cohort study

- Individuals who share a characteristic (e.g., birth year, occupation) are followed over time and their disease experience is analyzed for association with exposure(s)
- Examples: Framingham study, Nurse's Health Study
- (Retrospective) Case-control study
 - Individuals who have a disease (case) are compared with those who do not (controls), in terms of their previous exposures

Effect Measures

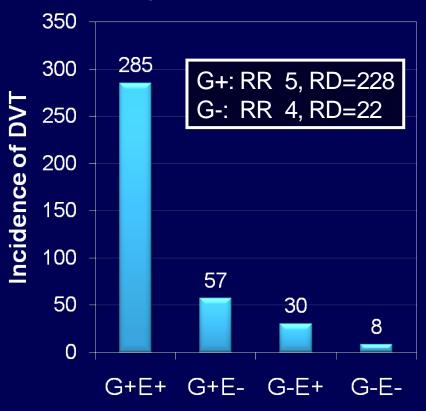
COHORT STUDY:	Environmental Factor Present	Environmental Factor Absent		
Affected	а	b		
Unaffected	С	d		
Risk	a/(a+c)	b/(b+d)		
Relative risk	<u>a/(a+c)</u> b/(b+d)			
Risk difference	a/(a+c) – b/(b+d)			

CASE-CONTROL STUDY:	Environmental Environmen Factor Present Factor Abse			
Cases	а	b		
Controls	С	d		
Odds ratio	ad bc			

Studies of Genes and Environment: 4 groups defined by genotype and exposure

COHORT STUDY:	G+ E+	G+ E-	G- E+	G- E-
Affected	а	b	е	f
Unaffected	С	d	g	h
Risk	a/(a+c)	b/(b+d)	e/(e+g)	f/(f+h)
Relative risk	$RR_{G+} = \frac{a/(a+c)}{b/(b+d)}$		$RR_{G} = \frac{e/(e+g)}{f/(f+h)}$	
Risk difference	$RD_{G+} = a/(a+c) - b/(b+d)$		$RD_{G} = e/(e+g) - f/(f+h)$	

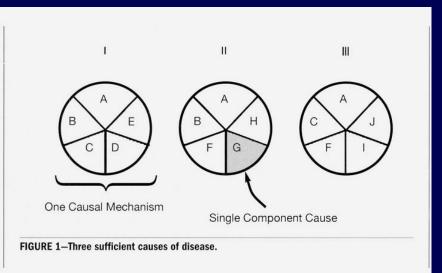
Test for interaction: Is the effect of the exposure *the same* in people with and without the high-risk genotype?


Multiplicative scale: No interaction implies $RR_{G_{+}} = RR_{G_{-}}$

Additive scale: No interaction implies $RD_{G+} = RD_{G-}$

Importance of Measurement Scale

- Statistical tests for interaction depend on the measurement scale (additive or multiplicative)
- Different measurement scales lead to different conclusions (and different public health recommendations!)
 - The same data can be made to fit more than one model
- Use of a purely statistical approach is inadequate -- a different approach more closely tied to biology is needed!


Factor V Leiden Variant, OCs and Deep Vein Thrombosis

Vandenbroucke et al., 1994

Concepts of Interaction in Epidemiology

- A disease may result from many alternative "sufficient causes" (each possibly involving multiple "component causes")
- Two factors "interact" (in a biological sense) if they are components of the same sufficient cause
- Analysis using potential outcomes models: If two factors are part of different sufficient causes, their combined effects on risk will tend to be additive
- This implies interaction should be measured on an additive scale

Rothman KJ, Greenland S. Am J Public Health. 2005;95 Suppl 1:S144-50.

Summary

- Studies of interaction need to consider the scale of measurement
- Additive scale more consistent with biological models
- Methods development needed to make tests on additive scale more accessible
- Large sample sizes needed, so collaboration is essential