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Abstract  

Toll like receptors play a central role in the recognition of pathogen associated 

molecular patterns (PAMPs). Mutations in TLR1, TLR2 and TLR4 genes may change the 

PAMP reorganization ability which causes altered responsiveness to the bacterial 

pathogens. A case control study, performed to assess the association between TLR gene 

mutations and susceptibility to Mycobacterium avium subsp. paratuberculosis (MAP), 

revealed novel mutations (TLR1 - Ser150Gly and Val220Met; TLR2 - Phe670Leu) that 

hindered either PAMP recognition or further downstream TLR pathway activation. A 

cytokine expression experiments (IL-4, IL-8, IL-10, IL-12 and IFN-γ) in the challenged 

mutant and wild type moDCs (mocyte derived dendritic cells) confirmed the negative 

impact of these mutations and altered TLR downstream activation. Further In silico 

analysis of the TLR1 and TLR4 ectodomains (ECD) revealed the polymorphic nature of 

the central ECD and irregularities in the central LRR motifs. The most critical positions 

that may alter the pathogen recognition ability of TLR were: the 9th amino acid position 

in LRR motif (TLR1, LRR10) and 4th residue downstream to LRR domain (exta LRR 

region of TLR4). The study describes novel mutations in the TLRs and presents their 

association with the MAP infection.  
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Introduction  

A conserved set of receptors called pattern-recognition receptors has immense 

importance in the innate immune system. A role of Toll like receptors (TLRs), members 

of mammalian pattern-recognition receptors, has been elaborated in recent years 1-5. They 

are the key components of pathogen recognition mechanism initiating inflammatory 

responses brought about by microbes or microbial cell components 6, 7. TLR family 

possesses 14 distinct members identified so far, expressed by epithelial and endothelial 

cells as well as leukocytes. TLRs are type-I transmembrane receptors composed of an 

ectodomains (ECDs), a short transmembrane region, and an intracellular signaling 

domain that shares homology with that of the IL-1 receptor 8. TLR mediated cellular 

activation occurs following the recognition of specific microbial components by the ECD 

8. These receptors act as the sensors for viral, bacterial and fungal structures, for example, 

TLR3 recognizes viral dsDNA 9, TLR7 and TLR8 recognize the ssRNA 10-12, TLR5 

triggers immune signal by detecting flagellin, and CpG DNA is a ligand for TLR9 13, 14. 

Toll like receptors focused in this study, TLR1, TLR2 and TLR4, recognize bacterial cell 

components. TLR2 has been shown to mediate the innate immune response to ligands 

derived from Mycoplasma, Borrelia, Treponema, Chlamydia, yeasts and parasites 15-20. 

TLR2 and TLR4 are critical in the immune response to Gram positive and negative 

bacteria 21. Indeed, TLR1 and TLR6 in association with TLR2 (TLR1-TLR2 and TLR2-

TLR6 heteromers) recognize a variety of bacterial cell wall components 22-25.  

Mutations in the coding region of human TLRs are linked with the altered PAMP 

recognition ability, signal transduction or innate immune activation in general 19, 26-30. 

Mutations in TLR1 gene are associated with the variantion in immune response to 



lipopeptides 27, increased susceptibility to invasive aspergillosis 31 or impaired innate 

immune sensing of microbial cell wall components 32. TLR2 and TLR4 gene 

polymorphisms are also often linked with increased risk to infections like tuberculosis 15, 

33, Mycobacterium leprae 34, 35, pneumococci or malaria 30, 36, urinary tract infections 37 

and disease conditions like periodontitis 38, acute rheumatic fever 39 and Crohn's disease 

40.  

The aim of the study was to screen the ovine population for the mutations in 

TLR1, TLR2 and TLR4 genes, and to assess their possible association with MAP 

susceptibility.  

  

 

 



Results 

Presence of MAP in the sheep population  

82 sheep (11.3%) were found infected with MAP, tested with ELISA as well as 

IS900 based PCR. MAP infected (n = 82) and non-infected healthy (n = 838) sheep were 

studied further for the presence of TLR mutations. 

  

TLRs gene mutations and MAP infection 

None of the earlier cited mutations in TLR2 and TLR4 (TLR2 - Pro681His, 

Arg677Trp, Arg753Gln, and TLR4 - Asp299Gly, Thr399Ile) were found in the sheep 

population. However, the sequence analysis revealed novel polymorphisms in ovine 

TLR2 and TLR4 (Tables 2 – 4). We found a novel mutation Phe670Leu in TLR2 gene in 

56 sheep infected with MAP. 25% of the subjects carrying this mutation in heterozygous 

state (OR – 4.5) and 7.6% subjects carrying this mutation in homozygous state (OR - 1.1) 

were MAP infected (Table 3). Another mutation in TLR2 gene at the base pair 2037 (T to 

C) exchanging leucine against proline at residue 679 was found in 54 subjects infected 

with MAP. Both these mutations are located in highly conserved region of TLR2 gene 

near the known mutation Arg677Trp.  

Novel mutation in TLR4 gene associated with increased susceptibility to MAP 

infection was located at the base pair T1066C exchanging phenylalanine against leucine 

(OR - 1.64). Other mutations found in TLR2 and TLR4 genes in this study (Tables 3 and 

4) had no association with the increased susceptibility to MAP infection.  

Two mutations (Ser150Gly and Val220Met) in TLR1 gene were found in 74 

subjects of that 32 sheep (43.2%) were MAP infected. Both these mutations were 

occurred simultaneously in all 74 subjects. Apart from these two mutations we found 



novel mutations in TLR1 at the base pairs: 418 (A to G), 431 (A to T), 508 (T to C), 601 

(A to T) and 603 (T to C) (Table 2).    

 

TLR expression in mutant moDCs  

Representative MAP infected sheep showing mutations in TLR genes (n = 6 per 

mutation; mutant moDCs) and healthy sheep without TLR mutations (n = 6; wild type 

moDCs) were targeted for TLR mRNA expression. We observed increase in the TLRs 

expression by 3-6 folds in activated moDCs compared to the non activated control 

moDCs (data not presented). However, when mutant and wild type moCDs were 

challenged with LPS or MAP whole cell lysate, the antigen dependent induction of TLRs 

was not observed (P>0.05; Figure 1). Expression of β-actin was unchanged throughout 

the TLR mRNA expression experiments (data not shown).     

 

TLR mutations and cytokine mRNA production  

IFN-γ, IL-10 and IL-12 were the abundantly expressed cytokines in the wild type 

moDCs when challenged with LPS and MAP whole cell lysate. Increase in the cytokines 

expression, except IL-4, in challenged wild type moDCs was 6 to 9 folds than in non-

challenged moDCs (data not presented). In general, MAP cell lysate caused higher 

cytokine response in moDCs than LPS. Expression of IL-8 was lower than other 

abundantly expressed ILs, whereas IL-4 was neither detected in ovine wild type nor in 

mutant moDCs (Figure 2).  

Expression of IL-10 in challenged TLR1 mutant (Gly150, Met220) moDCs was 

significantly lower (P<0.05) than in challenged wild type moDCs. This cytokine was also 

under expressed in mutant moDCs carrying TLR2 Leu670 mutation (Figure 2 panel A 



and B). Another two cytokines, IFN-γ and IL-12, were under expressed in the mutant 

moDCs carrying TLR1 (Gly150, Met220) and TLR2 (Leu670) mutations compared with 

wild type moDCs (Figure B panel A, B and E). Interestingly IL-8 mRNA expression was 

unchanged in TLR1 mutant moDCs, but significantly lowered (P<0.05) in TLR2 Leu670 

moDcs. No altered cytokine expression was noticed in challenged moDCs carrying TLR2 

Phe679 and TLR4 Leu356 mutations (Figure 2 panel C and D).  

 

TLR1 and TLR4 LRR motifs: In silico analysis  

 Central core of regular LRR motif is LxxLxLxxNxL, wherein ‘x’ is any amino 

acid, ‘L’ is Leu, Ile, Val or Phe, and ‘N’ is Asn, Thr, Ser or Cys.  Certain irregularities 

were observed within the LRR motifs of TLR1 (LRR8 and LRR11) and TLR4 (LRR13 

and LRR14) (Figure 3 panel A and B). A central part of TLR1 ectodomain (LRR10) 

found prone to missense mutations and more irregular than other LRRs. TLR1 mutations 

Gly150 and Met220, causing hyporesponsiveness to MAP infection, were located within 

the extra-LRR region and intra-LRR motif respectively (Figure 3 panel A). Met220 

mutation was found in LRR10 motif at the 9th amino acid position (LxxLxLxxN9th
 xL; 

Figure 3 panel C).  

We also present LRR motif structure of TLR4 ECD spanning earlier described 

Asp299Gly and Thr399Ile mutations. Both mutations were found in extra LRR region 

(Figure 3 panel B) in human TLR4. In the sheep population TLR4 Asp299Gly and 

Thr399Ile mutations were absent; however, the amino acid position 299 was occupied by 

asparagine and 399 by theronine.    

 

 



Discussion 

Recent studies have reported the involvement of TLRs in the innate immune 

response against MAP 45, 46. Mycobacterial cell wall components like lipomannan, 

lipoarabinomannan, phosphatidylinositol dimannoside and a 19-kDa lipoprotein are the 

agonists for the TLR1 and TLR2 receptors 21, 47-49, while TLR4 recognizes live M. 

tuberculosis 50. TLRs mediated downstream pathway leads to the up-regulation of 

interleukins, chemokines, costimulatory molecules, adhesions and pro-inflammatory/anti-

inflammatory cytokines 42, 51. Activation of TLRs not only direct the phagocytic cells to 

process and present the antigens but also it induces their self expression 42. TLR 

dependent activation of macrophages leads to the phagocytosis and secretion of 

inflammatory modulators, whereas activated dendritic cells are directed towards the 

uptake, its processing and presentation of antigen to T cells 52.  

The heterozygous variant may give ambiguous results. Neither the 

hyporesponsiveness, nor the reduced cytokine response to TLR agonists was observed in 

heterozygous TLR4-Asp299Gly 53-55 and heterozygous TLR2-Arg753Gln cells 15, 33-35. 

Hence, in the present study the in vitro challenging was carried out only in moDCs 

carrying mutations in homozygous state.  

In this study the IL12, IFN-γ and IL-10 were expressed abundantly in the 

activated wild type moDCs. Others 42, 52 have reported that moDCs primarily produce IL-

12 upon triggering by the TLR agonists, while macrophages produce IL-10. However, we 

found no significant difference between the expression levels of IL-12 and IL-10 mRNAs 

in the activated wild type moDCs. In line with the previous reports 42, 56 we also found 

mixed Th1/Th2 cytokine response of moDCs to TLR agonists. IL-12 and IFN-γ are the 



Th1 cytokines while IL-10 belongs to the Th2 class. IL-4 was the least expressed Th2 

interleukin in the activated wild type as well as mutant moDCs in this study. Earlier 

reports 57, 58 suggest the structural and functional similarities between IL-13 and IL-4. 

The lowest expression of IL-4 may be because of its substitution by IL-13. It is important 

to note that IL-8 mRNA expression was significantly hindered in activated mutant 

moDCs possessing TLR2 Leu670 mutation, but not in the activated mutant moDCs 

caring TLR1 mutations. This indicates that IL-8 expression might be TLR2 dependent. 

Supportive data was published earlier, wherein micrococci and peptidoglycan induced 

transcription of  IL-8 in the cells expressing TLR2 only 59. 

TLR1 ECD is consists of 20 predicted LRRs which take part in the mycobacterial 

PAMP recognition 60. The central region of the extracellular domain of human TLR1 

(LRR 9 to 12) is necessary for the sensing of bacterial lipopeptides 32. We (unpublished 

data, bovine TLR1 LRR motif analysis) and others 54 have found that the central part of 

TLR1 ECD (LRR9 to LRR 11) is more irregular and prone to missense mutations.  In this 

study a novel mutation Val220Met was observed in LRR10 motif at the 9th amino acid 

position (Figure 3A). The presence of methionine in this position may disrupts hydrogen 

bonds in the LRR loop structure that may cause the reduced recognition of PAMPs 54. 

The association between mutation at 9th amino acid position  in LRR motif and poorly-

differentiated gastric adenocarcinomas was reported recently 61. The increased incidence 

of MAP infection in sheep bearing Val220Met mutation (43.2%; OR – 9.08; Table) was 

also observed in this study. Significant reduction (P<0.05) in the cytokine response to 

TLR1 agonists (LPS and MAP lysate) in moDCs carrying 220Met (LRR10) and 150Gly 



(two residues upstream to LRR8) confirms the adverse effect of mutations in the central 

ECD of TLR1 (figure 2 panel A and E).  

In case of TLR2 the TIR domain is crucial as it forms a TIR-TIR dimerized 

platforms (TLR1-TLR2 and TLR2-TLR6), which promote homotypic protein-protein 

interactions and further downstream signaling 62. Hindered expression of the IFN-γ, IL-8 

and IL-12 in the moDCs carrying homozygous 670Leu (Figure 2 panel B and E) can be 

due to the impaired dimerization of TLR2-TIR domain with its counterparts. Similar 

impediment in IL-12, IL-8 and IFN-γ production was reported earlier in the Arg677Trp 

or Arg753Gln mutants 62-68. Other crucial residues in TLR2-TIR domain (713Ser,  

730Asp, 748Arg, 749Phe and 752Leu), were reported previously 64.  

Mutations in extra-LRR region may also impede the pattern recognition. 3D 

structure of the TLR ECD has demonstrated that LRR forms a loop and the juxtaposition 

of several loops produce solenoid-like structure 54. The LRR consensus motif forms the 

inner core of horseshoe structured ECD, while extra LRR regions forms convex surface. 

Irregularities and/or mutations in convex surface, for example mutation in 4th residue 

downstream from LRR motif, may affect PAMP binding onto the TLR horseshoe. The 

well known human TLR4 mutation, Asp299Gly, is one of the best examples of the 

mutation at 4th residue downstream from LRR11 (Figure 3B).   

In summary, novel mutations found in TLRs in this study might be the potential 

risk factor that increases the susceptibility to mycobacterial infection.  



Materials and Methods  

Animals 

720 Tsigai sheep, either healthy (healthy cohort) or showing clinical symptoms of 

paratuberculosis (diseased cohort) were included in this study. The sheep were from four 

farms located in the same geographic area (eastern Slovakia). These farms were chosen 

for the present study because of the high incidence (10-18%) of MAP recorded during 

paratuberculosis surveillance in the years 2004-2006 (unpublished data). Animals with 

weight loss and/or chronic diarrhea formed a cohort suspected of paratuberculosis. At 

least 7 - 8 apparently healthy animals that had close contact with suspected animals were 

also included in the study. In this way we assured the equal probability of MAP infection 

on the studied animals. The animal history was recorded and 5-10 ml of the blood (in 

duplicate) was collected for the serum and buffy coat separation.  

Detection of MAP  

Animals were screened for the presence of anti-MAP antibodies in serum as well 

as for the presence of IS900 element of MAP in the buffy coat. Antibodies were detected 

with Pourquier ELISA paratuberculosis kit (Institute Pourquier, France, 

http://www.institut-pourquier.fr). IS900 based nested PCR for MAP detection was 

designed as described previously 41. The method, sensitivity and specificity of IS900 

based PCR are discussed in detail in our previous work 41. On the basis of PCR and 

ELISA results, animals were grouped into MAP positive and negative cohorts, and 

cohorts were subjected to mutation detection in TLR genes.  

 

 



Construction of primers and PCR for amplification of TLR gene fragments   

Ectodomain (ECD) of the TLR1 was targeted for mutation detection. Primers 

were designed (DNASTAR) to amplify a gene fragment covering leucine rich repeats 

(LRR) 8 to 11. The primers (TLR1/F 5’-GGAGATACTTATGGGGAAAGAGAA and 

TLR1/R 5’- GTGTATAGACAAGGCCTTCAGTGA) amplified 402 bp of the gene 

segment. Conditions for PCR were: initial denaturation at 95°C for 3 min, followed by 35 

cycles of 94°C for 1.0 min, 52°C for 1 min 20 sec, 72°C for 1.0 min with final extension 

at 72°C for 10 min. Primers for TLR2 were constructed to amplify gene fragments 

covering earlier reported Pro681His, Arg677Trp and Arg753Gln mutations 15, 39 located 

in Toll/Interleukin-1 receptor (TIR) domain. Primers designed for TLR4 spanned both 

previously described major polymorphism sites, Asp299Gly and Thr399Ile 40 located in 

ECD (LRRs 11 to 16). Nucleotide sequences of TLR2 primers were: TLR2/F 5’-

CAGGAGCTGGAGCACTTCAACC and TLR2/R 5’-

GTCTCATCCACGGGCCACTCCA, while, TLR4 oligo sequences were: TLR4/F 5’-

GGGACTGTGCAACCTGACCA and TLR4/R 5’-

GCTCTAAGCCCATGAAGTTTGAA. PCR conditions for TLR2 gene were: initial 

denaturation at 94°C for 3 min, followed by 35 cycles of 94°C for 60 sec., 56°C for 45 

sec, and 72°C for 60 sec with final extension at 72°C for 10 min. The cycling conditions 

for TLR4 were similar to TLR2 except annealing temperature (57°C).  

Single strand conformational polymorphism analysis (SSCP) 

Briefly, 5 µl of amplified product was mixed with equal amount of loading dye 

(98% formamide, 10 mM EDTA, 0.025% bromophenol blue, 0.025% xylene–cyanol), 

subjected to denaturation at 95°C for 10 min and then cooled rapidly on ice. Denatured 



single-stranded amplimers were loaded onto 6% acrylamide/bisacrylamide (37.5:1, v/v; 

Bio-Rad) gels. Electrophoresis was performed using 200 V at 8°C in 0.5% TBE buffer 

for 20 hours in the electrophoresis chamber (Ingeny, The Netherlands). Gels were silver-

stained. Samples were grouped based on SSCP profiles by using Gel-Scan software 

(BioSciTec, Germany).  

DNA Sequencing  

Representative samples from each SSCP genotype were sequenced on an Avant3100 

sequencer (Applied Biosystem). The sequences were aligned, then checked for mutations 

and validated using SeqScape v.2.1 software (Applied Biosystem). Sequences were 

submitted to the GeneBank (USA) under the accession numbers EF681961 to EF681970. 

The SNPs were submitted to dbSNP (Genebank) database under the accession numbers: 

76880840 to 76880850 and 76878648 to 76878669.  

In-vitro treatment of moDCs with LPS or MAP whole cell lysate 

Representative sheep (n = 6 per mutation) carrying mutations in homozygous state 

and associated with MAP infection (depicted in tables 2 - 4) were included in this phase 

of the study. Healthy subjects (n = 6) without TLR mutations in TLR were served as 

controls. Monocyte-derived dendritic cells (moDCs) were generated from peripheral 

blood mononuclear cells as described previously 42 in Nunc 6-well tissue culture plates 

(approximately 5 x 105
 cells/well in 2 ml of cell suspension). moDCs were either treated 

with 100µl of LPS (1g/ml; Sigma) or 100 µl of MAP whole cell lysate (~ 890µg/ml of 

protein concentration). As a negative control (no cell activation) moDCs were kept 

untreated. Cells were incubated at 37°C for 4 h in 5% CO2 incubator, washed and total 

RNA was extracted using Purezol RNA isolation kit (Bio-Rad). Complementary DNA 



(cDNA) was synthesized by using iScript cDNA synthesis kit (Bio-Rad). The cDNA was 

used for real time PCR to examine the effect of treatment of moDCs on cytokine and 

TLR mRNA expression.  moDCs with the mutations and without mutations are 

designated as mutant moDCs and wildtype moDCs respectively in this report.  

Real time PCR for quantification of TLRs and cytokines mRNA expression  

Primers used to amplify cDNAs of the TLRs, cytokines as well as house keeping 

gene are depicted in table 1. PCR reactions were carried out in triplicate by using iQ 

SYBR green super mix Kit (Bio-Rad). All PCRs were followed by melting curve analysis 

(iQ5 thermocycler, Bio-Rad). Melting curve analysis was used to confirm the amplified 

product purity (confirmation of no non-specific amplicons). Gene expression and 

comparison was performed using iQ5 software (Bio-Rad). 

In silico ovine LRR motif analysis  

Ovine TLR nucleotide sequences obtained in this study were aligned by the 

ClustalW multiple alignment method (DNASTAR software), translated into putative 

amino acids and consensus sequences were obtained (BioEdit software). LRR motifs 

were outlined according to the method described earlier 43 using PFAM and SSpro4.0 

servers 44.  

Statistical analysis 

Possible linkage between mutation in TLR genes and increased MAP infection in 

cattle was calculated by Odd’s ratio (OR) (Win episcope software). 
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Table 1. Primers used in this study  

Gene Sequence (5’- 3’) Amplicon 
length 
(bp) 

Annealing 
temperature

(°C) 
IS900- MAP 

(extrernal) 

F- AGGGTGTTCGGGGCCGTCGCTTAG 

R- TGAGGTCGATCGCCCACGTGACCT 

406  56.5 

IS900- MAP 

(internal) 

F- ATGTGGTTGCTGTGTTGGATGG 

R- CCGCCGCAATCAACTCCAG 

298  63.0 

TLR1 F - GGAGATACTTATGGGGAAAGAGAA 

R - GTGTATAGACAAGGCCTTCAGTGA 

402  52.0 

TLR2 F - CAGGAGCTGGAGCACTTGTACC 

R - GTCTCATCCACGGGCCAGACCA  

362  56.0 

TLR4 F - GGGACTGTGCAACCTGACCA  

R - GCTCTAAGCCCATGAAGTTTGAA  

434  53.0 

IL-4 F - CCCAGCGCTGGTCTGCTTACT 

R - GCTTGCCAGGCTGCTGAGATT 

283 57.4 

IL-8 F - TTGGCCGCTTTCCTGCTCT 

R - AAATGCCTGCACAACCTTCTGC 

249 55.2 

IL-10 F - AGCCGAGATGCCAGCACCCTGTC 

R - AGCTTCTCCCCCAGCGAGTTCACG 

293 61.0 

IL-12p35 F - GAGCCTGCCCACCACCACA 

R - GGAAGCCAGGCAACTCTCATT 

226 56.4 

IFN-γ F - CTAAGGGTGGGCCTCTTTTCTC 

R - CATCCACCGGAATTTGAATCAG 

237 53.2 

β actin F - ACTGGGACGACATGGAGAG 

R - AGGAAGGAAGGCTGGAAGAG 

568 54.0 

 



 

Table 2. Missense  mutations in the ovine TLR1  

    Wild type   frequency of            frequency of  
  frequency  mutation            mutation  

     in heterozygous         in homozygous  
       state                   state  
 

418A>G Lys140Glu 0.997 (11.4 %) 0 0.002 (0 %)  

431A>T Asn144Ile 0.997 (11.4 %) 0 0.002 (0 %) 

448A>G Ser150Gly 0.897 (8.38%) 0 0.10 (43.2%, 9.08)1 

508T>C Ser170Pro 0.997 (11.4 %) 0 0.002 (0 %) 

517G>R Glu173[Lys,Glu] 0.897 (8.38%) 0.10(43.2%, 9.08)  0 

601A>T Ile201Phe 0.997 (11.4 %) 0 0.002 (0 %) 

603T>C Ile201Phe 0.997 (11.4 %) 0 0.002 (0 %) 

658A>G Val220Met 0.897 (8.38%) 0 0.102 (43.2%, 9.08) 

 

 

 



Table 3. Missense  mutations in the ovine TLR2  

 

    Wild type   frequency of            frequency of  
  frequency  mutation            mutation  

     in heterozygous         in homozygous  
       state                   state  
 
1985A>W Glu662[Glu,Val] 0.94 (21%)  0.06 (4.7%) 0 

2008A>Y Phe670[Leu,Phe] 0.55 (6.5%) 0.25 (25%, 4.5) 0.20 (7.6%, 1.1)1 

2012A>M Lys671[Asn,Thr] 0.99 (11.4%) 0.01 (0%) 0 

2013G>T Lys671[Asn,Thr] 0.99 (11.4%) 0 0.01 (0%) 

2028G>S Lys676[Asn,Lys] 0.99 (11.4%) 0.01 (0%) 0 

2037T>Y Leu679Phe 0.57 (6.3%) 0.35 (19.9%, 2.01) 0.08 (10.3%, 1.36) 

2038G>A Val680Ile 0.998(11.4%) 0  0.002 (0%)  

2040C>T Val680Ile 0.998(11.4%) 0  0.002 (0%)  

2090G>R Arg697[His,Arg] 0.997 (12.9%) 0.001 (0%) 0.003 (0%) 

2111C>y Ser704[Ser,Leu] 0.998 (11.4%) 0.002 (0%) 0 

2117G>A Ser706Asn 0.995 (11.4%) 0 0.005 (0%) 

2126G>A Arg709Lys 0.997 (11.4%) 0 0.003 (0%) 

2233G>R Val745[Ile,Val] 0.995 (11.4%) 0.001 (0%) 0.004 (0%) 

2276G>A Arg759Lys 0.995 (11.4%) 0 0.005 (0%) 

2296G>A Val766Thr 0.998 (11.4%) 0 0.002 (0%) 

2297T>C Val766Thr 0.998 (11.4%) 0 0.002 (0%) 

 



Table 4. Missense  mutations in the ovine TLR4  

 

    Wild type   frequency of            frequency of  
  frequency  mutation            mutation  

     in heterozygous         in homozygous  
       state                   state  
 
881G>R Ser294[Ser,Asn] 0.84 (12.6%)  0.14 (5.7%)        0.02 (0%) 

883A>R Lys295[Lys,Glu] 0.84 (12.6%) 0.14 (5.7%) 0.02 (0%) 

892T>Y Trp298[Trp,Arg] 0.84 (12.6%) 0.14 (5.7%) 0.02 (0%) 

934G>A Val312Met 0.998 (11.4%) 0 0.002 (0%) 

955T>C Ser319Pro 0.998 (11.4%) 0 0.002 (0%) 

1029T>K Asp343[Glu,Asp] 0.993 (11.4%) 0.007 (0%) 0 

1032G>S Lys344[Asn,Lys] 0.87 (12.6%) 0.12 (3.5%) 0.012 (0%) 

1045A>G Lys349Glu 0.998 (11.4%) 0 0.002 (0%) 

1052G>R Arg351[His,Arg] 0.87 (12.3%) 0.12 (5.8%) 0.012 (0%) 

1066T>Y Phe356[Leu,Phe] 0.36 (14.3%) 0.52 (8.2%) 0.12 (16.4%, 1.64)1 

1088A>R Asp363[Asp,Gly] 0.84 (12.5%) 0.14 (5.7%) 0.02 (0%) 

1091T>Y Val364[Val,Ala] 0.84 (12.5%) 0.14 (5.7%) 0.02 (0%) 

1097C>S Thr366[Thr,Ser] 0.84 (12.5%) 0.14 (5.7%) 0.02 (0%) 

1166G>S Ser389[Thr,Ser] 0.998 (11.4%) 0.001 (0%) 0 

1183G>K Asp395[Asp,Tyr] 0.84 (12.5%) 0.14 (6%) 0.002 (0%) 

 



Footnote for tables 2 to 4 

1 The first value in the parenthesis indicate percent animals infected with MAP that carries given 

point mutation, the second value (bold-italics) is the odd ratio (OR) indicating the possible 

linkage between point mutation and increased susceptibility to MAP infection. 



Titles and legends to figures 

 
Figure 1. Activation of TLRs in mutant and wild type (WT) moDCs after activation 

by LPS or MAP whole cell lysate 

Relative fold expressions of TLR mRNA by activated mutant and wild type moDCs. The 

cells were either activated by LPS (  ) or MAP whole cell lysate (  ).  

 

Figure 2. Expression of cytokine mRNA in the activated mutant and wild type 

moDCs  

Comparative relative fold expressions of cytokine mRNA by activated mutant (A to D) 

and wild type (E) moDCs. The cells were either activated by LPS (  ) or MAP whole cell 

lysate (  ). β-actin served as reference gene. Panel A – TLR1-Gly150, Met220; panel B – 

TLR2-Leu670; panel C – TLR2-Phe679; panel D – TLR4-Leu356 and panel E – wild 

type. 

 

Figure 3. Comparative amino acid sequences of human and sheep LRR motif of 

TLR1 and TLR4  

Panel A (TLR1) and B (TLR4). Irregularities in the LRR motifs (LxxLxLxxNxL) are 

depicted with underlined letters; differences between human and ovine LRR domains are 

indicated with   and mutations TLR1- Ser150Gly and Val220Met are highlighted with     . 

Known mutations in human TLR4 - Asp299Gly and Thr399Ile are located in extra LRR 

motif (*, panel B).  

Panel C. Representative  electropherogram depicting nucleotide sequences of mutant 

(upper, 220Met) and wild type (lower, 220Val) TLR1-LRR10. Codons encoding 

methionine or valine are framed.   
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