
Infrastructure for the Life Sciences: Design and
Implementation of the UniProt Website

Eric Jain, Isabelle Phan, Severine Duvaud1, Elisabeth Gasteiger1, Nicole Redaschi1, Maria J.
Martin2, Peter McGarvey3, Amos Bairoch1

[1] Swiss-Prot Group, Swiss Institute of Bioinformatics, CMU, 1 Michel Servet, 1211 Geneva
4
[2] The EMBL Outstation—European Bioinformatics Institute, Wellcome Trust Genome
Campus, Hinxton, Cambridge CB10 1SD, UK
[3] Department of Biochemistry and Molecular Biology, Georgetown University Medical
Center, 3900 Reservoir Road, NW, Box 571414, Washington, DC 20057-1414, USA

Abstract

Summary

The UniProt consortium is the main provider of protein sequence and annotation data for
much of the life sciences community [The UniProt Consortium: The Universal Protein
Resource (UniProt). Nucleic Acids Res 2008, 36:D190-D195.]. The www.uniprot.org
website is the primary access point to this data and to documentation and basic tools for the
data. This paper discusses the design and implementation of the new website, which was
released in July 2008, and shows how it improves data access for users with different levels
of experience, as well as to machines for automated access.

Availability

http://www.uniprot.org/ is open for both academic and commercial use. The site was built
with open source tools and libraries. The source code is available on request.

Contact

help@uniprot.org

Background

The UniProt consortium was formed in 2002 by groups from the Swiss Institute of
Bioinformatics (SIB), the European Bioinformatics Institute (EBI) and the Protein
Information Resource (PIR) at Georgetown University, and soon afterwards the website
www.uniprot.org was set up as a central entry point to UniProt resources. Requests to this
address were redirected to one of the three organisations' websites
(www.expasy.uniprot.org, www.ebi.uniprot.org and www.pir.uniprot.org). While these sites
shared a set of static pages with general information about UniProt, their pages for
searching and viewing data were different: The SIB was redirecting such requests to the
ExPASy website, where some of the data and tools had been available since 1993, while the
EBI and PIR both developed their own sites for UniProt, with a similar appearance, but
different code and functionality. Though the redirection was done according to the
geographic location of the client, it happened occasionally that users were confronted with a
site that looked and worked differently from the one they were used to. This, as well as the
fact that maintaining three separate sites was no effective use of resources, led to the

N
at

ur
e

P
re

ce
di

ng
s

: h
dl

:1
01

01
/n

pr
e.

20
08

.2
61

1.
1

: P
os

te
d

6
D

ec
 2

00
8

decision to develop a common website for UniProt. Following several years of intense
development and a year of public beta testing, the www.uniprot.org domain was switched to
the newly developed site described in this paper in July 2008.

Requirements

The essential functionality that the website (like its predecessors) had to provide was:

• Retrieval of individual database entries by identifier.
• Retrieval of sets of entries based on simple search criteria such as organism,

keyword or free text matches.
• Display of data in a human readable manner.
• Download of data in all official formats.
• Basic tools for identifier mapping, sequence alignments and similarity searches.
• Access to documentation and controlled vocabularies, etc.

An additional wish was that each consortium member should be able to host a mirror of the
website without too much effort, and that the technology on which the website was to be
built should be familiar enough to allow all consortium members to contribute to the
development. Beyond that there was no shortage of ideas for bells and whistles, such as
data mining and visualization tools. However, a careful review of the archived help desk
questions and web server request logs, collected over several years from the existing sites,
revealed the following:

• The majority of the queries consisted of nothing more than a protein or gene name,
sometimes combined with an organism name. Some of these queries did not yield
useful results, because of the lack of a good scoring algorithm (e.g. searching for
"human insulin" could require scrolling through hundreds of results before finding
the most relevant entries, such as INS_HUMAN).

• Some queries yielded no results because people misspelled terms or did not use the
same conventions as UniProt (e.g. American vs English spelling, Roman vs Arabic
numbers in protein names, dashes vs separated words) or chose the wrong field in
an "advanced" search form, etc. Some of this was documented, but the
documentation was not accessed much.

• The majority of requests came from web crawlers and other automated applications
(many of which made valid use of our data). Referrals from search engines made up
a substantial part of the visits, therefore we did not want to block web crawlers
either, yet this was putting quite a bit of a load on our servers.

Ensuring that these issues would be resolved by the new site, along with all the basic
requirements, was therefore made a priority [Robert Hoekman Jr: Designing the Obvious: A
Common Sense Approach to Web Application Design. Berkeley: New Riders Press; 2006.].

Design and Implementation

What data is available on the site?

[Table: Overview of the UniProt data sets.]

Data set Description References Entries Path Formats

N
at

ur
e

P
re

ce
di

ng
s

: h
dl

:1
01

01
/n

pr
e.

20
08

.2
61

1.
1

: P
os

te
d

6
D

ec
 2

00
8

UniProtKB
Protein sequence
and annotation
data

UniRef, UniParc,
Literature
citations,
Taxonomy,
Keywords

6.4M /uniprot/
Plain text, FASTA,
(GFF), XML, RDF

UniRef
Clusters of
proteins with
similar sequences

UniProtKB,
UniParc,
Taxonomy

12.3M /uniref/ FASTA, XML, RDF

UniParc
Protein sequence
archive

UniProtKB,
Taxonomy

17.0M /uniparc/ FASTA, XML, RDF

Literature
citations

Literature cited in
UniProtKB (based
on PubMed)

0.4M /citations/ RDF

Taxonomy
Taxonomy data
(based on NCBI
taxonomy)

0.5M /taxonomy/
RDF, (Tab-
delimited)

Keywords
Keywords used in
UniProtKB

1K /keywords/ RDF, (OBO)

Subcellular
locations

Subcellular
location terms
used in UniProtKB

375 /locations/ RDF, (OBO)

How is the site structured?

[Table: URL templates]

Template Description Example

http://www.uniprot.org/
{dataset}/

Overview page for a data set,
may contain a description of
the data set along with
various entry points, or just
list all database items
(equivalent to searching for
*).

http://www.uniprot.org/
taxonomy/

http://www.uniprot.org/
{dataset}/?query={query}

Filters the data set with the
specific query. Other
parameters are "offset"
(index of first result), "limit"
(number of results to return),
"format" (e.g. "tab" for tab-
delimited or "rdf") and
"compress" ("yes" to gzip
results when downloading).

http://www.uniprot.org/
taxonomy/?query=green

http://www.uniprot.org/
{dataset}/{id}

Displays a specific database
entry.

http://www.uniprot.org/
taxonomy/9606

http://www.uniprot.org/
{dataset}/{id}.{format}

Returns a database entry in
the specified format.

http://www.uniprot.org/
taxonomy/9606.rdf

N
at

ur
e

P
re

ce
di

ng
s

: h
dl

:1
01

01
/n

pr
e.

20
08

.2
61

1.
1

: P
os

te
d

6
D

ec
 2

00
8

This pattern is used not only for the main data sets, but also for the various "ontologies",
for documentation and even running or completed jobs.

There are no special search pages. The search function and other tools can be accessed
directly through a tool bar that appears at the top of every page. Depending on the current
context, some of the tool forms are pre-filled. For example, when viewing a UniProtKB
entry, the sequence search form is pre-filled with the sequence of the entry, and the
alignment form is pre-filled with all alternative products of the entry, if any.

How to get people started?

Important information is often overlooked on home pages with a lot of content. The new
UniProt home page features a prominent tools bar, that is present on every page and serves
as a basic site map with links to common entry points. The site contains a lot of small,
useful features that are documented in the on-line help; however, people in general appear
to be reluctant to invest a lot of time into reading documentation. To address this issue, we
recorded a "site tour" [Wink [http://www.debugmode.com/wink/]] that is accessible from
the home page.

N
at

ur
e

P
re

ce
di

ng
s

: h
dl

:1
01

01
/n

pr
e.

20
08

.2
61

1.
1

: P
os

te
d

6
D

ec
 2

00
8

http://docs.google.com/File?id=dcq5wn3n_44fj5qzddz_b
http://docs.google.com/File?id=dcq5wn3n_44fj5qzddz_b

[Figure: Home page at http://www.uniprot.org/.]

How to get the text search function right?

The text search function is the most used feature on the website. Considerable effort was
therefore invested into making all common and less common searches not only possible, but
also simple and convenient to use for people without a detailed understanding of UniProt
data. One of the most obvious problems with the old sites had been the lack of good
relevance scoring of search results. Scoring is essential for queries that are meant to locate
specific entries, but that contain terms that appear in a large number of entries (e.g. the
"human insulin" example quoted above). The main factors that influence the score of an
entry for a given query on the new website are:

• How often a search term occurs in an entry (without normalizing by document size,
as this would benefit poorly annotated documents).

• What fields in an entry a term occurs in (e.g. matches in a protein name are more
relevant than in the title of a referenced publication).

• Whether an entry has been reviewed (reviewed entries are more likely to contain
correct and relevant information).

• How comprehensively annotated an entry is (all else being equal, we want to have a
bias towards well-annotated entries).

The exact scoring scheme differs for each data set and requires ongoing fine-tuning.

In order to allow people to see quickly the entries with e.g. the longest or shortest
sequences, or to page through the results one organism at a time, certain fields were made
sortable. This turned out to be not trivial to implement as the underlying search engine
library had no support for sorting results efficiently on anything but their score. Therefore,
special sort indexes are now built when the data is loaded, at the cost of slowing down
incremental updates.

[Figure: UniProtKB search results, sorted by length descending.]

The traditional approach of having two separate forms for "basic" and "advanced" queries
has several issues: Based on our observations, few people start out with the intention of
using an "advanced" form. Even if they have a good understanding of the data and search
function, they often first try to obtain the results through a simple search form, as these are
quicker to fill in. If the basic search does not yield the expected result, or too many results,
the query has to be redone in an advanced search form where further constraints can be
applied.

Another problem with "advanced" search forms is that they often do not take into account
that most non-trivial queries appear to be built iteratively: People start out with one or two
terms, and then add or modify (e.g. constrain) terms until they see the desired results or
give up. If multiple complex constraints are specified at once and the query produces no
results, it can be time-consuming to figure out which (if any) of the constraints was used

N
at

ur
e

P
re

ce
di

ng
s

: h
dl

:1
01

01
/n

pr
e.

20
08

.2
61

1.
1

: P
os

te
d

6
D

ec
 2

00
8

http://docs.google.com/File?id=dcq5wn3n_46fh329sc3_b
http://docs.google.com/File?id=dcq5wn3n_46fh329sc3_b

incorrectly. We therefore opted for a "fail early" approach: A simple full text search is the
fastest and most effective way to determine whether or not a term even appears in a
database, as you can skip the step of scrolling through and selecting a field, and then
having to wonder if the term might have appeared in another field.

For these reasons, we opted for a single search form. People start by searching for one or
two terms. The results page shows the matches for these terms and, for people who are not
familiar with our search fields, clickable suggestions such as:

• "Did you mean" spelling suggestions (if there are no or few results and the index
contains a similar word).

• Restrict a term to field (listing only fields in which a term occurs).
• Quote terms (if they frequently appear together in the index).
• Filter out unreviewed or obsolete entries (if the results contain such entries).
• Replace a field with a more stringent field (if this helps reduce the number of

results).
• Restrict the range of values in a field (if results are being sorted on this field).
• ...and others, depending on the context.

[Figure: Basic search form.]

[Figure: Suggestions for a simple query, http://www.uniprot.org/uniprot/?query=insulin.]

This approach allows people to move seamlessly from a basic to an advanced query without
prior knowledge of the fields used to store data in UniProt. Clicking on a suggestion requires
less mouse clicks than selecting a field in an "advanced" search form. It is also more
effective, because only the fields in which a term occurs are listed -- such a filtering is
difficult to accomplish with traditional "advanced" search forms.

Each step in the query building process updates the query string and is reflected in the URL,
so it can be bookmarked, or undone by hitting the back button. The step-by-step process
does not preclude expert users entering complex queries directly, which can be faster and
more powerful (e.g. Boolean operators) than using an "advanced" query form.

[Table: Query syntax overview.]

Query Returns
human antigen
human AND antigen All entries containing both terms

"human antigen" All entries containing both terms in the same order

anti* All entries containing terms starting with anti. To search for a
term that contains an actual asterisk, escape the asterisk with a

N
at

ur
e

P
re

ce
di

ng
s

: h
dl

:1
01

01
/n

pr
e.

20
08

.2
61

1.
1

: P
os

te
d

6
D

ec
 2

00
8

http://docs.google.com/File?id=dcq5wn3n_66qwg2c9fb_b
http://docs.google.com/File?id=dcq5wn3n_66qwg2c9fb_b
http://docs.google.com/File?id=dcq5wn3n_65f9xn3md8_b
http://docs.google.com/File?id=dcq5wn3n_65f9xn3md8_b

Query Returns
backslash (anti*). Asterisks can be used within and at the end
of terms.

human -antigen
human NOT antigen All entries containing the term human but not antigen

human OR antigen All entries containing either term
antigen (human OR pig)Using brackets to override Boolean precedence rules

author:Tiger*
All entries with a citation that has an author whose name starts
with Tiger. Note the field prefix author; had we left it out, there
would have been a large amount of unwanted results.

gene:L\(1\)2CB
All entries with the specified gene name. Note how the backslash
is used to escape the brackets, which would otherwise be
interpreted as part of a Boolean query. Other characters that
must be escaped are: []{}?:~*

gene:* All entries that have a gene name.

A frequent cause of failed queries in past implementations were trivial differences such as
the use of dashes (e.g. "CapZ-Beta" vs "CapZ Beta") or Roman vs Arabic numbers in names
(e.g. "protein IV" vs "protein 4"). Such cases are now treated as equivalent. Many search
engines stem words, for example they would treat the search terms: "inhibit", "inhibits" and
"inhibiting" as equivalent. However, given that most of the queries consisted of names, such
as protein, gene or organism names, where such stemming is dangerous, and that there is
no way to know whether or not an entered term should be stemmed, this was left out.

One advantage of "advanced" search forms is that they allow to present fields that have a
limited number of possible values as drop-down lists or offer auto-completion, if the field
contains values from a medium- to large-sized ontology. This functionality can, however,
also be integrated into a "simple" search form: We chose to provide the possibility to search
in specific fields of a data set by adding one field search constraint at a time. The user clicks
on "Fields >>", selects the desired field and enters a value and then clicks "Add & Search"
to execute the query. Further search constraints can be added to refine the query iteratively
until the desired results are obtained.

[Figure: Using the query builder to add a constraint.]

Certain data sets reference each other: This can be used to do subqueries, e.g. while
searching UniRef you can add a constraint "uniprot:(keyword:antigen organism:9606)" to
show only UniRef entries that reference a UniProt entry with the specified keyword and
organism. This functionality can sometimes also be accessed from search results, e.g. while
searching UniProtKB there may be a "Reduce sequence redundancy" link that converts the
current query into a subquery in UniRef.

N
at

ur
e

P
re

ce
di

ng
s

: h
dl

:1
01

01
/n

pr
e.

20
08

.2
61

1.
1

: P
os

te
d

6
D

ec
 2

00
8

http://docs.google.com/File?id=dcq5wn3n_54c4p568gn_b
http://docs.google.com/File?id=dcq5wn3n_54c4p568gn_b

The search result table of most data sets can be customized in two ways: The number of
rows shown per page can be changed, and different columns can be selected.
Note that the choice of columns is preserved when downloading the results in tab-delimited
format.

[Figure: "Customize display" option for UniProtKB search results.]

How to support download of custom data sets?

We receive frequent demands to provide various downloadable entry sets, such as all
reviewed human entries in FASTA format. While some of the most frequently requested files
can be distributed through our FTP server, doing so is obviously not feasible for many
requests (especially for incremental updates such as all reviewed, human entries in FASTA
format added or updated since the beginning of this year). Such sets can now be obtained
from the website, which no longer imposes any download limits. However, large downloads
are given low priority in order to ensure that they do not interfer with interactive queries,
and they can therefore be slow compared to downloads from the UniProt FTP server.

How to support browsing?

The two main modes of looking for data are 1. with direct searches and 2. by browsing, i.e.
following links through a hierarchical organization. The new website makes use of various
ontologies (Taxonomy, Keywords, Subcellular locations, Enzyme, Gene Ontology,
UniPathway) to allow users to browse the data or combine searching with browsing (e.g.
search for keyword:Antigen and then browse by taxonomy).

[Figure: Using hierarchical collections to browse search results.]

How to allow selection of multiple items?

N
at

ur
e

P
re

ce
di

ng
s

: h
dl

:1
01

01
/n

pr
e.

20
08

.2
61

1.
1

: P
os

te
d

6
D

ec
 2

00
8

http://docs.google.com/File?id=dcq5wn3n_45f8cgpphs_b
http://docs.google.com/File?id=dcq5wn3n_45f8cgpphs_b
http://docs.google.com/File?id=dcq5wn3n_48gc8czbhq_b
http://docs.google.com/File?id=dcq5wn3n_48gc8czbhq_b
http://docs.google.com/File?id=dcq5wn3n_47c4fcgsf5_b
http://docs.google.com/File?id=dcq5wn3n_47c4fcgsf5_b

Using a list of results will often imply performing further action, such as downloading all or
selected items, or aligning corresponding sequences. The simplest solution would be to add
check boxes next to the items and enclose them in a form that also contains a list of tools to
which the items can be submitted. The problem with this approach is that it can result in
some redundancy in the user interface: when adding a tool, it is necessary to add it
everywhere where items can be selected. Moreover, this approach does not allow selection
of items across multiple pages (e.g. when paging through search results) or across different
queries or data sets. The solution that was implemented was to provide a general selection
mechanism that stores items in a "cart". The contents of the cart are stored as a cookie in
the web browser (so it does not require any state to be stored on the server side). The cart
itself has certain actions attached to it such as "Retrieve" or "Align", and can be cleared with
a single click.

[Figure: Using the cart to select items across multiple data sets.]

How to show complex entries?

The most important data on this site can be found in UniProtKB, in particular in the
reviewed UniProtKB/Swiss-Prot entries. These entries often contain a large amount of
information that needs to be shown in a way that allows easy scanning and reading:

• Names and origin
• Protein attributes
• General annotation (Comments)
• Ontologies (Keywords and Gene Ontology)
• Binary interactions
• Alternative products
• Sequence annotation (Features)
• Sequences
• References
• Web resources (Links to Wikipedia and other online resources)
• Cross-references
• Entry information (Meta data including release dates and version numbers)
• Relevant documents (List of documents that reference an entry)

Describing the information found in UniProtKB/Swiss-Prot (Ref) is outside the scope of this
paper. Here are some improvements that were made over previous attempts to show this
data:

• Features and cross-references are categorized.
• Features have a simple graphical representation to facilitate a comparison of their

locations and extents.
• Secondary structure features are collapsed into a single graphic.

N
at

ur
e

P
re

ce
di

ng
s

: h
dl

:1
01

01
/n

pr
e.

20
08

.2
61

1.
1

: P
os

te
d

6
D

ec
 2

00
8

http://docs.google.com/File?id=dcq5wn3n_49dbzbx9fp_b
http://docs.google.com/File?id=dcq5wn3n_49dbzbx9fp_b

• Alternative products are listed explicitly in the "sequences" section.
• Sections can be reordered or hidden (and these changes are remembered).

[Figure: Parts of two sections from the UniProtKB entry view shown at
http://www.uniprot.org/uniprot/P00750.]

How to integrate sequence similarity searches?

In addition to text searches, sequence similarity searches are a commonly used way to
search in UniProt. They can be launched by submitting a sequence in FASTA format, or a
UniProt identifier, in the "Blast" form of the tools bar. Note that this form is pre-filled with
the current sequence when viewing a UniProtKB, UniRef or UniParc entry.

N
at

ur
e

P
re

ce
di

ng
s

: h
dl

:1
01

01
/n

pr
e.

20
08

.2
61

1.
1

: P
os

te
d

6
D

ec
 2

00
8

http://docs.google.com/File?id=dcq5wn3n_51dvkvcn5p_b
http://docs.google.com/File?id=dcq5wn3n_51dvkvcn5p_b
http://docs.google.com/File?id=dcq5wn3n_52gjxzchck_b
http://docs.google.com/File?id=dcq5wn3n_52gjxzchck_b

[Figure: Sequence similarity search form and results.]

How to integrate multiple sequence alignments?

The purpose of the integrated "Align" tool is to allow simple and convenient sequence
alignments. ClustalW is used because it is still the most widely used tool, though it may no
longer be the best-performing tool in all cases. The form can be submitted with a set of
sequences in FASTA format or a list of UniProt identifiers, or more likely through the built-in
"cart". The form is pre-filled with a list of sequences when viewing a UniProtKB entry with
alternative products or a UniRef cluster. For complex alignments that require specific
options or a specific tool, the sequences can easily be exported into FASTA format for use
with an external alignment tool. A direct link to open sequences into Jalview for further
analysis is provided.

N
at

ur
e

P
re

ce
di

ng
s

: h
dl

:1
01

01
/n

pr
e.

20
08

.2
61

1.
1

: P
os

te
d

6
D

ec
 2

00
8

http://docs.google.com/File?id=dcq5wn3n_64ct7tmdct_b
http://docs.google.com/File?id=dcq5wn3n_64ct7tmdct_b

[Figure: Multiple sequence alignment form and results.]

How to integrate identifier mapping functionality?

There is an identifier mapping tool that takes a list of UniProt identifiers as input and maps
them to identifiers in any database that is referenced from UniProt, or vice versa.

[Figure: Mapping RefSeq identifiers to UniProtKB.]

How to retrieve UniProt entries in batch?

The batch retrieval tool allows to specify or upload a list of UniProt identifiers to retrieve the
corresponding entries. The available download formats are the greatest common
denominator: For example, if the batch retrieval request contains both UniProtKB and
UniParc identifiers, neither plain text (only available for UniProtKB) nor XML (available for
both, but with different schemas) will be available, only FASTA and RDF. The set of entries

N
at

ur
e

P
re

ce
di

ng
s

: h
dl

:1
01

01
/n

pr
e.

20
08

.2
61

1.
1

: P
os

te
d

6
D

ec
 2

00
8

http://docs.google.com/File?id=dcq5wn3n_60g7mdtrnd_b
http://docs.google.com/File?id=dcq5wn3n_60g7mdtrnd_b
http://docs.google.com/File?id=dcq5wn3n_61fvk29ggd_b
http://docs.google.com/File?id=dcq5wn3n_61fvk29ggd_b

retrieved by their identifiers can then optionally be queried further, using the search engine
described previously.

[Figure: Batch retrieval of a set of UniProtKB entries.]

How to handle job submissions?

The website is a read-only, stateless application, with the exception of the job handling
system. When e.g. a database mapping job is submitted, a new "job" resource is created,
and the user is redirected to this job page (which will initially just show the job status, later
the results). A consequence of this is that if a web server receives a request for a job that it
does not have, it needs to ask all other mirrors if they have this job (and if yes, transfer it).
Jobs have unique identifiers, which (depending on the job type) can be used in queries (e.g.
to get the intersection of two sequence similarity searches).

N
at

ur
e

P
re

ce
di

ng
s

: h
dl

:1
01

01
/n

pr
e.

20
08

.2
61

1.
1

: P
os

te
d

6
D

ec
 2

00
8

http://docs.google.com/File?id=dcq5wn3n_58dq7f25dc_b
http://docs.google.com/File?id=dcq5wn3n_58dq7f25dc_b

[Figure: Recent jobs run by the current user, shown at http://www.uniprot.org/jobs/.]

How to deal with web crawlers?

Search engines are an important source of traffic, perhaps because people now tend to
"google" search terms before trying more specialized sites. Therefore it is important to
ensure that search engines are able to index (and keep up to date) as much content of the
site as possible. However, web crawlers have trouble finding pages, such as database
entries, that are part of large collections and are not linked from main navigation pages,
and when they do, this can put a significant load on the site. To ensure that web crawlers
find all content that was meant to be indexed, the content was linked from multiple sources,
including overview documents and machine-readable site maps [Sitemap Protocol 0.9,
http://www.sitemaps.org/]. To keep web crawlers away from content that is either not
worth indexing or too expensive to retrieve on a large scale, a robots.txt file [Robots
Exclusion Standard, http://www.robotstxt.org/] is used, and links that should not be
followed were marked with a "nofollow" "rel" attribute [rel-nofollow Microformat,
http://microformats.org/wiki/rel-nofollow]. The retrieval performance of documents in large
collections was optimized until we felt confident that even rapid crawling would not impact
the overall responsiveness of the site too much. Such documents also return a "Last-
modified" date header when requested. Certain web crawlers (e.g. Googlebot) will then on
their next visit issue a conditional "If-Modified-Since" request, so there is no need to resend
unchanged documents. Since each resource can now be accessed through one URL only,
there is no more redundant crawling of resources (as used to be the case with multiple
mirrors with different addresses). The request logs and "Google Webmaster Tools" site
[Google Webmaster Central, http://www.google.com/webmasters/] are used to monitor the
behavior of web crawlers on this site. As of July 2008, over 4M pages from the new site are
indexed in Google.

How to avoid breaking links?

This site publishes a large number of resources (several million) on the Web. These
resources are linked from a lot of other life sciences databases as well as scientific papers.
Since tracking down and getting all such links updated is not practical, and keeping legacy
URL redirection schemes in place for a long time can be tedious, it is worth investing some
effort into reducing the likelihood that large sets of URLs will have to be changed in future

N
at

ur
e

P
re

ce
di

ng
s

: h
dl

:1
01

01
/n

pr
e.

20
08

.2
61

1.
1

: P
os

te
d

6
D

ec
 2

00
8

http://docs.google.com/File?id=dcq5wn3n_63cznsvvcj_b
http://docs.google.com/File?id=dcq5wn3n_63cznsvvcj_b

[Tim Berners-Lee: Cool URIs don't change, http://www.w3.org/Provider/Style/URI].
Technology artifacts, such as "/cgi-bin/" or ".do", are avoided in URLs [urlrewrite]. Official
and stable URLs are no good if they are not used. A lesson learned from the previous sites
was that the URLs that end up being used are those that are shown in the browser (i.e.
mirror-site specific URLs). The new site avoids this problem by having exactly one URL for
each resource. Another issue is how to deal with individual resources that are removed.
Obsolete entries, or entries that were merged with other entries, in the main data set
(UniProtKB) no longer disappear from the web interface, but keep their own web page (e.g.
http://www.uniprot.org/uniprot/P00001), with a link to a list of (retrievable) previous
versions (e.g. http://www.uniprot.org/uniprot/P00001?version=*). Specific versions can
also be referenced directly (e.g. http://www.uniprot.org/uniprot/P00001.txt?version=48),
and used in the tool forms (e.g. P00001.48).

How to support user-defined customizations?

Some simple customizations, such as being able to choose the columns shown in search
results, make the site a lot more convenient to use. However, we did not want to
compromise the statelessness of the application (which is important for keeping the
application distributable and scalable) by having each request depend on centralized user
profile data. This was possible by storing basic settings in client-side cookies. The drawback
of this solution is that such settings are lost when cookies are cleared in the browser or
when the user switches to another machine. The amount of data that can be stored this way
is also limited. On the other hand, the customizations are simple and easy to redo. This
solution also does not require people to sign up, which some may be reluctant to do as this
introduces some privacy issues.

How to let people tailor the web site to their needs?

The ideal site would be a "one stop shop" that solves all our users' needs. However, the life
sciences community has very diverse needs, and our data is often just one small part of
these needs. The best we can do is make it as easy as possible to retrieve data from this
site programmatically, in order to facilitate the development of applications on top of our
data.

How to enable programmatic access to the site?

People need to be able to retrieve individual entries or sets of entries in various formats and
use our tools simply and efficiently from within basic scripts or complex applications. We
want to encourage people to build applications that are tailored towards certain user
communities on top of our data -- customization options on our site can go only so far, and
anything we build will always be focused on our data.

Early versions of the new site had a complete SOAP [Simple Object Access Protocol
(SOAP) [http://www.w3.org/TR/soap/]] interface built with Apache Axis [Apache Axis
[http://ws.apache.org/axis/]]. Unfortunately this interface had poor performance (which
necessitated introducing limitations such as the maximum number of entries that could be
retrieved in one go), and simple operations such as retrieving an entry in FASTA format
ended up being more complex than could be justified. For example, in order to retrieve the
data from a Perl script, a special module (SOAP::Lite) had to be installed and patched, due
to quirks with the support for SOAP attachments. Meanwhile, there are better SOAP

N
at

ur
e

P
re

ce
di

ng
s

: h
dl

:1
01

01
/n

pr
e.

20
08

.2
61

1.
1

: P
os

te
d

6
D

ec
 2

00
8

libraries, but they are still more complicated and less efficient to use than doing direct HTTP
requests.

To ensure that such "RESTful" [Fielding R: Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis. University of California, Irvine;
2000.] access is as simple and robust as possible, the site has a simple and consistent URL
schema (explained in a previous section) and returns appropriate content type headers (e.g.
application/xml for XML resources) and response codes. Returning appropriate HTTP status
codes instead of returning 200 OK for all requests, even if they fail, has several benefits:

• Ensures that invalid pages stay out of search engine indexes
• Simplifies error handling for people doing programmatic access (no need to have

fragile checks for error message strings)
• Helps detect common problems when analyzing request logs.

The most important distinction are the 4xx response codes, which indicate that there is
some problem with the request itself and sending the same request again will likely fail
again, and the 5xx response codes, which indicate a problem with the server.

[Table: Listing of response codes that the site might return.]

Code Description
200 The request was processed successfully.
301 Moved (permanently). Use the new address for future requests
302 Moved (temporarily)
400 Bad request. There is a problem with your input.
404 Not found. The resource you requested doesn't exist.
410 Gone. The resource you requested was removed.

500 Internal server error. Most likely a temporary problem, but if the problem persists
please contact the site operators.

503 Service not available. The server is being updated, try again later.

In addition to the data set-dependant formats, all search results can be retrieved as
OpenSearch [http://www.opensearch.org/] RSS feeds for integration with external tools
such as news feed readers or Yahoo Pipes [http://pipes.yahoo.com/pipes/].

How to handle complex data?

While the needs of most people are met by being able to obtain data in FASTA, tab-
delimited or even plain text format, some people need to obtain and work with the complete
structure of the data. This is complicated by the fact that the data model is complex and
changes a lot. RDF (part of the W3C's Semantic Web initiative [W3C Semantic Web
Activity [http://www.w3.org/2001/sw/]]) provides a generic graph-like data model that
can help address these issues [UniProt RDF [http://dev.isb-sib.ch/projects/uniprot-rdf/]].
All UniProt data is available in RDF format both on our FTP servers (for bulk downloads) and
on the site.

Resources in RDF are identified with URIs. UniProt uses PURLs [OCLC PURL
[http://purl.org/]]. For example, http://purl.uniprot.org/taxonomy/9606 is used to
reference and identify the concept of the human taxon. This URL can be resolved to either
http://www.uniprot.org/taxonomy/9606 (human readable representation; returned e.g.

N
at

ur
e

P
re

ce
di

ng
s

: h
dl

:1
01

01
/n

pr
e.

20
08

.2
61

1.
1

: P
os

te
d

6
D

ec
 2

00
8

when entered in a browser) or http://www.uniprot.org/taxonomy/9606.rdf (machine-
readable representation; returned if the request contains an "Accept: application/rdf+xml"
header).

What is the architecture of the site?

The website was implemented as a pure Java web application that can either be run
standalone using an embedded web server, Jetty [Jetty [http://www.mortbay.org/jetty-6/
]], or deployed on any Servlet 2.4 compliant [Java Servlet Technology
[http://java.sun.com/products/servlet/]] web application server. The components in the
application are configured and connected together using the Spring Application Framework
[Spring Application Framework [http://www.springframework.org/]]. Struts [Struts
[http://struts.apache.org/]] coordinates the request handling and pages are rendered as
XHTML using JSP (2.0) templates. Database entries are stored in Berkeley DB JE [Berkeley
DB JE [http://www.oracle.com/database/berkeley-db/je/]] for fast retrieval. Searching was
implemented with help of the Lucene text search library [Lucene
[http://lucene.apache.org/java/]].

Spring was introduced to remove hardcoded dependencies (or hardcoded service lookups)
from the code as this was hampering our ability to unit-test the code. Struts was chosen
among the plethora of available web application frameworks because it provided some
conveniencies, such as the automatic population of objects from request parameters, but
did not attempt to abstract too much (e.g. we needed access to the HTTP request and
response objects in order to read and set certain HTTP headers). Struts is (or was) also a de
facto standard and simple to learn. Using Berkeley DB JE to store serialized Java objects
using custom serialization code was by far the most performant solution for retrieving data
that we tested. Extracting data from uncompressed text files using stored offsets might be
faster for returning data in specific formats; However, the size of the uncompressed files
and number of different databases and formats make this approach less practical than
generating the various representations on the fly. Minimizing the amount of data that is
stored on disk also ensures that the application can benefit more from increasing disk cache
sizes.

The website application is self-contained and can be run out of the box with zero
configuration for development and test purposes. Non-Java and compute-intensive tools
such as sequence similarity searches (BLAST), multiple sequence alignments (ClustalW) and
database identifier mappings are run on external servers. To minimize the footprint of the
application further, historical data such as entry versions from UniSave [Leinonen R,
Nardone F, Zhu W, Apweiler R: UniSave: the UniProtKB Sequence/Annotation Version
database. Bioinformatics 2006, 22:1284-1285.] is also retrieved remotely on demand.
Even so, the data including indexes occupies almost 80GB (as of release 13.6). For
development and testing, a smaller, internally consistent, data set (~2GB) is generated by
issuing queries to a site that has the complete data loaded.

How to deploy the site on distributed mirrors?

With the previous setup each "mirror" site had its own public address. Requests to
www.uniprot.org were redirected to www.ebi.uniprot.org (EBI), www.pir.uniprot.org (PIR)
or www.expasy.uniprot.org (SIB), respectively. The redirection was done with client-side
HTTP redirects and was based on the top level domain (TLD) revealed by a reverse DNS
lookup of the IP address from which a request originated. One major problem with this
setup was that people and web crawlers bookmarked and linked to the mirror they had been

N
at

ur
e

P
re

ce
di

ng
s

: h
dl

:1
01

01
/n

pr
e.

20
08

.2
61

1.
1

: P
os

te
d

6
D

ec
 2

00
8

redirected to rather than the main site. Tracking down such links and getting them
corrected turned out to be a Sisyphean task. One consequence was that people more often
than not ended up neither on the nearest mirror, nor did they get the benefits of failover.
The new setup makes use of the fact that you can attach multiple IP addresses (A records)
to a domain name. Clients will connect more or less randomly to one address that is
reachable. We also tested whether it was possible to achieve geographic affinity by having
different nameservers return different IP addresses depending on which mirror was nearer.
This can work because the "caching" name servers that clients must use to resolve
addresses often keep track of what resolving name server responds faster (and therefore is
most likely the nearest) for a given domain. The tests showed that this worked to some
degree, at least for the most frequent users. The drawback of this solution is that with only
two mirrors no failover is possible when one of the sites happens to become unreachable.
Given that network delays between the U.S. and Europe are not too bad, reliability was seen
as more important. This may change if one or more additional mirrors are set up in more
remote places.

The current mirror sites deploy the web application on Tomcat [Apache Tomcat
[http://tomcat.apache.org/]] and use Apache [The Apache HTTP Server Project
[http://httpd.apache.org/]] as a reverse proxy (Apache Module mod_proxy
[http://httpd.apache.org/docs/2.0/mod/mod_proxy.html]), as well as for request logging,
caching and compressing responses (the latter can have a huge impact on page load times
for clients on slow connections). If the application is not available at one site (e.g. while it is
being updated), Apache automatically sends requests to another available mirror. The web
application has a special health-check page that is monitored from local scripts (which notify
the local site administrators if there is a problem), as well as from a commercial monitoring
service. This service can also detect network problems and keeps statistics on the overall
reliability and responsiveness of each mirror. Application-level warnings and errors are
handled by Log4j [Apache Log4j [http://logging.apache.org/log4j/]]. Errors trigger
notification messages that go directly to an e-mail account that is monitored by the
developers (unless an error was triggered by a serious operational issue, it usually indicates
a bug in the code). Finally, there is a JMX interface that supplements JVM-level information,
such as memory use, and Tomcat-supplied information, such as the number of open HTTP
connections, with application information, such as the hit ratios of specific object caches.

How to manage data and application updates?

Data can be loaded into the web application simply by dropping a data set, or partial data
set for incremental updates, in RDF format into a special directory and waiting for the
application to pick up and load the data. However, to save resources, we load all the data
on a single staging server and then distribute the zipped data to the mirror sites, usually
along with the latest version of the web application. Updates occur every three weeks, in
sync with the UniProt releases.

How to reduce the risk that bugs are introduced into the code?

All code changes risk introducing bugs, which can be time-consuming to fix, especially when
not detected right away. To minimize this risk, automated tests need to be set up. The
lowest-level testing is done in the form of "unit" tests. The goal of unit tests is to cover each
execution path in the code using different input. Single classes are tested in isolation. Such
tests were written using the JUnit testing framework [JUnit [http://junit.org/]]. The initial
test coverage was quite low, as there was no simple way to untangle classes for isolated
tests. This was improved by introducing a "dependency injection" framework [Spring

N
at

ur
e

P
re

ce
di

ng
s

: h
dl

:1
01

01
/n

pr
e.

20
08

.2
61

1.
1

: P
os

te
d

6
D

ec
 2

00
8

Framework [http://springframework.org/]] to remove hardcoded dependencies. Unit tests
are complemented with "functional" tests. We created a set of test scripts with the open
source tool Selenium [Selenium Web Application Testing System
[http://selenium.openqa.org/]]. These tests can be played back in any recent browser and
simulate typical user interactions with the site. Reducing the playback speed allows semi-
automatic testing, where a person watches the test execution to catch layout glitches that
would be difficult to catch with fully automated tests. In addition to testing the site prior to
releases, these tests can be used for browser compatibility testing. We attempted to ensure
that the site works well with the most popular browser and operating system combinations
(e.g. Internet Explorer 6 and 7 on Windows, Firefox 2 on Linux) and acceptably with other,
recent browsers (e.g. Safari on Mac OS X). Another major "functional" test is loading all
data into the site. Given that this is a long procedure, a smaller test data set is often used
instead to verify that the import procedure is working. Other one-off tests included setting
up and using a tool to compare search results returned by the new and the old sites.

How to ensure that the site will have adequate performance?

Basic performance goals were established based on numbers obtained from the request logs
of the previous sites. Even though the application is stateless (i.e. no state is stored on the
server) and can therefore be scaled out horizontally (i.e. by buying more machines), the
stated goal was to be able to support the full load on a single, powerful, but "off-the shelf"
machine. Following are some load tests that were performed to identify potential issues and
help build confidence in the application:

• Retrieve random database entries
• Execute random queries
• Download large result sets
• Simulate initial requests to the home page including all required static resources

The tests were performed with a combination of shell scripts and the httperf tool [httperf
[http://www.hpl.hp.com/research/linux/httperf/]]. Performance numbers, such as response
times, were analyzed with R [The R Project for Statistical Computing [http://www.r-
project.org/]]. Once a performance issue was found, problematic code was tracked down
with the help of a commercial profiling tool [JProfiler [http://www.ej-technologies.com/]].
Performance issues on the production servers are caught 1. by an external monitoring tool
that records response times for requests to a general health-check page, and 2. by
analyzing the request logs (which include the duration of each request) at the end of each
month. While the former allows immediate action to be taken, the latter can help to detect
more subtle performance issues.

How to ensure that people will know how use the site?

For all but the most trivial functions it is difficult to predict whether people will be able to
figure out how to use them. The most effective way to answer such questions is to do
"usability" tests [Dumas JS, Redish JC: A Practical Guide to Usability Testing. Westport:
Greenwood Publishing Group Inc.; 1999.]. We managed to recruit a dozen or so volunteers
who let us watch them use the site to accomplish certain tasks. Most of them had some kind
of life sciences background, however, not all of them had been working with our data on a
regular basis. The tests took on the following form: Two people, one to ask questions, the
other to take notes, went to the volunteer's workplace (if possible; this ensured that people
had the setup they were used to and felt comfortable). Some brief background questions
were asked to establish how familiar the person already was with our data, what services

N
at

ur
e

P
re

ce
di

ng
s

: h
dl

:1
01

01
/n

pr
e.

20
08

.2
61

1.
1

: P
os

te
d

6
D

ec
 2

00
8

and tools they had used in the past, etc. Based on this information they would then be
asked to accomplish certain tasks on the site. We tried as best as possible to avoid putting
the user under pressure. The other difficulty was avoiding phrasing tasks in terms of the
concepts we were using. For example, when asked to fill out the "contact form", people
would immediately find the "contact" link. But if we phrased the question in different terms,
such as "send feedback", success was less guaranteed. Testing sessions were between half
an hour and one hour and helped settle and open up quite a few "design" discussions.

How to keep track of what is being used?

In order to know how the site is being used, and which parts of the site are working well
and which are not, it is essential to collect data on the site's usage. Usability testing is
invaluable and can help pinpoint certain issues, but it is time-consuming and therefore
unsuitable to collect large sample sizes. Fortunately, some basic information on user
interactions with the site can be recorded through the web server log files. In addition to the
standard information logged for each request (such as the exact time and path of the
request, the response code, the IP address, referrer and user agent), the web server was
configured to also record the duration of the request, the number of search results returned
(if the request was a query) and the content-type of the response (this could often be
inferred from the extension of the requested resource, but not always). The request logs are
collected from all mirror sites once a month, cleaned up a bit and loaded into a simple star
schema in a relational database. This allows us not only to get general usage statistics (e.g.
total number of requests for different resources, showing the percentage of automated
requests), but also to look for problems (e.g. queries that do not produce any results or fail)
and even help to set annotation priorities (e.g. by looking at what are the most frequently
requested entries that have not been reviewed yet, or not updated in a long time).

Another complementary tool that is used to gather statistics is Google Analytics [Google
Analytics [http://www.google.com/analytics/]], which records data through JavaScript
embedded in the web pages. The advantage and drawback of this approach is that it does
not record automated requests, such as those issued by web crawlers, or requests to non-
HTML resources. While Google Analytics was left enabled during all of the beta phase, it is
now only enabled from time to time. We use it to check the (less accurate) number of non-
robot requests reported via the request log analysis procedure, which relies on user agent
strings matches and the patterns need to be updated from time to time. It also helps us to
get an idea of the browsers and screen resolutions people are using, information which is
less accurate or impossible to get via the web server request logs. Google Analytics can
provide fast and convenient feedback on the impact of certain changes, as data is updated
at least once a day, but it can also slow down the perceived page loading time and
aggravate certain privacy concerns.

How to "go live" with minimal casualties?

Despite all the load and usability testing, there was no guarantee that switching over all the
old sites to the new site in one go would not swamp us with more technical issues and irate
users than we could possibly handle at once. Having a prolonged "beta" period allowed us to
get feedback from many users and to ramp up the number of people (and web crawlers,
etc) using the new site gradually by taking these steps (moving to the next step whenever
we felt comfortable enough to do so):

1. Sending out invitations to certain people and groups to use the new site.
2. Getting the site indexed in Google.

N
at

ur
e

P
re

ce
di

ng
s

: h
dl

:1
01

01
/n

pr
e.

20
08

.2
61

1.
1

: P
os

te
d

6
D

ec
 2

00
8

3. Linking the old sites to the new site.
4. Switching over the old sites one by one.

Outlook

Collecting data and optimizing the use and performance of the website is an ongoing
process. The savings from not having to maintain three separate codebases should free up
enough resources to invest some effort in this, rather than just struggling to keep up with
the latest data format changes as in the past.

One of the biggest challenges UniProt is facing is getting more community involvement to
help cope with the increasing amount and complexity of data. Simply having more people
give feedback when they see incorrect or missing data in UniProt would already be a huge
improvement. One possible approach under investigation is to make such feedback more
rewarding by replacing or supplementing the conventional feedback forms with a
commenting system. Other more complex approaches, such as using wiki software, are
under investigation as well [Mons B, Ashburner M, Chichester C, van Mulligen E, Weeber M,
den Dunnen J, van Ommen GJ, Musen M, Cockerill M, Hermjakob H, Mons A, Packer A,
Pacheco R, Lewis S, Berkeley A, Melton W, Barris N, Wales J, Meijssen G, Moeller E, Roes PJ,
Borner K, Bairoch A: Calling on a million minds for community annotation in
WikiProteins. Genome Biology 2008, 9:R89.].

Looking beyond UniProt: Much of the development effort was spent on issues that are not
UniProt-specific, ranging from handling identifiers in a stable way to most of the code for
the search engine. These issues are likely to be relevant for other life sciences databases as
well. Had there been some kind of framework that provided these features, the
development time could have been reduced significantly. This seems especially important
for smaller databases that may not have resources to reinvent the wheel. It may therefore
be worth incorporating some of the solutions we have come up with here into a framework
(or add them to existing frameworks).

Conclusion

The new UniProt website makes accessing and understanding UniProt easier than ever. The
two main lessons learned are that 1. getting the basics right for such a data provider
website (and likely others as well) has huge benefits, but is not trivial and easy to
underestimate, and that 2. there is no substitute for using empirical data throughout the
development process to decide on what is and what is not working for your users. We hope
to encourage more people in the life sciences community to resist the temptation to spend
time adding bells and whistles to an application, even if this may look better on resumes
and grant progress reports, before getting the basics right, and to put in place more
rigorous procedures for assessing whether or not the site is serving its users well.

Acknowledgements

Authors' contributions

N
at

ur
e

P
re

ce
di

ng
s

: h
dl

:1
01

01
/n

pr
e.

20
08

.2
61

1.
1

: P
os

te
d

6
D

ec
 2

00
8

Most of the design and development work was done by EJ, IP and SD. EG, NR, MJM, PM and
AB coordinated requirements and meetings.

Funding

UniProt is mainly supported by the National Institutes of Health (NIH) grant 2 U01
HG02712-04.

Thanks

Special thanks to the many people within and outside of the UniProt consortium who spent
time providing early feedback on the site, or consented to participating in one of the
usability tests.

Conflict of interest

None declared.

Abbreviations

HTTP - Hyper-Text Transfer Protocol
JMX - Java Management Extensions
JVM - Java Virtual Machine
RDF - Resource Description Framework
REST - REpresentational State Transfer
RSS - Really Simple Syndication Format
TBD - To Be Done
TLD - Top-Level Domain
URI - Uniform Resource Locator
W3C - World Wide Web Consortium
XHTML - eXtensible HTML

References

TBD

N
at

ur
e

P
re

ce
di

ng
s

: h
dl

:1
01

01
/n

pr
e.

20
08

.2
61

1.
1

: P
os

te
d

6
D

ec
 2

00
8

