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Abstract 

 
We demonstrated previously that ethanol inhibition of NMDA receptor (NMDAR) 

function is accompanied by a reduction in tyrosine phosphorylation of Tyr1472 on 

the NR2B subunit, and this action of ethanol is attenuated by a broad spectrum 

tyrosine phosphatase inhibitor. Here we examined whether this ethanol inhibition 

of NMDAR activity was due to the actions of STriatal Enriched protein tyrosine 

Phosphatase (STEP) which has been shown to regulate NMDAR internalization by 

dephosphorylating Tyr1472 on the NR2B subunit. Using whole-cell recordings of 

pharmacologically isolated NMDAR-mediated excitatory post-synaptic currents 

(NMDA EPSCs) from hippocampal CA1 pyramidal neurons, we show that 

intracellular infusion of a substrate-trapping inactive form of STEP (TAT-STEP 

C/S) significantly blocks ethanol inhibition of NMDA EPSCs. Ethanol does not 

inhibit NMDA EPSCs or LTP in neurons from STEP knockout mice, but its effect is 

restored after acute intracellular delivery of wild type TAT-STEP, suggesting that 

STEP mediates ethanol inhibition of NMDAR function.  

 



The majority of excitatory synaptic transmission in the mammalian CNS is mediated by 

the neurotransmitter glutamate, which activates postsynaptic α-amino-3-hydroxy-5-

methyl-4-isoxalone propionic acid (AMPA), kainate and N-methyl-D-aspartate (NMDA) 

subtypes of ionotropic glutamate receptors1. NMDA receptors (NMDARs) in the 

hippocampus consist of NR1/NR2A, NR1/NR2B, and NR1/NR2A/NR2B receptor 

subunit complexes2,3. While NR1 subunits are required to form an active ion channel, 

incorporation of the various NR2 subunits regulate NMDAR channel activity by altering 

the channel kinetics and/or mediating the differential effects of pharmacological agents 

including ethanol.  

 Acute ethanol application inhibits NMDAR channel activity4. In the hippocampus, 

this inhibitory effect of ethanol on NMDARs is widely thought to underlie both the acute 

amnestic effects of ethanol and also, in part, the addictive nature of ethanol5. However, 

the precise molecular mechanisms underlying ethanol’s inhibition of NMDARs have not 

been well-understood. We previously demonstrated that ethanol inhibition of NMDAR 

function is associated with dephosphorylation of tyrosine residues on the NR2A and 

NR2B subunits6. In particular, ethanol reduced phosphorylation of a site, Tyr1472, on the 

NR2B subunit which regulates endocytosis of NMDARs7,8. Moreover, ethanol-induced 

inhibition of NMDAR function was prevented by bath application of the protein tyrosine 

phosphatase (PTP) inhibitor, bpV(phen). Based on these and other findings that 

showed ethanol reduced the tyrosine phosphorylation of NR2 subunits in the cortex9, 

we proposed that ethanol inhibition of NMDAR activity is mediated by a PTP.   

PTPs are a large family of enzymes that are broadly divided into receptor-like PTPs 

and intracellular PTPs10,11,12, and are implicated in a number of neuronal  



functions13,14,15,16. STriatal Enriched protein tyrosine Phosphatase (STEP) is a brain-

specific PTP expressed in the striatum, hippocampus and cortex among other brain 

regions17,18. Within neurons, STEP is localized to the endoplasmic reticulum19 and in 

postsynaptic densities of glutamatergic synapses20. Of the four STEP isoforms, STEP61 

is the only one expressed in the hippocampus18. STEP61 forms a complex with the 

NMDAR, reduces its activity, and opposes the induction of long-term potentiation  

(LTP)21, a form of plasticity widely thought to play a role in learning and memory22. The 

current hypothesis for STEP function is that it blocks the development of synaptic 

strengthening23,24. Consistent with these findings, enhanced STEP activity is associated 

with dephosphorylation of the Tyr1472 residue on the NR2B subunit25, a site that is 

dephosphorylated by ethanol6. In addition, NMDAR trafficking to synaptic membranes is 

increased after RNA interference of STEP23. Based on these data, we predicted that 

STEP mediates the inhibitory effects of ethanol on NMDARs in various brain regions, 

including the hippocampus. We utilized whole-cell recordings of pharmacologically 

isolated NMDA EPSCs in both rat and mouse hippocampal slices. Moreover, we utilized 

the recently generated STEP KO mice26 to further test the hypothesis. Our results show 

that STEP is responsible, at least in part, for the inhibitory effects of ethanol on 

hippocampal NMDAR activity.   

 

Results 

 

Pretreatment of hippocampal slices with bpV(phen) attenuates the effects of 

ethanol on NMDA EPSCs. 

Since the previous work with ethanol and the broad spectrum tyrosine phosphatase 

inhibitor bpV(phen) was determined using extracellular NMDA field EPSPs (fEPSPs)6, 



we first verified that bpV(phen) attenuates ethanol inhibition of NMDAR function in 

individual pyramidal neurons from rat hippocampal slices. Control or 30 min of 10 μM 

bpV(phen)-treated hippocampal slices were transferred to a submersion-type recording 

chamber, perfused with aCSF for 10 min, and monitored with whole-cell recordings in 

CA1 pyramidal neurons to examine the effects of ethanol. The NMDA EPSCs were 

evoked by electrical stimulation of synaptic inputs in the stratum pyramidale. Control 

NMDA EPSCs were inhibited by 35 ± 4% in response to bath application of ethanol (80 

mM; Figure 1).  In contrast, slices pre-treated with bpV(phen) did not show reduced 

NMDA EPSCs in response to ethanol. These results confirm earlier work by Alvestad et 

al.6 and indicate that PTPs may be involved in mediating the inhibitory effects of ethanol 

on NMDAR function. 

 

Postsynaptic administration of TAT-STEP (C/S) blocks ethanol inhibition of NMDA 

EPSCs 

Intracellular injection of STEP (C/S) was previously found to increase NMDA currents21 

and to prevent STEP-mediated endocytosis of NMDARs25. To determine whether STEP 

mediates the inhibitory effect of ethanol on NMDA EPSCs, we administered  

TAT-STEP (C/S) intracellularly into postsynaptic neurons via the recording electrode. 

TAT-STEP (C/S) has a point mutation in its catalytic site that renders STEP catalytically 

inactive. TAT-STEP (C/S) binds to STEP substrates but does not dephosphorylate 

them, and consequently acts as a substrate-trapping protein27.  

TAT-STEP (C/S) was added to the recording microelectrode internal filling solution 

at a concentration of 30 nM. As described above and in other studies28, ethanol (80 

mM) inhibited NMDA EPSCs by 35 ± 4% in control neurons obtained from hippocampal 



slices. However, in neurons that were pre-administered with TAT-STEP (C/S), ethanol 

inhibition of NMDA EPSCs was prevented (Figure 2). Unexpectedly, an ethanol-

mediated enhancement of NMDA EPSCs (10.5 ± 4.9%) was observed in neurons pre-

administered with TAT-STEP (C/S) when compared to EPSCs recorded during baseline 

(pre-ethanol) and washout (post-ethanol) periods [t=2.143, p<0.05, Student’s t test].  A 

control TAT-Myc peptide (30 nM) did not affect the inhibitory actions of ethanol on 

NMDA EPSCs (36.2 ± 4.4% inhibition) and thus, the NMDA inhibition was similar to 

control EPSCs (Figure 2). Therefore, the effects of ethanol on NMDA EPSC amplitudes 

were significantly different between neurons pre-administered TAT-Myc and  

TAT-STEP (C/S) [t=6.894, p<0.001, Student’s t test]. These findings demonstrate that 

TAT-STEP (C/S) prevents ethanol inhibition of synaptic NMDA EPSCs.  

 

Ethanol fails to inhibit NMDA EPSCs in STEP KO mice  

We next investigated the effects of ethanol on NMDA EPSCs using STEP null mutant 

(KO) mice26. Figure 3 indicates that pharmacologically-isolated synaptic NMDA EPSCs 

were readily evoked by electrical stimulation at the stratum pyramidale in hippocampal 

slices prepared from wild type (WT) and STEP KO mice. There was no significant 

difference in the resting membrane potential of CA1 pyramidal neurons in brain slices 

from WT and STEP KO mice (-72.6 ± 1.3 and -70.1 ± 1.5 mV, respectively; t= 1.271, 

p=0.213, Student’s t test). In neurons from WT mice, bath application of ethanol (80 

mM) produced a decrease in synaptic NMDA EPSCs [-25.4 ± 1.9%; t= 13.368, p<0.001, 

compared to the baseline values, Student’s t test]. Ethanol inhibition of NMDA EPSPs in 

WT mice was reversed following washout of the ethanol. However, in neurons from 

STEP KO mice, bath application of ethanol (80 mM) produced a time-dependent 



enhancement of NMDA EPSCs [24.2 ± 4.6%; t=5.261, p<0.001, Student’s t test], 

compared to the baseline values. Enhancement of NMDA EPSCs by ethanol in STEP 

KO mice returned to baseline values upon washout of ethanol (Figure 3). This effect of 

ethanol was significantly different between WT and STEP KO mice [t=9.173, p<0.001, 

Student’s t test] during ethanol treatment (Figure 4). The results demonstrate that 

ethanol inhibits synaptic NMDA EPSCs in WT neurons, whereas ethanol actually 

enhances synaptic NMDA EPSCs in STEP KO neurons.  

To determine whether the changes in NMDA EPSCs were due to presynaptic 

alterations in glutamate release, we next measured paired-pulse facilitation (PPF) in 

hippocampal slices from WT and STEP KO mice in the presence and absence of 

ethanol. Paired-pulse stimulation with an inter-pulse interval of 50 ms (an interval that 

gave optimal facilitation) produced control PPFs with a paired-pulse ratio (PPR, 

peak2/peak1; P2/P1) of 1.75 ± 0.16 for WT and 1.82 ± 0.17 for STEP KO mice (Figure 

4). Ethanol did not significantly alter presynaptic glutamate release in STEP KO mice 

[F(1,22)=0.0391, p>0.845, two-way ANOVA] or in WT mice [F(1,22)=0.593, p>0.449, 

two-way ANOVA]. In addition, there was no significant interaction between genotype 

and ethanol treatment [F(1,22)=0.0396, p>0.844, two-way ANOVA]. Therefore, deletion 

of the STEP gene does not alter presynaptic glutamate release, and ethanol has no 

significant effect on presynaptic glutamatergic transmission. Therefore, these data 

indicate that ethanol inhibition of synaptic NMDA EPSCs is mediated by the STEP 

molecules that are localized in the postsynaptic neuron. 

 

Intracellular administration of wildtype TAT-STEP restores the inhibitory effects 

of ethanol on NMDA EPSCs in STEP KO neurons 



To conclusively demonstrate that STEP mediates the inhibitory effects of ethanol on 

NMDA EPSCs, we restore STEP activity by adding WT TAT-STEP back into neurons 

from STEP KO mice. WT TAT-STEP (30 nM) was pre-administered intracellularly to 

CA1 pyramidal neurons in slices prepared from WT and STEP KO mice. As described 

previously (Figure 3), ethanol (80 mM) inhibited NMDA EPSCs in neurons from WT 

mice by 35 ± 4% (Figure 5).  Pre-administration of WT TAT-STEP to WT neurons did 

not significantly alter the inhibitory effect of ethanol on NMDA EPSCs (Figure 5a). We 

again observed that ethanol (80 mM) significantly potentiated NMDA EPSCs in neurons 

from STEP KO mice (Figure 5c).  Importantly, pre-administration of WT TAT-STEP to 

neurons from STEP KO mice showed an  inhibitory effect of ethanol on NMDA EPSCs 

of 31.1 ± 4.4% [F(3,27)=51.134, p<0.001, one-way ANOVA] (Figure 5e).  These results 

indicate that the introduction of WT TAT-STEP into neurons from STEP KO mice 

restored the inhibitory effect of ethanol on NMDA EPSCs. 

 

Ethanol effects on GABAergic transmission do not differ between wild type and 

STEP KO mice. 

We have previously shown that ethanol potentiates synaptic GABAA receptor-mediated 

inhibitory postsynaptic currents (GABAA IPSCs) in rodent hippocampal slices28. 

Therefore, we next examined whether GABAA IPSCs in STEP KO mice were altered by 

ethanol.  Resting membrane potentials were not significantly different between neurons 

from WT (-72.5 ± 2.7 mV) and STEP KO (-69.5± 2.0 mV) mice for these experiments. 

Previous work has shown that electrical stimulation of the stratum pyramidale in several 

mouse and rat strains readily evokes synaptic GABAA IPSCs that are potentiated by 80 

mM ethanol29, 30.  Here we found that bath application of ethanol (80 mM) enhanced 



GABAA IPSCs in neurons from both WT and STEP KO mice (+29.8 ± 5.2% and +35.6 ± 

1.8%, respectively) [t=5.780, p=0.321, Student’s t test]. Paired-pulse determinations of 

GABAA IPSCs also are not different in the KO compared to the WT mice with respect to 

genotype [F(1,16)=3.691, p<0.075, two-way ANOVA] and to the effects of ethanol 

[F(1,16)=0.578, p>0.458, two-way ANOVA] (Figure 6). Therefore, we conclude that the 

potentiating effects of ethanol on GABAA IPSCs were not altered in the KO mice, so 

STEP does not seem to be involved in the ethanol action on GABAergic function.  

 

Ethanol fails to impair high frequency stimulus-induced LTP in STEP KO mice 

A number of previous studies have demonstrated that ethanol prevents induction of  

LTP31,32. NMDARs have been shown to be required for LTP induction in the CA1 region 

of the hippocampus33, and therefore, a widely accepted hypothesis underlying ethanol’s 

blockade of LTP induction involves ethanol’s inhibition of NMDAR function. Since 

ethanol fails to inhibit NMDAR function in STEP KO mice (Figure 3), we predicted that 

LTP would be observed in STEP KO mice even in the presence of ethanol. To test this 

assumption, high frequency stimulation (HFS) was applied to the Schaeffer-collateral 

commissural fiber pathway, and LTP was measured extracellularly in the CA1 region of 

hippocampal slices obtained from WT and STEP KO mice.  In slices from WT mice, 

HFS elicited robust LTP as measured by both the amplitude and slope of the fEPSP. 

Bath application of ethanol (80 mM) for 10 min prior to as well as during the HFS period 

blocked the induction of LTP in slices from WT mice (Figure 7).  In contrast, ethanol was 

unable to block the induction of LTP in slices from STEP KO mice [F(3,26)=5.443, 

p<0.005, one-way ANOVA]. Post-hoc pair-wise comparison shows that there was no 

significant difference in the slope of LTP in control slices from WT and STEP KO mice, 



and that ethanol only blocked the LTP in slices from WT mice (Figure 7e). Similar 

results were seen when the LTP amplitudes were measured (Figure 7f).  In conclusion, 

ethanol inhibition of LTP induction was not prevented in STEP KO mice.  

 

Discussion 

Previous work from our laboratory demonstrated that acute ethanol reduced 

NMDAR function and decreased tyrosine phosphorylation of NR2A and NR2B6. Given 

that the PTP inhibitor bpV(phen) prevented ethanol-induced inhibition of NMDAR 

function6, we concluded that the inhibitory effects of ethanol on NMDARs were 

mediated by PTPs. However, the identity of the PTP(s) mediating this inhibitory effect 

on NMDARs was unknown. In the present study, we examined whether STEP was the 

PTP responsible for ethanol’s inhibition of NMDAR activity. 

NMDAR activity is regulated by protein phosphorylation34, 35. Specifically, tyrosine 

phosphorylation of NMDARs by the Src family of protein kinases enhances receptor 

function36,37,38, whereas PTPs reduce NMDAR channel activity36, 21. In the CNS, several 

PTPs have been identified to influence NMDAR activity39, 40 ; however, these particular 

PTPs indirectly modulate NMDAR activity by dephosphorylating an inhibitory site on 

Src-family tyrosine kinases and consequently increase NMDAR function. We were in 

search of a PTP that directly dephosphorylates NMDAR subunits and would regulate 

the inhibitory effects of ethanol on NMDAR function.  One likely candidate is the PTP 

STEP. 

Two relevant studies by Pelkey et al.21 and by Braithwaite et al.24 demonstrated 

that the PTP STEP and NMDARs co-immunoprecipitate together, suggesting an 

interaction of STEP with NMDAR complexes. STEP reduces NMDAR function and 



negatively influences LTP21.  In addition, STEP is required for internalization of both 

AMPARs and NMDARs. Specifically, beta amyloid activation of STEP leads to 

dephosphorylation of the regulatory Tyr1472 on the NR2B subunit and promotes 

endocytosis of NMDARs25. Moreover, (RS)-3, 5-dihydroxyphenylglycine (DHPG) 

stimulation of hippocampal slices leads to STEP-mediated internalization of the AMPAR 

subunits GluR1/GluR241. Based on these results, we predicted that STEP is the PTP 

which regulates the inhibitory effects of ethanol on NMDAR activity. 

If ethanol inhibits NMDAR activity via STEP, we hypothesized that inhibition of 

STEP activity should attenuate ethanol-induced inhibition of NMDAR function. To test 

this possibility, we first investigated whether postsynaptic micro-injection of the 

substrate-trapping TAT-STEP (C/S) peptide27 prevented ethanol inhibition of NMDA 

EPSCs. Indeed, we found that TAT-STEP (C/S) attenuated the effects of ethanol on 

NMDA EPSCs, suggesting that competition for available endogenous STEP substrates 

sufficiently blocks the ability of ethanol to reduce NMDAR activity.  

Since TAT-STEP (C/S) binds to several STEP substrates12, 27, 26, 41 , we utilized 

STEP KO mice which were recently generated 26 . We tested the effects of ethanol on 

hippocampal synaptic NMDA EPSCs in WT and STEP KO mice. Synaptically evoked 

NMDA EPSCs were resistant to the inhibitory effects of ethanol in STEP KO mice, 

suggesting that STEP is necessary for ethanol’s inhibition of NMDA EPSCs. An 

important consideration is that compensatory mechanisms may occur in the STEP KO 

mice which contribute to the failure of ethanol to inhibit NMDA EPSCs in these mice. 

For example, previous studies in mice created with other gene deletions report that 

compensatory mechanisms develop and contribute to the behavioral effects of ethanol 

as a means of homeostasis42. To explore this possibility, we acutely restored WT TAT-



STEP to neurons from STEP KO slices and found that the ability of ethanol to inhibit 

NMDA EPSCs was rescued. This finding strongly supports the hypothesis that STEP is 

directly involved in mediating the ethanol inhibition of NMDA EPSCs. 

During ethanol application to STEP KO slices, we observed facilitation of NMDA 

EPSCs that continued during the early period of washout (Figure 3). This facilitation was 

not observed in neurons administered with TAT-STEP (C/S) or in WT mice. As 

discussed previously, one possible explanation could be that compensatory 

mechanisms arise during development of STEP KO mice. The hypothesis we favor is 

that the absence of STEP leads to increased tyrosine phosphorylation of STEP 

substrates under basal conditions. In support of this hypothesis, recent evidence 

demonstrates that STEP KO mice have elevated levels of pY1472-NR2B (Venkitaramani 

and Lombroso, unpublished observations) and pY204-ERK26.  A consequence of this 

elevated tyrosine phosphorylation is increased surface expression of NR1/NR2B 

(Venkitaramani and Lombroso, unpublished observations) and GluR1/2 in STEP KO 

mice41. Perhaps ethanol enhances NMDAR activity during ethanol application and early 

washout in STEP KO mice by aberrantly increasing the surface expression of NMDARs. 

We also investigated the effects of ethanol on LTP induction in STEP KO and 

WT mice. Pelkey et al21 previously showed that endogenous STEP functions as a 

“brake” to regulate NMDAR activity and LTP. We reasoned that removal of STEP might 

enhance the expression of LTP. To our surprise, we found that hippocampal LTP 

elicited by HFS does not differ between STEP KO and WT mice. One possible 

explanation for this result may be that STEP KO mice exhibit similar degrees of HFS-

induced LTP but that their threshold for induction is lower than WT mice.  Importantly, 

STEP KO mice are resistant to the inhibitory effects of ethanol on LTP induction in the 



CA1 region of the hippocampus, a brain region where LTP induction is NMDAR 

dependent31, 32. These results are consistent with the involvement of STEP in mediating 

the effects of ethanol on NMDAR activity in the hippocampus. 

Several reports have shown that PTPs, and in particular STEP, are critically 

involved in NMDAR and AMPAR internalization25, 41. For example, inhibition of PTPs 

enhances NMDAR surface expression43, 44, 45, and knock-down of STEP by RNA 

interference markedly increases the surface expression of functional NMDARs23.  

Phosphorylation of Y1472-NR2B is highest in synaptic membranes44, and 

dephosphorylation of Y1472-NR2B is required for endocytosis of NR2B-containing 

NMDARs7, 8.  Additionally, beta amyloid-induced NMDAR endocytosis requires activity 

of STEP for dephosphorylation of Tyr1472  -NR2B25. We predict that increased surface 

expression of NMDARs after RNAi of STEP23 is due to impaired STEP-dependent 

dephosphorylation of pY1472-NR2B, as well as increased activity of Fyn46, the Src-family 

member which phosphorylates pY1472-NR2B35.  Based on these studies, we propose 

that ethanol inhibition of NMDAR function is due to STEP-dependent endocytosis of 

NMDARs from neuronal surface membranes.  

In conclusion, we demonstrate that STEP plays a crucial role in regulating the 

inhibitory effects of ethanol on NMDARs in the hippocampus.  STEP KO mice are 

resistant to the disrupting effects of ethanol on NMDAR function and LTP induction, and 

the effects of ethanol on NMDARs are strongly implicated in ethanol tolerance and 

dependence5. As a result, STEP may be an important new target for the development of 

therapeutic strategies for treating alcoholism.  

 

 



 

METHODS 

Reagents and animals. All procedures were approved by the Institutional Animal Care 

and Use Committee of the University of Colorado Denver and Health Sciences Center. 

STEP KO mice were generated by classical homologous recombination and back-

crossed for 7 generations onto C57/B6 mice26.  

We used a catalytically inactive mutant of STEP, in which an essential cysteine in the 

catalytic domain was converted to a serine (C/S).21,27  STEP is inactivated by this 

mutation, but still binds to its substrates and acts as a substrate-trapping protein47. We 

fused the human immunodeficiency virus-type 1, to the N-terminus of TAT-STEP (C/S) 

to make it cell-permeable48. A similar TAT-Myc fusion peptide was made and used as a 

control in these experiments.  

Hippocampal Slice Recordings. Acute hippocampal slices were prepared from 6-8 

weeks old male wild type mice, STEP null mutant mice, or Sprague-Dawley rats and 

placed in a storage chamber for at least 1.5 hr prior to recording30, 28. For whole-cell 

recording of NMDA EPSCs or GABAA IPSCs, a single slice was transferred to a 

recording chamber and superfused with artificial cerebrospinal fluid (aCSF) at a bulk 

flow rate of 2 ml/min. The aCSF consisted of (in mM): 126 NaCl, 3 KCl, 1.5 MgCl2,  

2.4 CaCl2, 1.2 NaHPO4, 11 D-glucose, 25.9 NaHCO3, saturated with 95% O2 and 5% 

CO2 at 32.5 ± 1.0 °C. A Flaming/Brown electrode puller (Sutter Instruments, Novato, 

CA) was used to fabricate whole-cell microelectrodes with resistances of 6-9 MΩ when 

filled with a K+-gluconate internal solution. The K+-gluconate internal solution contained 

(in mM): 130 K+-gluconate, 1 EGTA, 2 MgCl2, 0.5 CaCl2, 2.54 disodium ATP, and  



10 HEPES; adjusted to pH 7.3 with KOH and 280 mOsm. CA1 pyramidal neurons were 

recorded within the stratum pyramidale layer and electrically evoked synaptic responses 

were obtained by stimulation at the stratum pyramidale layer with twisted bipolar 

stimulating electrodes made from 0.0026-in diameter Formvar-coated nichrome  

wire49, 50  to activate presynaptic fibers on or near the pyramidal cell soma (proximal 

stimulation). Drugs were applied at 100-fold concentration by bath superfusion at 1/100 

of the aCSF bulk flow rate of 2 ml/min via calibrated syringe-pumps (Razel Scientific 

Instruments Inc, Stamford, CT) to obtain the desired concentrations in the bath 

perfusate. 

Measurement of GABAA IPSCs: CA1 pyramidal neurons were voltage-clamped to 

-55 mV (corrected for the liquid-junction potential) from the normal resting membrane 

potential of -65 to -70 mV. GABAA receptor-mediated IPSC (GABAA IPSCs) responses 

were evoked (200 μs, 4-10 V pulses) with a bipolar stimulating electrode at 60 s 

intervals placed in the stratum pyramidale approximately 200-300 μm from the recorded 

cell. 6-cyano-7-nitroquinoxaline-2,3-dione disodium salt (CNQX, 20 μM) and D (-)-2-

amino-5-phosphonovaleric acid (APV, 25 μM), were added to the superfused aCSF to 

block α-amino-3-hydroxy-5-methyl-4-isoxalone propionic acid (AMPA) and N-methyl-D-

aspartate (NMDA) receptor-mediated EPSCs, respectively. This stimulation-recording 

paradigm evokes synaptic GABAergic responses predominantly from proximal inputs 

(i.e., GABAA responses from interneurons that synapse on or near the soma of the 

recorded pyramidal cell in the stratum pyramidale). Since GABAB activity can reduce the 

effects of ethanol on the GABAA response, pretreatment with the GABAB antagonist, 3-

[[(3,4-dichlorophenyl) methyl]amino] propyl] diethoxymethyl) phosphinic acid  

(CGP-52432, 0.5 µM) was added to the bath perfusate. 



Measurement of NMDA EPSCs: CA1 pyramidal neurons were voltage-clamped at  

-60 mV (corrected for the liquid-junction potential) from the normal resting membrane 

potential of -65 to -70 mV. The NMDA receptor-mediated EPSCs (NMDA EPSCs) were 

isolated pharmacologically using CNQX (20 μM) and bicuculline methiodide (BMI, 

30 μM) to block AMPA and GABAA receptor-mediated currents, respectively. NMDA 

EPSC responses were evoked at proximal positions as described for recording GABAA 

responses (i.e., stimulation of glutamatergic neurons that synapse on or near the soma 

of the recorded pyramidal cell). Also, the GABAB receptor activity was inhibited by the 

GABAB antagonist, CGP-52432 (0.5 μM). 

 

Measurement of Long Term Potentiation. Synaptic responses were evoked with 

bipolar tungsten electrodes placed in the CA1 pyramidal cell layer. Test stimuli were 

delivered at 0.033 Hz with the stimulus intensity set to 40-50% of that which produced 

maximum synaptic responses. Tetanic stimulation consisted of two trains of 100 Hz 

stimuli lasting for 1 s each, with an inter-train interval of 15 s. Field potential recordings 

were made with glass micropipettes filled with aCSF and placed in the stratum radiatum 

approximately 200-300 μm from the cell body layer. In control wild type and STEP 

knockout mice, this stimulation caused a potentiated response (LTP) that persisted at 

an elevated level (> 20% above baseline) for more than 40 min. Field EPSP (fEPSP) 

slopes were calculated as the initial slope measured between 10-30% from the  origin of 

the negative deflection.  

 

Statistical Analysis.   All data were expressed as mean ± S.E.M. Significant 

differences between two groups were determined by unpaired t-test while significance 



among multiple groups were evaluated either by one-way or two-way ANOVA with 

Tukey’s post hoc pairwise comparisons. P values (α) less than 0.05 were set as 

significance throughout the experiments. Computer-assisted software Sigma Stat 

Program (SYSTAT SOFTWARE INC, San Jose CA) was used in statistical analysis. 
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Figure Legend 

 

Figure 1. The protein tyrosine phosphatase inhibitor bpV(phen) blocks ethanol 

inhibition of synaptic NMDA EPSCs. (a) Representative NMDA current traces of a 

neuron from a rat hippocampal slice shows that acute ethanol application inhibits 

synaptic NMDA EPSCs from control (Con) brain slices. (b) Representative NMDA 

EPSC traces of a CA1 neuron from a bpV(phen)-treated brain slice (bpV) shows that 

the effects of acute ethanol on NMDA EPSCs are blocked by 10 μM bpV(phen) 

treatment. (c) Representative traces show input-output (I/O) relationship of NMDA 

EPSCs. The stimulus strength (input) is shown as 1X, 2X, or 4X times of the threshold 

stimulus strength that can evoke an NMDA EPSC response. (d) The composite data 

show that bpV(phen) blocks the ethanol inhibition of NMDA EPSCs. Control cells 

(n=14); bpV(phen)-treated cells (n=8); *** p<0.001  

Scale bar represents 50 ms and 50 pA  

 

Figure 2. Microinjection of TAT-STEP (C/S) into postsynaptic neurons blocks the 

inhibitory effects of ethanol on NMDA EPSCs. (a) Current traces show that 

microinjection of Tat-Myc (Myc) does not alter the inhibitory effects of ethanol on NMDA 

EPSCs. (b) Administration of TAT-STEP (C/S) (STEP C/S) into the postsynaptic 

pyramidal neuron blocks the inhibitory effects of ethanol on NMDA EPSCs. (c) The 

composite data show that Tat-Myc (n=4) does not alter the effects of ethanol while TAT-

STEP (C/S) (n=5) blocks the effects of ethanol on the NMDA EPSCs.  *** p<0.001 

Scale bar represents 50 ms and 50 pA 

 



Figure 3. Ethanol fails to inhibit NMDA EPSCs in STEP KO mice. (a) Whole-cell 

current traces of a hippocampal CA1 neuron from a wild type (WT) mouse are shown. 

The NMDA EPSC trace that is measured at baseline (A), during ethanol application (B), 

an early period during ethanol washout (C), and a late period of ethanol washout (D) of 

a WT mouse (WT) at the times indicated in panel c. (b) Whole-cell current traces from a 

hippocampal CA1 neuron of the STEP KO mouse (KO) are shown. An NMDA EPSC 

that is measured at the time indicated in part c. (c) The time course of the effects of 

ethanol on NMDA EPSC amplitude from WT (   ●   , n=8 cells) or STEP KO (  ○ , n=10 

cells) mice. These data indicate that acute ethanol application inhibits NMDA EPSCs 

from WT mice, whereas acute ethanol has an enhancing effect on NMDA EPSCs from 

KO mice.  

 

Figure 4. Presynaptic glutamate release is not influenced by ethanol or genotype.   

(a) Representative NMDA EPSC traces from WT mice (n=10 cells) demonstrate that 

acute ethanol application inhibits the amplitude of NMDA EPSCs. (b) Representative 

NMDA EPSC traces from STEP KO neurons (n=10 cells) show that ethanol potentiates 

the amplitude of NMDA EPSCs. (c) The composite data show that acute ethanol 

application produces approximately a 28% reduction in the amplitude of synaptic NMDA 

EPSCs in WT mice, but it stimulates the NMDA EPSCs by 24% in STEP KO mice. 

Current traces show the paired pulse facilitation of synaptic NMDA EPSCs in WT (d) 

and STEP KO (e) mice. Although ethanol inhibits these responses in WT neurons and 

enhances these responses in STEP KO neurons, the paired pulse ratios remain 

unchanged in both genotypes. (f) The composite data show that the STEP gene 



deletion does not alter presynaptic events or ethanol effects on these events on 

NMDAR neurotransmission (n=5 for WT and n=7-8 for STEP KO neurons). *** p<0.001 

Scale bar represents 50 ms and 50 pA 

 

Figure 5. Microinjection of WT TAT-STEP restores the inhibitory effects of ethanol 

on NMDA EPSCs in neurons from STEP KO mice.  (a) Whole-cell recordings show 

that microinjection of vehicle (Con) does not alter the inhibitory effects of ethanol on 

NMDA EPSCs in neurons from WT mice (n=8 cells). (b) Representative NMDA EPSC 

traces show that intracellular injection of wild type TAT-STEP (STEP) into a neuron 

does not alter the effects of ethanol on NMDA EPSCs in WT mice (n=8 cells).  (c) 

Representative NMDA EPSC traces show that intracellular injection of vehicle (Con) 

does not alter the stimulatory effects of ethanol on NMDA EPSCs from STEP KO mice 

(n=10 cells), but it restores the effects of ethanol on NMDA EPSCs in STEP KO 

neurons (n=5 cells) (d). The composite data (e) show that there is sufficient STEP 

activity in WT neurons to mediate the action of ethanol on NMDARs, so that additional 

STEP does not further enhance the effects of ethanol. However, replacement of WT 

TAT-STEP can restore the effects of ethanol in STEP KO neurons. *** p<0.001     

Scale bar represents 50 ms and 50 pA 

 

Figure 6. GABAA IPSCs are potentiated in both WT and STEP KO mice. 

 Whole-cell current responses show synaptic GABAA IPSCs and the ethanol 

enhancement of these GABAA IPSCs from WT (a) and STEP KO (b) neurons. The 

composite data (c) show that ethanol stimulates GABAA IPSCs to a similar extent in 

both WT (n=5) and STEP KO (n=5) neurons. Paired-pulse responses and the effects of 



ethanol on these GABAA IPSCs in WT (d) and STEP KO (e) neurons are shown. The 

composite data (f) show that neither the control (Con) paired pulse ratio (PPR) nor the 

effects of ethanol (EtOH) on the PPR was altered in WT (n=5 cells) or in STEP KO (n=5 

cells). Scale bar represents 50 ms and 200 pA 

 

Figure 7. Ethanol fails to inhibit the induction of LTP in STEP KO mice. Field 

excitatory postsynaptic potential (fEPSP) traces show hippocampal LTP induction in 

brain slices treated with control aCSF (Con) or acute ethanol (80 mM) (EtOH) in WT (a) 

and STEP KO (b) mice.  High frequency stimulation (HFS, two trains of 100 Hz 

stimulation, separated by 15 s) of the stratum radiatum produces a robust LTP of the 

fEPSP slope in both WT (c) and STEP KO (d) mouse hippocampal slices under control 

conditions (  ●  ) or following 10 min of EtOH administration (  ○  ). However, after acute 

ethanol application, the same stimulation fails to induce LTP in WT mice, while LTP can 

still be obtained from STEP knockout mice. Mean changes in the slope (e) and 

amplitude (f) of the fEPSPs by ethanol from WT (n=8) and STEP KO (n=7) mice are 

shown. ** p<0.005 
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