A test of $p s b K-p s b I$ and $a t p F-a t p H$ as potential plant DNA barcodes using the flora of the Kruger National Park as a model system (South Africa)

Renaud Lahaye ${ }^{1, *,}$, Vincent Savolainen ${ }^{2,3}$, Sylvie Duthoit ${ }^{1}$, Olivier Maurin ${ }^{1}$ and Michelle van der Bank ${ }^{1}$

Author affiliation: ${ }^{1}$ Department of Botany and Plant Biotechnology, APK Campus, University of Johannesburg, P. O. Box 524, Auckland Park 2006, Johannesburg, South Africa; ${ }^{2}$ Royal Botanic Gardens, Kew, Richmond TW9 3DS, UK; ${ }^{3}$ Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK.

We thank the South African National Research Foundation, the University of Johannesburg, SASOL, the UK Darwin Initiative, and The Royal Society (UK) for funding. We also thank the Kruger National Park, South African National Parks, H. Eckhardt, I. Smit, G. Zambatis, T. Khosa, for granting access to the park and sharing data; Stephen Boatwright for proofreading the manuscript; and T. Rikombe, R. Bryden, T. Mhlongo, H. van der Bank for fieldwork.
*To whom correspondence should be addressed: lahaye@cict.fr

Introduction

DNA barcoding is a new technique that uses short, standardized DNA sequences (400-800 bp) of an organism to determine its identity. Because this sequence has to be variable enough to identify individual species, but not too variable within the same species so that a clear threshold can be defined between intra- and inter-specific diversities, it is very challenging to apply this technique to all species on the planet. A DNA barcode has been identified for animals, i.e. the mitochondrial gene coxl, which shows strong abilities in identifying cryptic species, accelerating biodiversity inventories and helping to identify species from degraded material (e.g. to control trade of threatened) . For plants, the identification of a suitable DNA barcode is more problematic. Cho et al. showed that mitochondrial DNA evolves too slowly in plants to provide a region variable enough to discriminate between species. Then the quest for the best suitable barcode started and is still ongoing .

Kress et al. opened the debates and suggested the use of multiple genes to identify plant species quickly and accurately. At the Second International Barcode of Life Conference in Tapei (September 2007), at least five different plant DNA barcodes were proposed, but no consensus reached. Among those, both atpF-atpH and psbK-psbI suggested by Kim et al. have not yet been tested. Here, we evaluate the use of these loci as DNA barcodes for plants by applying them to a wide range of plant species. The two new intergenic loci atpF-atpH and $p s b K-p s b L$ are both localized in the large single copy (LSC) of the plastid genome. The genes atpF and atpH encode ATP synthase subunits CFO I and CFO III, respectively. Both genes $p s b K$ and $p s b I$ encode two low molecular mass polypeptides, K and I, respectively, of the photo-system II . These two new loci are conservative from algae to land plants and even in parasitic plants. In this study, we focus on the trees and shrubs from the Kruger National Park (hereafter KNP), part of the Maputaland-Pondoland-Albany hotspot in southern Africa. On a selected sampling from
the 2,700 taxa surveyed in the area, we applied several metrics following Lahaye et al. to evaluate the efficiency of combining matK either to trnH-psbA and/or atpF-atpH and/or $p s b K-p s b I$ for DNA barcoding purposes.

Material and Methods

Sampling. In total 101 taxa from the KNP were sampled, covering 18 families from the monocotyledons to the euasterids II. This dataset included 31 species of trees and shrubs in which we had more than one representative per species, 3 species of Orchids, one of which with 2 representatives, and 3 parasitic plants, one of which is achlorophyllous. Parasitic plants have been sampled to test the universality of the potential DNA barcodes. We used Amborella trichopoda Baill. (complete genome GenBank accession AJ506156) as outgroup for the phylogenetic analyses. All specimens were collected in different ecosystems when possible (Figure 1) and voucher specimens are available as detailed in Table 1.

Collection and preservation. Collection of plant material was done in the KNP with the assistance of the park's rangers. Plants were sampled and pressed for herbarium voucher specimens in triplicate, one for the herbarium of the KNP, one for Kew Herbarium (K; United Kingdom), and one for the herbarium at Pretoria (PRE; South Africa). Information about the locality and habit of collected plants were entered on a palmtopGPS to facilitate their further treatment, and also noted on hard copy for security. For each plant collected, leaf material was stored in silica for molecular studies, and flowers and fruit stored in ethanol when available.

DNA sequencing. Total DNA was extracted from dried leaf material using the standard method of Doyle and Doyle and cleaned with QIAquick silica columns (Qiagen, Helden,

Germany). Sequences of matK and trnH-psbA for each taxa were published in Lahaye et al. and their accession numbers are available from GenBank (Table 1). We amplified $a t p F$-atpH and $p s b K-p s b I$ using PCR as follows: 35 cycles, 30 sec denaturation at $94^{\circ} \mathrm{C}$, 40 sec annealing at $51^{\circ} \mathrm{C}$, and 40 sec extension at $72^{\circ} \mathrm{C}$. Primers were kindly provided by Kim Ki-Joong: atpF-atpH- atpF 5'-ACTCGCACACACTCCCTTTCC-3', atpH 5'-GCTTTTATGGAAGCTTTAACAAT-3'; and psbK-psbI: psbK-5'-TTAGCCTTTGTTTGGCAAG-3', psbI- 5'-AGAGTTTGAGAGTAAGCAT-3'. After cycle sequencing using Big Dye terminator v3.1 and sequencing on a 3130 xl genetic analyzer (Applied Biosystems, UK), electropherograms were edited using SEQUENCER 4.6 software (Genes Codes Corporation, USA) and DNA sequences aligned by eye in PAUP4b10* (incomplete sequences at both ends were excluded from the analyses). Taxa with missing data (amplification or sequencing failed) were removed from the combined matrix in order to analyze complete matrices.

Figure 1. Map of the KNP with landsystems following Venter (1990) and collecting points from this study

$\stackrel{\infty}{\infty}$	Plant Family	name Checked on IPNI
	Fabaceae	Acacia exuvialis Verdoorn
	Fabaceae	Acacia exuvialis Verdoorn
	Fabaceae	Acacia exuvialis Verdoorn
	Fabaceae	Acacia nigrescens Oliver
	Fabaceae	Acacia nigrescens Oliver
	Fabaceae	Acacia nigrescens Oliver
	Fabaceae	Acacia tortilis Hayne
	Fabaceae	Acacia tortilis Hayne
	Fabaceae	Acacia tortilis Hayne
$\begin{aligned} & \text { ம் } \\ & \infty \\ & \hline \end{aligned}$	Orchidaceae	Acampe praemorsa (Roxb.) Blatt. \& McCann
	Amborellaceae	Amborella trichopoda Baill.
	Orchidaceae	Ansellia africana Lindl.
	Orchidaceae	Ansellia africana Lindl.
	Orchidaceae	Bonatea speciosa Willd.
	Asteraceae	Brachylaena huillensis O.Hoffm.
	Asteraceae	Brachylaena huillensis O.Hoffm.
	Asteraceae	Brachylaena huillensis O.Hoffm.
	Combretaceae	Combretum apiculatum Sond.
	Combretaceae	Combretum apiculatum Sond.
	Combretaceae	Combretum apiculatum Sond.
	Combretaceae	Combretum collinum Fresen.
	Combretaceae	Combretum collinum Fresen.
	Combretaceae	Combretum collinum Fresen.
	Combretaceae	Combretum hereroense Schinz
	Combretaceae	Combretum hereroense Schinz
	Combretaceae	Combretum hereroense Schinz
	Euphorbiaceae	Croton gratissimus Burch
	Euphorbiaceae	Croton gratissimus Burch
	Euphorbiaceae	Croton gratissimus Burch

Voucher	Location	GPS	Altitude	matK	trnH-psbA	atpF-atpH	psbK-psbI
OM260	KNP	S24 5854.3 E31 3426.3	284 m	EU214205	EU213781	-	EU626889
RL1204	KNP	S25 2935.4 E31 2812.3	319 m	EU214206	EU213782	EU626796	EU626890
RL1412	KNP	S25 2141.5 E31 3056.5	320 m	EU214207	EU213783	-	EU626891
RL1111	KNP	S25 0626.4 E31 3024.5	452 m	EU214208	-	EU626797	EU626892
RL1205	KNP	S25 29 35.4 E31 2812.3	319 m	EU214209	EU213784	EU626798	EU626893
RL1656	KNP	S22 4129.6 E31 0137.2	439 m	EU214210	EU213785	EU626799	EU626894
OM261	KNP	S24 5920.9 E31 3434.5	266 m	EU214213	EU213788	EU626800	EU626895
RL1483	KNP	S24 3653.6 E31 4051.4	333 m	EU214211	EU213786	EU626801	EU626896
RL1608	KNP	S22 5738.1 E31 1450.5	302 m	EU214212	EU213787	EU626802	EU626897
RBN203	KNP	S22 4206.1 E30 5814.4	504 m	EU214214	EU213789	EU626803	EU626898
-	-	-	-	AJ506156	AJ506156	AJ506156	AJ506156
OM1163	KNP	S25 1254.8 E31 3536.0	280 m	EU214215	-	EU626804	EU626899
OM531	KNP	S25 1954.3 E31 4428.5	225 m	EU214216	-	EU626805	EU626900
RL1158	KNP	S25 1311.4 E31 2341.8	472 m	EU214217	EU213790	EU626806	EU626901
OM1281	KNP	S23 2854.6 E31 3327.0	421 m	EU214218	EU213791	EU626807	EU626902
OM247	KNP	S25 0612.7 E31 3544.2	276 m	EU214219	EU213792	EU626808	EU626903
RBN360	KNP	S22 4251.4 E31 2346.3	507 m	EU214220	EU213793	EU626809	EU626904
RL1100	KNP	S25 0624.7 E31 3041.4	389 m	EU214221	EU213794	EU626810	EU626905
RL1185	KNP	S25 2311.2 E31 3042.1	391 m	EU214222	EU213795	EU626811	EU626906
RL1355	KNP	S25 2011.4 E31 4948.0	213 m	EU214223	EU213796	EU626812	EU626907
OM722	KNP	S25 0007.4 E31 2107.0	378 m	EU214224	EU213797	EU626813	EU626908
RL1164	KNP	S25 1444.5 E31 2639.8	419 m	EU214225	EU213798	EU626814	EU626909
RL1392	KNP	S25 25 45.2 E31 2626.4	334 m	EU214226	EU213799	EU626815	EU626910
RL1120	KNP	S25 0628.6 E31 2958.5	383 m	EU214227	EU213800	EU626816	EU626911
RL1183	KNP	S25 2311.2 E31 3042.1	391 m	EU214228	EU213801	EU626817	EU626912
RL1364	KNP	S25 1718.5 E31 4634.6	235 m	EU214229	EU213802	EU626818	EU626913
OM785	KNP	S23 4824.9 E31 3827.2	285 m	EU214230	EU213803	EU626819	EU626914
RL1619	KNP	S22 4543.6 E31 1050.8	379 m	EU214231	EU213804	EU626820	EU626915
RL1621	KNP	S22 4552.1 E31 1029.1	414 m	EU214232	EU213805	EU626821	EU626916

	Plant Family	name Checked on IPNI
	Malvaceae	Grewia villosa Willd.
	Apiaceae	Heteromorpha arborescens Cham. \& Schltdl.
	Apiaceae	Heteromorpha arborescens Cham. \& Schltdl.
∞	Apiaceae	Heteromorpha arborescens Cham. \& Schltdl.
앙	Hydnoraceae	Hydnora johannis Becc.
入	Arecaceae	Hyphaene coriacea Gaertn.
\geq	Arecaceae	Hyphaene coriacea Gaertn.
\bullet	Arecaceae	Hyphaene coriacea Gaertn.
O	Arecaceae	Hyphaene coriacea Gaertn.
©	Arecaceae	Hyphaene petersiana Klotzsch ex Mart
	Arecaceae	Hyphaene petersiana Klotzsch ex Mart
\oplus	Myrothamnaceae	Myrothamnus flabellifolia Welw.
∞	Myrothamnaceae	Myrothamnus flabellifolia Welw.
\bigcirc	Myrothamnaceae	Myrothamnus flabellifolia Welw.
ก	Anacardiaceae	Rhus gueinzii Sond.
$\frac{\mathscr{O}}{2}$	Anacardiaceae	Rhus gueinzii Sond.
$\stackrel{\text { c }}{ }$	Anacardiaceae	Rhus gueinzii Sond.
응	Anacardiaceae	Rhus leptodictya Diels
\bigcirc	Anacardiaceae	Rhus leptodictya Diels
즐	Anacardiaceae	Rhus leptodictya Diels
\cdots	Anacardiaceae	Rhus transvaalensis Engl.
-	Anacardiaceae	Rhus transvaalensis Engl.
¢	Anacardiaceae	Rhus transvaalensis Engl.
\bigcirc	Solanaceae	Solanum panduriforme Drège ex Dunal
(1)	Solanaceae	Solanum panduriforme Drège ex Dunal
$\underset{\sim}{7}$	Solanaceae	Solanum panduriforme Drège ex Dunal
Z	Apiaceae	Steganotaenia araliacea Hochst.
	Apiaceae	Steganotaenia araliacea Hochst.
	Apiaceae	Steganotaenia araliacea Hochst.
	Orobanchaceae	Striga elegans Benth.

Voucher	Location	GPS	Altitude	matK	trnH-psbA	atpF-atpH	psbK-psbI
RL1569	KNP	S23 2448.9 E31 3221.8	363 m	EU214263	EU213835	-	EU626945
OM1430	KNP	S25 1327.0 E31 2034.3	655 m	EU214264	EU213836	EU626848	EU626946
OM1488	KNP	S24 5958.3 E31 2104.3	359 m	EU214265	EU213837	EU626849	EU626947
OM1516	KNP	S25 20 29.0 E31 3125.8	426 m	EU214266	EU213838	EU626850	EU626948
OM534	KNP	S25 2137.5 E31 4311.1	241 m	EU214267	-	-	EU626949
OM1184	KNP	S25 08 03.4 E31 5637.7	167 m	EU214268	EU213775	EU626851	EU626950
OM1187	KNP	S25 1745.4 E31 5144.5	185 m	EU214269	EU213776	EU626852	EU626951
OM236	KNP	S25 0308.3 E31 4838.6	201 m	EU214271	EU213778	EU626853	EU626952
OM755	KNP	S24 29 10.7 E31 4829.4	259 m	EU214270	EU213777	EU626854	EU626953
OM1296	KNP	S22 38 18.4 E31 0825.1	382 m	EU214272	EU213779	EU626855	EU626954
OM908	KNP	S22 3255.9 E 310425.5	347 m	EU214273	EU213780	EU626856	EU626955
OM1137	KNP	S25 0615.4 E31 2458.6	452 m	EU214275	EU213840	EU626857	EU626956
OM1209	KNP	S25 0403.5 E31 3304.7	485 m	EU214276	EU213841	EU626858	EU626957
OM285	KNP	S25 0401.2 E 313304.8	577 m	EU214274	EU213839	EU626859	EU626958
OM265	KNP	S24 59 25.4 E31 2719.6	268 m	EU214277	EU213842	EU626860	EU626959
RL1366	KNP	S25 17 23.1 E31 4606.3	208 m	EU214278	EU213843	EU626861	EU626960
RL1474	KNP	S24 5208.3 E31 4522.4	283 m	EU214279	EU213844	EU626862	EU626961
RBN205	KNP	S22 42 13.5 E30 5756.4	487 m	EU214280	EU213845	EU626863	EU626962
RL1645	KNP	S22 4206.5 E30 5810.5	499 m	EU214281	EU213846	EU626864	EU626963
RL1655	KNP	S22 41 29.1 E31 0138.4	448 m	EU214282	EU213847	EU626865	EU626964
OM282	KNP	S25 0853.2 E31 1438.3	664 m	EU214283	EU213848	EU626866	EU626965
OM943	KNP	S25 0830.6 E31 1407.8	610 m	-	EU213849	EU626867	EU626966
RL1427	KNP	S25 0859.4 E31 1435.0	630 m	EU214284	EU213850	EU626868	EU626967
OM1115	KNP	S25 0044.2 E 312713.7	341 m	EU214285	EU213851	EU626869	EU626968
OM326	KNP	S25 0418.8 E31 3629.5	363 m	EU214286	EU213852	EU626870	EU626969
OM350	KNP	S25 0417.5 E31 3629.2	354 m	EU214287	EU213853	EU626871	EU626970
OM1350	KNP	S23 5255.8 E31 1500.9	422 m	EU214288	EU213854	EU626872	EU626971
OM1517	KNP	S23 5256.3 E31 1506.4	420 m	EU214289	EU213855	EU626873	EU626972
OM566	KNP	S25 0436.8 E31 2503.7	473 m	EU214290	EU213856	EU626874	EU626973
OM683	KNP	S25 04 02.4 E31 3306.1	383 m	EU214291	-	EU626875	EU626974

	Plant Family	name Checked on IPNI	Voucher	Location	GPS	Altitude	matK	trnH-psbA	atpF-atpH	psbK-psbI
	Loganiaceae	Strychnos decussata (Pappe) Gilg	OM900	KNP	S22 3535.0 E31 0637.5	329 m	EU214292	EU213857	EU626876	EU626975
	Loganiaceae	Strychnos decussata (Pappe) Gilg	RL1560	KNP	S23 2453.0 E31 3229.7	379 m	EU214293	EU213858	EU626877	EU626976
	Loganiaceae	Strychnos decussata (Pappe) Gilg	RL1561	KNP	S23 2453.0 E31 3229.7	379 m	EU214294	EU213859	EU626878	EU626977
∞	Loganiaceae	Strychnos madagascariensis Spreng. ex Baker	RL1433	KNP	S25 0824.1 E31 1451.5	641 m	EU214295	EU213860	EU626879	EU626978
-	Loganiaceae	Strychnos madagascariensis Spreng. ex Baker	RL1460	KNP	S24 58 21.4 E31 2321.8	342 m	EU214296	EU213861	EU626880	EU626979
入	Loganiaceae	Strychnos madagascariensis Spreng. ex Baker	RL1559	KNP	S23 2453.0 E31 3229.7	379 m	EU214297	EU213862	EU626881	EU626980
\sum_{0}	Loganiaceae	Strychnos spinosa Lam.	OM220	KNP	S24 5949.9 E31 4610.3	208 m	EU214298	EU213863	EU626882	EU626981
\bullet	Loganiaceae	Strychnos spinosa Lam.	RL1346	KNP	S25 0451.2 E 315153.2	185 m	EU214299	EU213864	EU626883	EU626982
O	Loganiaceae	Strychnos spinosa Lam.	RL1652	KNP	S22 39 39.3 E30 5817.4	430 m	EU214300	EU213865	EU626884	EU626983
O	Loranthaceae	Tapinanthus Blume	OM825	KNP	S22 5946.4 E31 1732.6	312 m	EU214301	-	EU626885	EU626984
\cdots	Velloziaceae	Xerophyta retinervis Baker	OM1213	KNP	S25 0832.4 E31 1423.7	678 m	EU214302	EU213866	EU626886	EU626985
¢	Velloziaceae	Xerophyta retinervis Baker	OM516	KNP	S25 1603.6 E31 4753.3	267 m	EU214303	EU213867	EU626887	EU626986
\bigcirc	Velloziaceae	Xerophyta retinervis Baker	OM562	KNP	S25 0436.8 E31 2503.7	473 m	EU214304	EU213868	EU626888	EU626987

Table 1. Material sampled for this study, species checked in IPNI, voucher, GPS and altitude information, GenBank accession numbers. All vouchers have been collected in triplicate, one for Kew Herbarium, one for the herbarium of the KNP at Skukuza (South Africa), and one for the National Herbarium at Pretoria (South Africa).

Genetic analyses. Inter- and intra-specific genetic divergences were calculated using each potential DNA barcode following Meyer and Paulay. Three different metrics were used to characterize intra-specific divergence: (i) average pairwise distances between all individuals sampled within those species that had at least two representatives, (ii) 'mean theta', with theta being the average pairwise distances calculated for each species that had more than one representative, thereby eliminating biases associated with uneven sampling among taxa and (iii) average coalescent depth, i.e. the depth of a node linking all sampled extant members of a species, 'book-ending' intra-specific variability. Genetic distances between con-generic species were used to characterize inter-specific divergence. For each barcode, pairwise distances were calculated with the simplest K2P model following Lahaye et al. in which this model showed the best results. This model also utilizes the CBOL advises for distance calculations (barcoding.si.edu/). Wilcoxon Signed Rank Tests were performed to compare intra- and inter-specific variability for every pair of barcodes following Kress and Erickson . We evaluated 'DNA barcoding gaps’ by comparing the distribution of intra- versus inter-specific divergences. Median and Wilcoxon Two-Sample Tests were used to evaluate whether these distributions overlapped.

Phylogenetic analyzes. To evaluate whether species were recovered as monophyletic with each barcode, we used standard phylogenetic techniques. Note that this is not to say that barcodes can be used to reconstruct phylogenies, because in this case we are disregarding the recovered inter-specific relationships. Trees were built with PAUP4b10* using Maximum Parsimony (MP) and UPGMA, the two best algorithms in terms of percentages of species correctly identified . UPGMA trees were inferred with PAUP4b10* from K2P distances. MP analyses were performed using tree bisectionreconnection (TBR), branch swapping and 1,000 random addition sequence replicates keeping 10 trees at each step. MP analyses have been performed with and without coding
indels as a $5^{\text {th }}$ state in order to assess the impact of keeping this information for barcoding purposes.

Coalescence analyses. For each barcode, we identified those clusters that were derived from an independent coalescence process and asked whether they matched previously recognized taxonomic species, using methods developed by Pons et al. and Fontaneto et al. . The likelihood of waiting times between successive branching events on a DNA barcode-based tree was calculated under the null model that all terminals were derived from a single coalescence process, and under the alternative model that all taxa derived from a set of two independently evolving populations. With the alternative model, a threshold age T was calculated, at which point the older nodes represented inter-specific diversification events whereas the younger nodes represented separate coalescent processes typical of intra-specific clusters. We used DNA barcode-based trees from MP and transformed branch lengths with nonparametric rate smoothing to produce ultrametric trees, i.e. branch lengths reflecting time only. We also used the ultrametric UPGMA trees. Likelihood models were determined using an R script available from TGB.

Results \& Discussion

Molecular characteristics and PCR success. Amplification was generally successful for each potential barcode tested with more than 92% of taxa successfully amplified and sequenced (Table 2). The best percentage was given by matK with 99% of taxa sequenced and the lowest percentage was obtained for $\operatorname{trnH}-p s b A$ with 92%. The potential DNA barcode $p s b K-p s b I$ showed PCR and sequencing performances very close to those of matK with 98% of taxa successfully amplified. Both atpF-atpH and trnH$p s b A$ failed to amplify the parasitic/non-chlorophytic plant Hydnora johanis. Alignment of sequences was unproblematic for matK and psbK-psbI, but trnH-psbA and atpF-atpH
presented significant difficulties due to a high level of length variation (225 to 758 bp and 218 to 847 bp, respectively). Because its alignment was not reliable by Clustal X, we performed a first visual alignment between congeneric species and then aligned all taxa by adding as many gaps as necessary to keep the homology between congeneric species for inter- and intraspecific calculations. The alignment of $\operatorname{trnH}-\mathrm{psbA}$ revealed a highly conservative intron only for the Orchidaceae and Amaryllidaceae which has been identified previously. Combining matK to one of the other potential barcodes allowed building a matrix including sequences for all taxa (Table 2).

matK	99%
psbK-psbl	98%
trnH-psbA	92.1%
atpF-atpH	93.1%
matK+trnH-psbA	100%
matK+trnH-psbA+atpF-atpH	100%
matK+trnH-psbA+psbK- psbl	100%
matK+atpF-atpH	100%
matK+psbK-psbl	100%
matK+atpF-atpH+psbK-psbl	100%
4 loci	100%

Table 2. Percentages of taxa represented in each matrix by at least one sequence.

Intra- and Inter-specific diversities. Performances of each DNA barcode was assessed by means of inter- and intra-specific diversity calculated from K2P (Kimura's two parameters) pairwise distance matrices (barcoding.si.edu/; Table 3). The highest interspecific diversity was reached by atpF-atpH (3.45\%) followed by $\operatorname{trnH-psbA}(2.55 \%)$ and the lowest was given by $p s b K-p s b I(1.06 \%)$ with matK between these (1.34\%). Regarding
the different metrics to infer the intra-specific differences, the mean theta was in most cases similar to the average of overall intra-specific distances because there is no bias associated with species over-sampled in our study with the majority of the species represented by three specimens. The mean coalescent depth was slightly superior to the average of overall interspecific distances because it takes into consideration only the highest distance between specimens sampled for a species. Results showed the highest mean of intraspecific differences for $\operatorname{trnH-psbA}$ regardless of the metric used (Table 3). The lowest values were obtained for both atpF-atpH and psbK-psbI. Wilcoxon rank tests performed on the different distance matrices showed with very high significance that $\operatorname{trnH}-p s b A$ had by far the highest inter-specific variability, followed by matK and atpFatpH, which had a similar divergence (Table 4). The highest intra-specific distances were also significantly reached by trnH-psbA whereas the three other loci presented almost similar values (Table 5).

	matK	trnH- psbA	atpF- atpH	psbK- psbl	4 loci	matK+ trnHpsbA	matK+atpF- atpH+trnH- psbA	$\begin{gathered} \text { matK+psbK- } \\ \text { psbl+trnH- } \\ \text { psbA } \end{gathered}$	matK+ atpFatpH	matK+ psbKpsbl	$\begin{gathered} \text { matK+psbK- } \\ \text { psbl+ } \\ \text { atpF-atpH } \\ \hline \end{gathered}$
Mean of all interspecific											
St. deviation +/-	0.0127	0.0227	0.0665	0.0096	0.0151	0.0154	0.0180	0.0121	0.0201	0.0092	0.0159
Mean of all intraspecific											
St. deviation +/-	0.0040	0.0041	0.0015	0.0012	0.0015	0.0026	0.0017	0.0021	0.0020	0.0026	0.0016
Mean Theta	0.0012	0.0015	0.0007	0.0005	0.0008	0.0012	0.0009	0.0010	0.0007	0.0009	0.0007
St. deviation +/-	0.0037	0.0032	0.0023	0.0010	0.0013	0.0023	0.0015	0.0018	0.0018	0.0024	0.0015
Mean coalescent depth	0.0017	0.0023	0.0008	0.0008	0.0013	0.0017	0.0014	0.0016	0.0012	0.0013	0.0011
St. deviation +/-	0.0050	0.0047	0.0023	0.0016	0.0018	0.0032	0.0021	0.0026	0.0026	0.0033	0.0021
Number of measurements for all intraspecific distances	93	90	84	91	95	95	95	95	95	95	95
Number of measurements for all interspecific distances	200	194	168	194	206	206	206	206	206	206	206

Table 3. Measures of inter- and intra-specific K2P distances for four potential barcodes and different combinations applied to a selective sampling from the KNP.

Wilcoxon Signed-Ranks Test Interspecific pair-distances		
matK vs trnH-psbA	$W_{+}=1462, W_{-}=14648, \mathrm{~N}=179, \mathrm{p}<=2.216 \mathrm{e}-21$	matK<<trnH-psbA
matK vs atpF-atpH	$W+=4977, W-=5608, N=145, p<=0.5341$	matK = atpF-atpH
matK vs psbK-psbl	$W_{+}=8655, W-=6051, N=171, p<=0.0447$	matK > psbK-psbl
trnH-psbA vs atpF-atpH	$W+=8482, W-=3608, N=155, p<=1.345 \mathrm{e}-05$	trnH-psbA > atpF-atpH
trnH-psbA vs psbK-psbl	$W_{+}=13538, W-=2572, N=179, p<=2.88 \mathrm{e}-15$	trnH-psbA >> psbK-psbl
atpF-atpH vs psbK-psbl	$W+=7663, W-=2922, N=145, p<=2.902 \mathrm{e}-06$	atpF-atpH > psbK-psbl
4 loci vs matK+trnH-psbA	W+= 7286, $\mathrm{W}-=12217, \mathrm{~N}=197, \mathrm{p}<=0.002095$	4 loci < matK+trnH-psbA
4 loci vs matK+trnH-psbA+atpF-atpH	$W_{+}=5244, W-=14259, N=197, p<=1.859 \mathrm{e}-08$	4 loci < matK+trnH-psbA+atpF-atpH
4 loci vs matK+trnH-psbA+psbK-psbl	$W_{+}=6661, W-=12060, N=193, p<=0.0005137$	4 loci < matK+trnH-psbA+psbK-psbl
4 loci vs matK+atpF-atpH	$W+=14310, W-=5193, N=197, p<=1.284 \mathrm{e}-08$	4 loci > matK+atpF-atpH
4 loci vs matK+psbK-psbl	$W_{+}=15830, W-=3673, N=197, p<=3.333 \mathrm{e}-14$	4 loci > matK+psbK-psbl
4 loci vs matK+psbK-psbl+atpF-atpH	$W_{+}=15351, W-=4152, N=197, p<=2.807 \mathrm{e}-12$	4 loci < matK+atpF-atpH+psbK-psbl
matK+trnH-psbA vs matK+trnH-psbA+atpF-atpH	$W+=12287, W-=6434, N=193, p<=0.0001661$	matK+trnH-psbA > matK+trnH-psbA+atpHF matK+trnH-psbA > matK+trnH-psbA+psbK-
matK+trnH-psbA vs matK+trnH-psbA+psbK-psbl	$W_{+}=13374, W-=6129, N=197, p<=6.174 \mathrm{e}-06$	psbl
matK+trnH-psbA vs matK+atpF-atpH	$W_{+}=13379, W-=6124, N=197, p<=5.995 \mathrm{e}-06$	matK+trnH-psbA > matK+atpF-atpH
matK+trnH-psbA vs matK+psbK-psbl	$\mathrm{W}_{+}=16218, \mathrm{~W}-=3285, \mathrm{~N}=197, \mathrm{p}<=7.1 \mathrm{e}-16$	matK+trnH-psbA >> matK+psbK-psbl matK+trnH-psbA > matK +atpF-atpH+psbK-
matK+trnH-psbA vs matK+atpF-atpH+psbK-psbl	$W_{+}=13179, W_{-}=6324, N=197, p<=1.894 \mathrm{e}-05$	psbl

Table 4. Wilcoxon signed rank tests of inter-specific divergence among loci.

Wilcoxon Signed-Ranks Test Intraspecific pair-distances		
matK vs trnH-psbA	$W_{+}=298, \mathrm{~W}-=605, \mathrm{~N}=42, \mathrm{p}<=0.05574$	matK < trnH-psbA
matK vs atpF-atpH	$W+=334, W-=162, N=31, p<=0.09384$	matK = atpF-atpH
matK vs psbK-psbl	$W_{+}=299, W-=229, N=32, p<=0.5189$	matK $=$ psbK-psbl
trnH-psbA vs atpF-atpH	$W+=340, W-=95, N=29, p<=0.008339$	trnH-psbA > atpF-atpH
trnH-psbA vs psbK-psbl	$W+=375, \mathrm{~W}-=121, \mathrm{~N}=31, \mathrm{p}<=0.01318$	trnH-psbA > psbK-psbl
atpF-atpH vs psbK-psbl	$W+=89, W-=142, N=21, p<=0.3662$	atpF-atpH $=$ psbK-psbl
4 loci vs matK+trnH-psbA	$W_{+}=450, W-=981, N=53, p<=0.01898$	4 loci < matK+trnH-psbA
4 loci vs matK+trnH-psbA+atpF-atpH	$\begin{gathered} W_{+}=486, W-=945, N=53, p<=0.04263 \\ W+=319, W-=1007, N=51, p<= \end{gathered}$	4 loci < matK+trnH-psbA+atpF-atpH
4 loci vs matK+trnH-psbA+psbK-psbl	0.001283	4 loci < matK+trnH-psbA+psbK-psbl
4 loci vs matK+atpF-atpH	$W+=923, W-=508, N=53, p<=0.06687$	4 loci $=$ matK+atpF-atpH
4 loci vs matK+psbK-psbl	$W+=901, W-=530, N=53, p<=0.1015$	4 loci $=$ matK+psbK-psbl
4 loci vs matK+psbK-psbl+atpF-atpH	$W_{+}=906, W-=525, N=53, p<=0.09256$	4 loci $=$ matK+atpF-atpH+psbK-psbl
matK+trnH-psbA vs matK+trnH-psbA+atpF-atpH	$W_{+}=810, W-=271, N=46, p<=0.003294$	matK+trnH-psbA > matK+trnH-psbA+atpHF matK+trnH-psbA > matK+trnH-psbA+psbK-
matK+trnH-psbA vs matK+trnH-psbA+psbK-psbl	$\begin{gathered} W_{+}=833, W-=392, N=49, p<=0.02864 \\ W_{+}=924, W-=252, N=48, p<= \end{gathered}$	psbl
matK+trnH-psbA vs matK+atpF-atpH	0.0005795	matK+trnH-psbA > matK+atpF-atpH
matK+trnH-psbA vs matK+psbK-psbl	$W_{+}=854, \mathrm{~W}-=371, \mathrm{~N}=49, \mathrm{p}<=0.01652$	matK+trnH-psbA > matK+psbK-psbl
matK+trnH-psbA vs matK+atpF-atpH+psbK-psbl	$\begin{gathered} W_{+}=1068, W-=363, N=53, p<= \\ 0.001832 \end{gathered}$	matK+trnH-psbA > matK+atpF-atpH+psbKpsbl

Table 5. Wilcoxon signed rank tests of intra-specific difference among loci.

In a multi loci approach for DNA barcoding purposes, the highest mean of inter-specific variability was achieved by matK combined with $\operatorname{trnH}-p s b A$ and $a t p F-a t p H$ whereas the highest mean of intra-specific distances were given by combining matK with trnH-psbA (Table 3). Wilcoxon statistical rank tests showed the combination matK $+\operatorname{trnH}-\mathrm{psb} A$ having the highest inter-specific pair-distances (Table 4). They revealed also that all the combinations including trnH-psbA had a higher intra-specific variability than combinations without it (Table 5).

Distribution of distances. Accuracy of each DNA barcode was assessed by looking at the distribution of inter- and intraspecific K2P distances to infer the barcoding gap . Distributions were similar for each single potential barcode with two peaks of inter- and intraspecific variability that could be distinguished (Figure 2).

Figure 2. Relative distributions of inter-specific divergence between con-generic species (yellow) and intra-specific K2P distances (red) for four single loci: matK, trnH-psbA, psbK-psbI and atpF-
atpH. Barcoding gaps were assessed with Median tests and Wilcoxon Two-Sample tests, and all were highly significant ($\mathrm{p}<0.0001$).

Each distribution also showed a slight overlap between intra- and inter-specific distances, but to a lesser extent for matK and trnH-psbA. Combining the different loci showed distributions with a slight decrease of this overlap (Figure 3).

Figure 3. Relative distributions of inter-specific divergence between con-generic species (yellow) and intra-specific K2P distances (red) for 7 different combinations keeping matK for each.
Barcoding gaps were assessed with Median tests and Wilcoxon Two-Sample tests, and all were highly significant ($\mathrm{p}<0.0001$).
Two clear peaks were still distinguishable and a slight overlap still occurred between low classes of intra- and inter-specific distances, but the overlap observed was less than that
for the single locus approach. These observations were confirmed by median and Wilcoxon two samples statistical tests differentiating the medians for the former and the medians plus the distributions between the inter- and intra-specific distances for the latter. For each distribution, Median and Wilcoxon two sample tests were significant (Table 6). In a single locus approach, the highest significances were given by matK and $p s b K-p s b I$. Combining the loci made the significance increasing with the highest significance given by the combination matK+trnH-psbA+psbK-psbI.

K2P distributions	median test	Wilcoxon Two Sample Test
matK	$\# \mathrm{~A}=199$ \# ${ }^{\text {a }}=93$, Median $=0.00524, \mathrm{p}<=1.11 \mathrm{e}-26$	$\# \mathrm{~A}=200 \# \mathrm{~B}=93, \mathrm{~W}=6020.5, \mathrm{p}<=9.314 \mathrm{e}-30$
trnH-psbA	$\# \mathrm{~A}=194 \# \mathrm{~B}=90$, Median $=0.00799, \mathrm{p}<=1.11 \mathrm{e}-22$	$\# A=194 \# B=90, W=5634, p<=6.125 \mathrm{e}-29$
$\operatorname{atpF}-\operatorname{atpH}$	$\# \mathrm{~A}=168 \# \mathrm{~B}=84$, Median $=0.00216, \mathrm{p}<=1.52 \mathrm{e}-23$	$\# \mathrm{~A}=168 \# \mathrm{~B}=84, \mathrm{~W}=5526, \mathrm{p}<=8.996 \mathrm{e}-21$
psbK-psbl	$\# \mathrm{~A}=194 \# \mathrm{~B}=91$, Median $=0.00509, \mathrm{p}<=1.44 \mathrm{e}-29$	$\# \mathrm{~A}=194 \# \mathrm{~B}=91, \mathrm{~W}=5333, \mathrm{p}<=2.524 \mathrm{e}-32$
4 loci	$\# A=206 \# B=95$, Median $=0.00608, p<=1.23 \mathrm{e}-28$	$\# A=206 \# B=95, W=5507, p<=2.394 \mathrm{e}-36$
matK+trnH-psbA	$\# A=206 \# B=95$, Median $=0.00648, \mathrm{p}<=8.07 \mathrm{e}-28$	$\# A=206 \# B=95, W=5675, p<=4.825 \mathrm{e}-35$
$\begin{aligned} & \text { matK+trnH-psbA+atpF- } \\ & \text { atpH } \\ & \text { matK+trnH-psbA+psbK- } \end{aligned}$	$\# A=206 \# B=95$, Median $=0.00574, \mathrm{p}<=5.11 \mathrm{e}-29$	$\# A=206 \# B=95, W=5642.5, \mathrm{p}<=2.711 \mathrm{e}-35$
psbl	$\# A=206 \# B=95$, Median $=0.00676, \mathrm{p}<=5.11 \mathrm{e}-29$	$\# \mathrm{~A}=206 \# B=95, \mathrm{~W}=5540, \mathrm{p}<=4.338 \mathrm{e}-36$
matK+atpF-atpH	$\# A=206 \# B=95$, Median $=0.00401, \mathrm{p}<=1.2 \mathrm{e}-26$	$\# A=206 \# B=95, W=6318, p<=2.802 \mathrm{e}-30$
matK+psbK-psbl	$\# A=206 \# B=95$, Median $=0.00607, p<=8.07 \mathrm{e}-28$	$\# A=206 \# B=95, W=6064, \mathrm{p}<=4.064 \mathrm{e}-32$
matK+atpF-atpH+psbKpsbl	$\# A=206 \# B=95$, Median $=0.00493, \mathrm{p}<=2.92 \mathrm{e}-28$	$\# A=206 \# B=95, W=6026.5, \mathrm{p}<=2.151 \mathrm{e}-32$

Table 6. Median and Wilcoxon two sample statistical tests applied to the distributions of intraand inter-specific K2P distances for each potential DNA barcode.

Species identification. The performance of each DNA barcode in identifying and delineating species was assessed by the percentage of monophyletic species recovered by MP and UPGMA analyses (Table 7). Because $\operatorname{trnH}-p s b A$ and atpF-atpH were highly variable and their alignment showed many indels, MP analyses were performed with and without coding the gaps as $5^{\text {th }}$ state to infer whether this information could be useful for barcoding purposes. The highest values of species monophyly were obtained from UPGMA reconstruction. The UPGMA analysis of $\operatorname{trnH}-\mathrm{psbA}$ gave 90.3% of species monophyletic but only 77.4% supported by $\mathrm{BS}>50 \%$. Although matK and $p s b K-p s b I$
grouped 87.5% of the species under UPGMA reconstruction, they gave 78.1% of monophyletic species with a $\mathrm{BS}>50 \%$, a value higher than $\operatorname{trnH}-p s b A$. MatK showed the best percentage of species correctly identified using MP reconstruction. Coding the gaps as $5^{\text {th }}$ state in the MP analysis did not significantly affect the results obtained for matK and $p s b K-p s b I$, but it increased the percentages of species correctly identified by 6% and 7% given by the more variable atpF-atpH and $\operatorname{trnH}-p s b A$, respectively. In a multi-loci approach, it is noteworthy that combining all potential barcodes did not result in 100% monophyly for species whatever the reconstruction method. Each barcode failed in grouping the two different species of Faurea. That can be done by using the intergenic locus atpF-atpH and by coding the gaps in the matrix as $5^{\text {th }}$ state of character, but this decreases the total percentage of monophyletic species. In a multi-loci approach, combining matK and psbK-psbI gave the highest percentage of monophyletic species (Table 7).

	UPGMA	MP	MP+5th state character
trnH-psbA	$90.3(77.4)$	$71(71)$	$77.4(74.2)$
matK	$87.5(78.1)$	$75(75)$	$75(75)$
psbK-psbl	$87.5(78.1)$	$62.5(68.8)$	$53.1(53.1)$
atpF-atpH	$82.8(69)$	$65.5(65.5)$	$72.4(69)$
matK+psbK-psbI	$93.8(87.5)$	$81.3(81.3)$	$59.4(56.3)$
matK + trnH-psbA+psbK-psbI	$93.5(90.3)$	$87.1(87.1)$	$80.6(80.6)$
matK+atpF-atpH+psbK-psbI	$93.1(86.2)$	$86.2(86.2)$	$82.8(82.8)$
matK+trnH-psbA+atpF-			
atpH+psbK-psbI	$92.9(89.3)$	$85.7(85.7)$	$82.1(82.1)$
matK+trnH-psbA	$90.3(87.1)$	$83.9(83.9)$	$77.4(77.4)$
matK+atpF-atpH	$89.7(82.8)$	$79.3(79.3)$	$79.3(79.3)$
matK+trnH-psbA+atpF-atpH	$89.3(85.7)$	$82.1(82.1)$	$82.1(82.1)$

Table 7. Proportion (\%) of monophyletic species (with BS >50\% in brackets) recovered with
UPGMA and MP analyses with gaps not coded and coded as a fifth character state.

Coalescence. The accuracy of the DNA barcode can be assessed by evaluating the ability of each candidate to give genetic clusters that are derived from an independent coalescence process and that corresponds to a recognized taxonomic species. The highest number of genetic clusters corresponding to taxonomic species was given using the UPGMA trees. Transforming MP trees by NPRS for coalescence analysis gave half the genetic clusters corresponding to taxonomic species compared to the UPGMA trees (Table 7). In a single barcode approach, matK gave the highest numbers of genetic clusters corresponding to taxonomic species (Table 8). When matK was combined with $p s b K-p s b I$ the value increased from 22 to 23 genetic clusters corresponding to recognized species. Molecular evolutionary rates of both matK and psbK-psbI showed higher abilities to differentiate independently evolving entities corresponding to taxonomic species than the high variable trnH-psbA and atpF-atpH.

	UPGMA	MP	Nos. of potential genetic clusters
matK	22	11	32
psbK-psbI	20	15	32
atpF-atpH	18	12	29
trnH-psbA	16	12	31
matK+psbK-psbI	23	8	32
matK+atpF-atpH+psbK-psbl	20	4	29
matK+atpF-atpH	20	6	29
matK+trnH-psbA+psbK-psbl	3	7	31
matK+trnH-psbA+atpF-atpH+psbK-			
psbl	3	1	28
matK+trnH-psbA	3	8	31
matK+trnH-psbA+atpF-atpH	3	5	28

Table 8. Coalescence analyses indicating the number of independent genetic clusters corresponding to taxonomically recognized species.

Our results showed that combining matK to trnH-psbA and psb-psbI can slightly increase its performance in identifying species. However we still support the conclusion of Lahaye et al. , i.e. that matK should be used for DNA barcoding of plants in a single locus approach and that case-by-case additional barcodes are developed for problematic groups.

Literature Cited

