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Abstract   

AML1/RUNX1 is a critical transcription factor in hematopoietic cell differentiation 

and proliferation. From the AML1 gene, at least three isoforms, AML1a, AML1b and 

AML1c, are produced through alternative splicing. AML1a interferes with the 

function of AML1b/1c, which are often called AML1. In the current study, we found 

a higher expression level of AML1a in ALL patients in comparison to the controls. 

Additionally, AML1a represses transcription from promotor of macrophage-colony 

simulating factor receptor (M-CSFR) mediated by AML1b, indicating that AML1a 

antagonized the effect of AML1b. In order to investigate the role of AML1a in 

hematopoiesis and leukemogenesis in vivo, bone marrow mononuclear cells 

(BMMNCs) from mice were transduced with AML1a and transplanted into lethally 

irradiated mice, which develop lymphoblastic leukemia after transplantation. Taken 

together, these results indicate that overexpression of AML1a may be an important 

contributing factor to leukemogenesis.  
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Introduction  

AML1, also known as RUNX1, PEBP2αB, or CBFα2, is a transcription factor that 

plays a crucial role in the proliferation and differentiation of hematopoietic cells. 

AML1 has a DNA binding domain, known as the Runt homology domain (RHD), and 

a transactivation domain that binds to and regulates target genes respectively 

(Miyoshi et al., 1995). AML1 are affected by chromosomal translocations found in 

human leukemia, including t(8;21), t(3;21) and t(12;21) (Miyoshi et al., 1991, 

Nucifora, et al, 1993, Golub et al, 1995). The t(8;21) is most frequent chromosomal 

translocation in acute myeloid leukemia, and it joins AML1 to ETO, resulting in the 

formation of AML1/ETO fusion gene in  which AML1 retains RHD, but lacks the 

transactivation domain (Meyers et al., 1995; Tanaka et al., 1995). The lack of 

transactivational domain is supposed to be the event that triggers leukemogenesis 

(Tanaka et al., 1995). 

AML1 is essential for hematopoiesis in early development as well as in adulthood. 

AML1-null embryos die typically around E12.5 because of a lack of fetal liver 

hematopoiesis and hemorrhage in the central nervous system (Okuda et al., 1996, 

Wang et al., 1996). Loss of AML1 function in adulthood leads to a number of 

disturbance in hematopoiesis, including retarded megakaryocytic maturation and 

impaired T and B-lymphocytic differentiation (Ichikawa, et al., 2004). In addition, it 

has been proved that AML1-deficient cells are susceptible to malignant transformation 

(Kundu et al., 2005). 

AML1 regulates promoters or enhancers of many target genes, including 



interleukin 3 (IL-3) (Uchida H, et al.,1997), myeloperoxidase (Britos-Bray et al., 

1997), neutrophil elastase (Nuchprayoon, et al.,1994), granulocyte-macrophage CSF 

(GM-CSF) (Cockerill et al., 1996), macrophage colony-stimulating factor receptor 

(M-CSFR) (Rhoades, et al.,1996; Zhang et al.,1996) and T-cell antigen receptor 

subunits (TCRs) (Fujii et al., 1998, Meyers et al., 1995). The RHD is near the 

N-terminus and contains approximately 128 amino acid residues (Daga et al., 1992, 

Kagoshima et al., 1993). Affinity of AML1 for its target DNA sequences increases 

significantly upon heterodimerization with CBFβ (Meyers et al., 1993; Wang et al., 

1993; Ogawa et al., 1993a).  

At least three alternative splice variants of the AML1 gene (AML1a, AML1b and 

AML1c) have been identified to date (Miyoshi et al., 1995). The proteins encoded by 

AML1b and AML1c have a RHD in the N-terminus and a transactivation domain in 

the C-terminus (Miyoshi et al., 1995). In contrast, the protein encoded by AML1a has 

a RHD but lacks the transactivation domain. As such, the function of AML1 is 

believed to be mediated by AML1b and AML1c which are considered to have the 

same function (Miyoshi et al., 1995). Experiments using transient transfection have 

demonstrated that AML1b, but not AML1a, transactivated TCRs (Meyers, et al., 1995; 

Fujii et al., 1998) and GM-CSF (Frank et al., 1995). AML1a has no transactivational 

function by itself, but inhibits the transcriptional activity of AML1b by competing for 

the DNA sequence of target genes with a higher affinity (Tanaka et al., 1995). 

Overexpression of AML1a inhibits the myeloid terminal differentiation of the 

myeloid precursor lineage 32Dcl3 induced by G-CSF. Recent evidence showed that 



the overexpressed AML1a is higher in patients with AML than the normal controls 

(Tanaka et al., 1995). Accordingly, we hypothesize that AML1a, similar to the 

leukemia-associated fusion proteins, perturbs the normal function of AML1, and 

maybe contribute to leukemogenesis.  

 In our current study, we first examined the expression level of AML1a in 

BMMNCs of acute leukemia patients. Results indicated that AML1a expression level 

in ALL patients was higher than that in healthy donors. We further analyze the effects 

of AML1a and AML1b on the transactivity by using a luciferase reporter plasmid 

containing macrophage colony-stimulating factor receptor (M-CSFR) promoter. 

Result demonstrated that AML1a competes with AML1b to inhibit the transcription of 

M-CSFR. Finally the in vivo effect of AML1a was explored by transplantation of 

AML1a expressing BMMNCs into lethally irradiated mice. Nine of 12 mice 

developed lymphoid leukemia between 16 and 45 weeks after transplantation. These 

results demonstrated: 1) AML1a is a functional AML1 “antagonist”; 2) 

overexpression of AML1a may serve as a critical oncogenic event to promote 

leukemogenesis.  



Results 

Expression of AML1 isoforms in acute leukemia (AL) 

Bone marrow (BM) samples from 77 de novo AL patients (AML 51, ALL 21, HAL 5) 

and 7 healthy donors were analyzed by semi-quantitative reverse transcriptase-PCR 

(RT-PCR). The characteristics of 77 de novo AL patients including median age, 

gender, FAB subtypes are summarized in Table 1. AML1a expression in AL cells is 

not associated with gender, age, initial white blood cell count and median percentage 

of BM blast cells. Expression level of AML1a in 21 ALL patients was significantly 

higher than that of the healthy controls (p=0.048, Figure 1). However, the expression 

of AML1a in the healthy controls did not differ significantly from that in AML or 

HAL (Figure 1). The data suggest that overexpression of AML1a might play an 

important role in leukemogenesis. 

 

Effects of AML1 transcripts on the transactivation of M-CSFR gene  

Because AML1 is a transcription factor and AML1a is over-expressed in ALL, next 

we analyzed the effects of AML1a on transcription of AML1 target gene. The CV-1 

cells were transfected with a plasmid expressing AML1a or AML1b. At 36 h after 

transfection, activity of the luciferase reporter gene was analyzed by luminometer. As 

shown in Figure 2, the transcriptional activity of M-CSFR promoter was activated by 

AML1b (Figure 2a) in a dose-dependant manner, but not by AML1a (Figure 2b). A 

3.8-fold increase in luciferase activity was observed in cells transfected with 

pCMV5-AML1b at a dose of 0.2μg, but not in cells transfected with 



pcDNA3-FLAG-AML1a at the same dose (Figure 2a and b). The difference between 

the two isoforms was statistically significant (P<0.01). As shown in Figure 2c, 

transactivation of M-CSFR mediated by AML1b was abrogated by co-transfection 

with AML1a in a dose-dependent manner. The aforementioned effects were 

completely absent in cells with mutant M-CSFR promoter in which AML1 binding 

sequence was disrupted (Figure 2d), indicating the specificity of the findings.  

 

AML1a induces the development of lymphoblastic leukemia. 

Since AML1a could interfere the transcription regulation mediated by full length 

AML1, AML1b. Over-expression of AML1a in hematopoietic cells may result in 

impairment of hemapoiesis or development of leukemia. In order to address this issue, 

we analyzed the effects of AML1a in vivo. BMMNCs infected with the retroviral 

vector MSCV expressing a FLAG-AML1a fusion protein and a yellow fluorescent 

protein (YFP) (Figure 3a) were inoculated into the lethally irradiated female C57 

BL/6J mice. BMMNCs infected with the vector expressing YFP only was used as 

control. Number of transplanted YFP positive cells in both groups was approximately 

30,000 per mouse. The expression of the fusion proteins was confirmed by Western 

blot (data not shown). Number of YFP-positive cells in the peripheral blood (PB) as 

well as general health condition of the mice was surveyed closely. Nine out of total 12 

mice in the AML1a group developed leukemia at 3-11 months (Figure 3b, Table 2). 

Signs of cachexia, such as loss of body weight in these mice coincided with a rapid 

rise of YFP-positive cells from an initial level of 2-3% to 10-25% in peripheral blood. 



The median survival time of the mice in the AML1a group was 258 days. Autopsy of 

these mice revealed splenomegaly and hepatomegaly (Figure 3c and d), sometimes 

with thymoma and lymph node enlargement. BM, spleen, lung, liver, kidney and 

thymus were infiltrated with leukemia cells (Figure 3e, f and j).  

Integration of AML1a in the genome of leukemic spleen cells was detected by 

genomic PCR (Figure 4a). RT-PCR was performed to analyze the expression of 

AML1a in spleen cells of mice (Figure 4b and c). The 293T cells transfected with 

plasmid pMSCV-FLAG-AML1a-IRES-YFP was used as a positive control. As 

indicated in Figure 4d, the FLAG-AML1a fusion protein was clearly detected in the 

spleen sample of the AML1a leukemic mice. 

Flow cytometry showed that 30-60% of the BMMNCs from AML1a group were 

positive for YFP, in comparison to 8-15% in the control group. A further analysis 

revealed that there are two different phenotypes of T-lymphoblastic leukemia in mice 

with leukemia (Table 1). One was Sca-1+, cytoplasmic CD3+ (cCD3+) (Figure 5a), the 

other was CD3+CD4+CD8+ (Figure 5b).   

To assess transplantability of the leukemia, spleen cells from each leukemic 

mouse were inoculated into four naive mice through the tail vein. All mice rapidly 

developed lymphoblastic leukemia, with an average latency of 47 days (data not 

shown). 

 

Discussion  

 



In the current study, we found that AML1a is overexpressed in patients of acute 

lymphoblastic leukemia. A previous study using a qualitative assay for AML1a 

mRNA (Tanaka et al., 1995) showed that AML1a could be detected in half of the 

patients with AML, whereas almost no expression of AML1a could be detected in 

normal subjects. Here, we used a semi-quantitative assay to expand the investigation 

in more subjects. Surprisingly, we did not find a significant difference in the 

expression of AML1a between AML patients and the healthy donors. Instead, a 

significant difference was found between ALL patients and the control.  

AML1-ETO, as a dominant negative protein, blocks transactivation of the 

GM-CSF promoter by AML1b (Frank et al., 1995). AML1-ETO constitutes the first 

hit by blocking the differentiation of hematopoietic stem cell (HSC). Myeloid 

leukemia develops when the second hit occurs (Fenske et al., 2004). Initially, we 

suppose that, similar to AML1-ETO, AML1a lacks transcriptional activity, but binds 

to target genes with higher affinity than AML1b (Tanaka et al., 1995), and thus may 

contribute to leukemogenesis. It would influence myeloid differentiation and play a 

certain role in development of leukemia, so we choose M-CSFR as the target gene of 

AML1 to study. In our experiments, activity of the M-CSFR promoter was 

dose-dependently transactivated by AML1b, but not by AML1a. More importantly, 

AML1a interfered with the transactivational effect of AML1b in a dose-dependent 

manner. A previous study also demonstrated that such an inhibitory effect by AML1a 

could be reversed by the overexpression of AML1b suggesting a competitive 

mechanism. 



In our experiments in vivo, 75% of the receipt mice after transplantation of 

BMMNCs that were infected with retrovirus containing AML1a developed leukemia. 

In line with the results in patients (higher expression of AML1a in ALL but not AML 

in comparison to healthy controls), the leukemia cells in these mice were lymphoid 

rather than myeloid. These findings were puzzling at the first glance. However, 

evidence has suggested that AML1 is indeed involved in the regulation of 

T-cell-specific gene expression (Ogawa et al., 1993b). In addition, the investigation of 

the AML1 transcription suggests that AML1 may be critically involved in 

differentiation of lymphoid precursors in adult hematopoiesis (Bäsecke et al., 2002). 

Moreover, transition of the T cells from the CD4-CD8- (DN) to the CD4+CD8+ (DP) 

phenotype is impaired in transgenic mice bearing a truncated, dominant interfering 

form of AML1 (Runt) (Sato et al., 2003). Consistent with the findings by Sato et al., 

we found that over-expression of AML1a may also influence DN or DP phase of T 

cells. Finally, AML1 deficiency has been reported to predispose mice to 

T-lymphoblastic lymphoma (Kundu et al., 2005). 

Our data suggest that AML1a over-expression may be a critical event in the 

development of leukemia. However, the over-expression of AML1a alone may not be 

sufficient for leukemogenesis. First, not all mice carrying BMCs-AML1a developed 

leukemia. Second, leukemia developed after a relatively long period, suggesting that 

additional mutations or hits may be required. Two different immuno-phenotypes of 

lymphoid leukemia were observed in leukemic mice, indicating that some mutations 

occurred in different development and differentiation stages of HSC. A recent study 



by Tsuzuki et al. suggested that AML1a may enhance the self-renewal capacity of 

HSC. Based on the findings that the over-expression of AML1a increases the 

engraftment potential of hematopoietic stem and progenitor cells, it is suggested that 

AML1a may be applied in hematopoietic cell transplantation to expand the number of 

cells (Tsuzuki, et al., 2007). However, results from the current study provided 

experimental evidence that the safety to utilize AML1a in transplantation was called 

in question before a thorough investigation. 

In conclusion, our study indicated that AML1a may play a critical role in 

leukemogenesis, especially in the development of lymphoid leukemia. In addition, 

lymphoblastic leukemia model established in this study may serve as a valuable tool 

for future studies. 

 

Materials and Methods  

 

Patients and cell lines  

77 patients with de novo AL and 11 patients with AL in complete remission (CR) 

from our hospital and 7 healthy donors were studied after giving informed consent. 

Diagnosis and classification of the leukemia were made on the basis of Morphology- 

Immunology-Cytogenetics-Molecular biology (MICM) typing standard using the 

French-American-British system (Bennett et al., 1976, Lo Coco et al., 1995). CV-1, 

NIH 3T3 and 293T cell lines were grown in Dulbecco modified Eagle medium  

supplemented with 10% heat-inactivated fetal bovine serum.  



  

RNA and DNA isolation, RT-PCR, PCR and construction of plasmids 

See Supplementary Materials and methods. 

 

Transient luciferase assay 

CV-1 cells were seeded in six-well plates at a density of 5×105 per well.  

Transfection was performed by using calcium phosphate-mediated precipitation when 

cells reached 70% confluence. The following combinations of plasmids were used: 

1.2 μg of pM-CSF-R-luc reporter plasmid or pM-CSF-R(mB)-luc reporter plasmid 

with different dosage of pcDNA3-Flag-AML1a and pCMV5-AML1b and with 1 μg of 

β-galactosidae plasmids. At 6 h after transfection, the medium was changed. The cells 

were harvested at 36 h post transfection for assays of β-galactosidase and luciferase 

activity (Promega; Madison, WI, USA). 

 

Viral production, transduction and transplantation of murine bone marrow and tumor 

cell transplantation 

293T cells were transfected with pMSCV-IRES-YFP, pMSCV-Flag-AML1a- IRES- 

YFP, the envelope-encoding plasmid pECO, or the packaging plasmid pGP using a 

method of calcium phosphate preciptation. Culture medium was collected at 48 and 

72 h after the transfection, and filterd with 0.45 μm filters. Retrovirus titers were 

determined by transducing NIH3T3 cells (1×105) with serial dilutions of the retrovirus 

in the presence of 8 μg ml-1 polybrene (Sigma, Deisenhofen, Germany) at 72 h after 

infection. The titer was calculated by multiplication of the total number of 



YFP-positive cells with the dilution facor of the retroviral supernatant. At 48 h post 

transduction, percentage of infected cells was determined by flow cytometric analysis 

of YFP expression. Bone marrow cells were harvested from male C57BL/6J donor 

mice 3 days after injection of 150 mg kg-1 5-fluorouracil (5-Fu) (Sigma), and 

pre-stimulated overnight in Iscove modified Dulbecco medium (IMDM)/20% FCS 

supplemented with 10 ng ml-1 murine IL-3 (mIL-3), 10 ng ml-1 mIL-6 and 50 ng ml-1 

mSCF. All cytokines were purchased from R&D system. Cells were transduced by 3 

rounds spin infection (1200g, 25°C, 90 minutes) every 24 hours in retroviral 

supernatant supplemented with growth factors and 8 μg ml-1 polybrene. Cells were 

re-suspended in Hanks balanced salt solution and injected into the tail vein of lethally 

irradiated (9Gy) female C57BL/6J mice. Rate of YFP-positive cells in PB was closely 

monitored by FACS. 5×106 spleen cell suspension of each leukemic mouse was 

administered to the recipient mice after an irradiation dose of 4.5 Gy. All animals 

were maintained in a special caging system with autoclaved food and water.  

 

Western blot analysis 

We performed protein lysate preparation and western blotting as previously described 

(Zhang et al, 2007). Anti-FLAG monoclonal antibody and anti-β-actin antibody was 

purchased from Sigma. The blots were visualized by chemiluminescence (ECL, 

Amersham, Freiburg, Germany).  

 

Flow cytometry of mouse cells  



For lineage marker analysis, cells (1×106) were incubated with monoclonal antibodies 

against Sca-1, c-Kit, Gr-1, Mac-1, Ter119, B220, CD19, Thy1.2, CD3, CD4, CD8, or 

their isotype controls (Biolegend，USA). The cells were then washed and applied for 

analysis on a FACSCalibur flow cytometer (Becton Dickinson San Jose, CA, USA).  

 

Hematological and histological analysis 

PB smears and BM cytospin slides were stained with Wright–Giemsa staining 

solution. Tissue samples were fixed with 10% phosphate-buffered formalin and 

embedded in paraffin. Sections were stained with hematoxylin and eosin (H&E) and 

observed under a light microscope.  

 

Statistical methods  

For statistical analysis, survival curves were produced using the Kaplan-Meier 

estimates, group distributions were compared parametrically using the student’s t test 

and group distributions were compared non-parametrically using the Mann-Whitney 

U test or Chi-square test.  
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Figure 1 Expression of AML1a gene in BMMNC of patients with ALL, AML, HAL and healthy 

donors. There was a significant difference between ALL patients and healthy donors. “–” shows 

median value;*, P<0.05; N.S.: not significant.  

 

Figure 2 Effects of AML1 transcripts on the transactivation of M-CSFR gene promoter. (a) 

Transactivity of AML1b alone at different dosages. (b) Transactivity of AML1a alone at different 

dosages. (c) Abrogation of AML1b transactivity by AML1a in a dose-dependent manner. (d) Effect 

of AML1b binding site mutation of M-CSFR promoter on transactivity. Error bars: standard error 

of the mean. 

 

Figure 3 Gross and histopathology of AML1a mice with leukemia phenotype. (a) The structure of 

retroviral plasmids: pMSCV-IRES-YFP and pMSCV-FLAG-AML1a-IRES-YFP. (b)  

Kaplan-Meier survival curves (leukemia-free) of receipt mice transduced with either AML1a 

(n=12) or a vector control (n=12).  Autopsy of these animals revealed: spleenomaly (c) (the 

upper panel is the control spleen), hepatomegaly (d) (the right panel is the control liver). 

Wright-Giemsa-stained PB (e) and BM (f) cytospin from representative leukemic AML1a mice 

(1000×) and hematoxylin and eosin (H&E) staining of involved organs (g-i) (400×). The normal 

framework was destroyed and infiltrated by large number of tumor cells in BM (g), spleen (h) and 

thymus (i). 

 

Figure 4 Integration and expression of AML1a in spleen cells of leukemic mice. (a) Genomic 

DNA specific for AML1a in isolated leukemia cells as detected by genomic PCR. As a positive 



control, a plasmid containing AML1a template was amplified. (b) RNA was isolated from the 

spleen. Cells were transduced with either AML1a or YFP only. (c) Expression of β-actin. M: 

marker. (d) Western blot analysis of FLAG (AML1a) protein from the spleen of the mice. 293T 

cells transduced with AML1a served as a positive control. SP cells in mouse # 21 transduced with 

YFP only were included as a negative control. 

 

Figure 5 Flow-cytometric analysis of mononuclear cells from BM and spleen of AML1a mice 

with leukemia phenotype. (a) Increased Sca-1+/cCD3+ cell populations in the YFP+ cells of BM 

and SP from a representative AML1a leukemic mouse (#105) phenotype as compared to those in 

the YFP+ cells of BM and SP from a control animal. (b) Flow cytometry analysis on BMCs and 

SP cells freshly isolated from an AML1a leukemia mouse (#109) with a T-lymphoblasticleukemia 

phenotype, and a control mouse. The plots showed expression of lineage-specific antigens (Sca-1, 

c-Kit, Thy1.2, CD3, CD4, CD8) versus YFP. Numbers indicated the percentage of cells in the 

quadrant. 













Table1: Clinical characteristics of 77 de novo AL patients.  

Group AML1a+ AML1a- 

Gender 

Male 

Female 

Media age（years old） 

FAB subtype 

ALL 

AML 

HAL 

Media WBC（×109） 

ALL 

AML 

Media percentage of 

blast cells(%) 

ALL 

AML 

CD34 positive(case) 

  ALL 

AML 

HLA-DR positive(case) 

ALL 

AML 

 

35 

25 

25.5 

 

15 

29 

 2 

 

 30.58 

 31.93 

 

 

88 

 76.5 

 

12(13) 

9(29) 

 

11(14) 

11(29) 

 

11 

 6 

26 

 

6 

 22 

  3 

 

21.93 

24.35 

 

 

73.5 

65.75 

 

3(4) 

 5(13) 

 

3(5) 

 9(14) 

 
 



Table 2. Characteristics of AML1a induced leukemia mice 
No. Mice      101     102     103      105      108      110      107      109      111       

Survival time   

after BMT(d)  110     133     142      180      180      234      282      282      312 

Phenotypes    ND     ND    Sca-1    Sca-1     Sca-1    Sca-1    Thy1.2   Sca-1     Sca-1 

of BM and                    cCD3    cCD3    cCD3    c-Kit     CD3     c-Kit     c-Kit 

SP                                                     Thy1.2    CD4    Thy1.2   Thy1.2 

                                                        CD3      CD8    CD3     CD3  

                                                        CD4              CD4     CD4  

                                                        CD8              CD8     CD8 

Thymoma    ND     ND      +        _        +        _        +        +        + 

SP weight(g)  ND     ND      0.2       0.4      0.2      0.31      0.2      0.21      0.42 

WBC     

(×106/ml)     10.1    12.7     15.2      12.7      12      15.2      22.6      23.4     30.2 

Diagnosis     ALL   ALL   T-ALL    T-ALL   T-ALL   T-ALL   T -ALL  T-ALL   T-ALL 

ND: not determined  
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