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Abstract 
 
Background: 
 
In recent years, in-silico literature-based mammalian protein-protein interaction network 
datasets have been developed. These datasets contain binary interactions extracted 
manually from legacy experimental biomedical research literature. Placing lists of genes 
or proteins identified as significantly changing in multivariate experiments, in the context 
of background knowledge about binary interactions, can be used to place these genes or 
proteins in the context of pathways and protein complexes.  
 
Results: 
 
Genes2Networks is a software system that integrates the content of ten mammalian 
literature-based interaction network datasets. Filtering to prune low-confidence 
interactions was implemented. Genes2Networks is delivered as a web-based service 
using AJAX. The system can be used to extract relevant subnetworks created from “seed” 
lists of human Entrez gene names. The output includes a dynamic linkable three color 
web-based network map, with a statistical analysis report that identifies significant 
intermediate nodes used to connect the seed list. Genes2Networks is available at 
http://actin.pharm.mssm.edu/genes2networks. 
 
Conclusion: 
 
Genes2Network is a powerful web-based software application tool that can help 
experimental biologists to interpret high-throughput experimental results used in 
genomics and proteomics studies where the output of these experiments is a list of 
significantly changing genes or proteins. The system can be used to find relationships 
between nodes from the seed list, and predict novel nodes that play a key role in a 
common function.   
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Background 
 
The rapid increase in binary interactions experimentally identified has brought us to a 
stage where on one hand we are now able to start viewing how all those interactions and 
components come together to form large functional regulatory networks [1]. But on the 
other hand, it is impossible for researchers to keep up with the literature. The emergence 
of multivariate experimental technologies such as yeast-2-hybrid screens [2, 3], cDNA 
microarrays [4, 5] and mass-spectrometry [6] as well as databases that mine legacy 
experimental literature [7, 8] allows for the construction of networks. Networks are a 
simple abstract representation of biomolecular interactions where cellular components are 
represented as nodes, and where interactions connect these nodes through links.  
 
The construction of cellular network datasets has several valuable uses. Network 
representation allows for extraction of global topological statistical and structural 
properties such as connectivity distribution [9], clustering [10], and the identification of 
network motifs [11] or graphlets [12]. These measurements provide clues about the 
design principles of intracellular organization. Interaction network datasets can also be 
used to predict unidentified interactions [13, 14], or used as a starting point for 
quantitative computational modeling [15]. Additionally, interaction networks can assist in 
interpreting experimental results where identified lists of proteins or genes from 
multivariate experiments can be placed in their contextual local networks of interactions 
[16]. 
    

Implementation 
 
Our aim here is to provide cell- and molecular-biologists with an easy method to create 
subnetworks from lists of mammalian genes or proteins by using large-scale high-quality 
protein-protein and signaling networks created from background literature. To develop 
Genes2Networks, we merged ten currently available literature-based mammalian 
interaction network datasets by consolidating them into one large dataset. To prune out 
interactions of low confidence, a simple filter was implemented. Genes2Networks is 
delivered as a web interface that can be used to extract relevant subnetworks based on 
inputted lists of gene or protein names, commonly produced by high-content 
experiments, using the consolidated datasets as a background. The system’s input is a list 
of gene symbols; the system then uses the merged datasets as a background, to produce 
subnetworks that connect the gene names (commonly representing proteins) as the 
output. The output includes a statistical analysis report, and a three color network map 
highlighting the seed nodes in one color, the significant intermediates in another color, 
and the non-significant intermediates in a third color. The statistical analysis provides a 
list of intermediate nodes used to connect the genes, sorted based on their specificity 
significance. The process is illustrated in Figure 1. 
 
Developing the background network 
 
We used all mammalian (mouse/rat/human) interactions recorded in the following 
datasets: BIND [17], HPRD [18], IntAct [19], DIP [20], MINT [21], Vidal [22], Stelzl 
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[23], Ma’ayan [24], PDZBase [25], and PPID [19, 26]. All interactions from these 
databases were determined experimentally and include the PubMed reference of the 
research article that describes the experiments used to identify the interactions. 
Consolidating interactions from the different ten network databases was accomplished by 
combining human/mouse/rat gene symbols using information from Swiss-Prot [27]. The 
consolidated dataset before filtering contained 44,877 interactions among 11,033 nodes. 
The consolidated interactions were stored in a flat file format which is loaded into a hash 
data structure for fast loading and access. We did not include datasets of interactions 
created via in-silico ab-initio interaction prediction methods. Most of the above listed 
datasets describe binary interactions but some complexes of more than two proteins are 
described. We did not include those in the consolidated dataset. Nodes in the ten datasets 
are provided with accession codes linking them to entries describing genes and proteins 
in databases such as Swiss-Prot [27] and NCBI’s Entrez Gene [28]. HPRD [18] and PPID 
[19, 26] are not included in the public web interface since these databases require a 
license for redistribution. Currently, these datasets are only available to internal users at 
Mount Sinai School of Medicine. 
 
Filtering  
 
Many of the interactions and components listed in the ten datasets we used are a result of 
high-throughput experiments which are considered low-quality since they often report 
high level of false positives [29]. Thus, we applied a simple filtering approach which 
excludes interactions if they originated from articles that provided many interactions, 
and/or gives more confidence to interactions reported by several different papers. We 
made the assumption that a research article that reports many interactions is likely to 
report false positives, and, alternatively, interactions that were reported in many different 
research articles and appear in many databases are likely to be real, and thus, have higher 
confidence. More sophisticated filtering techniques that would implement machine 
learning technologies such as support vector machines (SVM) [30], and would take into 
account more knowledge about interactions (i.e. experimental method used) are planned 
to be implemented in the future. 
 
Web interface 
 
To enhance accessibility to the tool, we developed a web-based interface to the software. 
The interface allows users to input a list of human Entrez Gene symbols, entered in a 
textbox or through a text file. As genes are added, the symbol is validated using NCBI-
eutils (http://eutils.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html) by searching the 
NCBI gene database with the entered query restricting the organism to human. When an 
exact match is not found, the user is presented with a list of suggestions to choose from.  
Using the background merged consolidated network dataset, the program outputs 
subnetworks that describe all found interactions for the list of inputted gene symbols. 
Through the web interface, the user has full access to configure which datasets to include 
in the background network, and what filtering to apply to the background networks to 
remove low confidence interactions. This also includes the ability to upload user 
developed network datasets for inclusion in the background. The output is visualized 
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using a dynamical web-enable AJAX viewer called AVIS 
(http://actin.pharm.mssm.edu/AVIS2/). The viewer allows browsing, zooming and 
panning, and linking to interaction resources. The user can configure the colors of the 
outputted nodes so that the seed genes, intermediate genes above a specified z-score, and 
the rest of the nodes have different colors. The user needs to specify maximum number of 
steps/hops to use in order to connect the genes from the input list. Steps/hops are links 
(and nodes) needed to connect the inputted seed list. Additionally, the program outputs a 
statistical report that ranks intermediates used to connect the genes based on their 
specificity to interact with the seed list. As the user adjusts the settings, changes in the 
resulting network are automatically redisplayed. A representative screenshot of the 
system is illustrated in Figure 2. 
 
Significant intermediates 
 
The output subnetworks produced by Genes2Networks contain nodes, mostly proteins, 
which were not originally provided by the user as input. Some of those intermediate 
nodes may be present in the output subnetwork because the intermediates are highly 
connected nodes in the background network. On the other hand, intermediate nodes may 
be specific to interacting with components from the original seed input list. If those 
intermediates are specific, it may be useful for the user to identify them as potential 
specific regulators and specific participants in pathways and modules involving the input 
list of gene symbols. For this, Genes2Networks output a z-score value of the significance 
of intermediates in the output subnetwork. The z-score is computed using a binomial 
proportions test [31]:  

d
d
b

d
b

d
b

c
a

z

⎟
⎠
⎞

⎜
⎝
⎛ −⋅

⎟
⎠
⎞

⎜
⎝
⎛ −

=

1
                                                               Equation 1 

 
Where “a” equals the links from the intermediate node to nodes from the input list, “b” 
equals the total links for the intermediate node in the background network, “c” is the total 
links in the subnetwork, and “d” is the total links in the background network. 
 

Discussion and Conclusions 
 

Several commercial and academic initiatives have been attempting to address the need for 
integration, consolidation, visualization and organization of information about binary 
mammalian protein interactions and signaling pathways from sparse sources. For 
example, Cytoscape [32] and its several plug-ins allow for analysis and integration of 
experimental data as well as incorporation with Gene Ontology [33]. One of the plug-ins, 
called cPath [34] (http://cbio.mskcc.org/cpath/) is a database that joins together databases 
stored in PSI-MI XML format [19].  Other similar software platforms include: PIANA 
[35], Pathway Studio [7], ProViz [36], PATIKA [37], and Ingenuity 
(http://www.ingenuity.com/). Some are commercial products and some developed by 
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academic labs and are freely available. Genes2Networks provides several advantages 
over existing systems. The quality of the background datasets is high yet comprehensive, 
the user interface is an intuitive web-based Web 2.0 enabled application, the systems is 
free for academic users, the system provides predictions about intermediate components 
involvement with the proteins from seed lists by ranking intermediates according to their 
specificity to interact with the seed list. Genes2Networks is suitable for analysis of 
diverse high-content multivariate experimental results. The web interface and 
visualization provide easy access and user friendly environment eliminating the need for 
training. 
 

Availability and requirements 
 
Project name: Genes2Networks 
Project home page: http://actin.pharm.mssm.edu/genes2networks/ 
Operating system: Platform independent  
Programming language: C, AJAX, Perl, HTML  
Other requirements: The HPRD and PPID dataset are only available to Mount Sinai 
School of Medicine users due to licensing restrictions. 
License: GNU GPL  
Any restrictions to use by non-academics: License needed. Users should contact 
technology@mssm.edu 
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Figures 
 
Figure 1 
 

 
 
 
 
 
Figure 1: Ten mammalian PPI network datasets were consolidated into one dataset, and 
then filtered by excluding interactions originating from articles that contributed many 
interactions, or by excluding interactions with few references. The filtered merged dataset 
is then used to analyze lists of gene or protein names by outputting a subnetwork with 
nodes in three different colors: seed, significant, insignificant. The output also includes a 
statistical report that ranks intermediate nodes based on their specificity to interact with 
the seed list. 
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Figure 2: Genes2Networks web interface. The interface allows users to input a list of 
human Entrez Gene symbols, entered in a textbox or through a text file (top left). As 
genes are added, using the background merged consolidated network, the program 
outputs a network map that visualize known interactions that “connect” the list of gene 
symbols, and a statistical report that ranks intermediates based on their specificity to 
interact with the seed list.  
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