ANALYSIS OF DNA STRUCTURE AS A 2D WALK BY COMPLEX WAVELET TRANSFORM

E.B.Postnikov*, A. Loskutov, S.A.Larionov, E. Ryadchenko, R.V. Kiseliov* *Theoretical Physics Deptartment, Kursk State University, Kursk, Russia Physics Faculty, Moscow State University, Moscow, Russia http://chaos.phys.msu.ru/postnicov/

A - Adenine
T - Thymine
C-Cytosine
G - Guanine
Representation of Genome as 2D walk (M. Gates, 1985)

Genome as 2D walk on a complex plane $A:+1, T:-1, C:+I, G:-i$

Advantages of PDE-based method over FFT-based algorithm for the evaluation of the wavelet transform :

* robust algorithms for the numerical solving of the diffusion-type PDE;
* there are almost no restrictions on the small scale-steps
* boundary effects can be eliminated by the choice of suitable boundary conditions for finite samples (it eliminates errors of periodization in FFT algorithms)
* PDE-based algorithm is faster then FFT-based for large samples

VS. $\quad O\left(N_{a} N_{b} \log N_{b}\right)$

$$
\begin{aligned}
& \frac{\beta_{j-1}}{6} \frac{\partial w_{j-1}}{\partial a}+\frac{\beta_{j-1}+\beta_{j}}{3} \frac{\partial w_{j}}{\partial a}+\frac{\beta_{j}}{6} \frac{\partial w_{j+1}}{\partial a}=\left(\frac{a}{\beta_{j-1}}+\frac{i \omega_{b}}{2}\right) w_{j-1}-\left(\frac{a}{\beta_{j-1}}+\frac{a}{\beta_{j}}\right) w_{j}+\left(\frac{a}{\beta_{j}}-\frac{i \omega_{b}}{2}\right) w_{j+1} . \\
& \mathbf{M}\left(\left\{\beta_{j}\right\}\right)^{\partial \mathbf{w}(a)} \frac{\mathbf{F}\left(a,\left\{\beta_{j}\right\}\right) \mathbf{w}(a), \quad \beta_{j}=b_{j+1}-b_{j}, ~}{\text { a }} \\
& \text { Step-by-step solution } \\
& \left(\mathbf{M}-\frac{1}{2} \mathbf{F}_{n+1} \Delta a\right) \mathbf{w}_{n+1}=\left(\mathbf{M}+\frac{1}{2} \mathbf{F}_{n} \Delta a\right) \mathbf{w}_{n} \\
& \Delta\left(\mathbf{M}-\frac{1}{2} \mathbf{F}_{n+1} \Delta a\right)=-\frac{1}{2}(\Delta a)^{2} A \quad \Delta\left(\mathbf{M}+\frac{1}{2} \mathbf{F}_{n+1} \Delta a\right)=\frac{1}{2}(\Delta a)^{2} A \\
& A=\operatorname{rridias}\left(\frac{1}{\beta_{\mu}},-\frac{1}{\beta_{\mu}-1}-\frac{1}{\beta_{1}}, \frac{1}{\beta_{1}}\right) \quad M=\operatorname{rididas}\left(\frac{\beta_{-1}}{6}, \frac{\beta_{\mu}-1+\beta_{B}}{3}, \frac{\beta_{1}}{6}\right) \\
& \text { Number of operations: } O\left(N_{a} N_{b}\right)
\end{aligned}
$$

For the grid $N_{a} \times N_{b}$
N_{a} times to solve the matrix system by the Thomas method (o(N.) operations)

