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Stress exposure is associated with individual differences in corticolimbic structure and function that often mirror patterns
observed in psychopathology. Gene x environment interaction research suggests that genetic variation moderates the impact
of stress on risk for psychopathology. On the basis of these findings, imaging genetics, which attempts to link variability in DNA
sequence and structure to neural phenotypes, has begun to incorporate measures of the environment. This research
paradigm, known as imaging gene x environment interaction (iGxE), is beginning to contribute to our understanding of the
neural mechanisms through which genetic variation and stress increase psychopathology risk. Although awaiting replication,
evidence suggests that genetic variation within the canonical neuroendocrine stress hormone system, the hypothalamic-
pituitary-adrenal axis, contributes to variability in stress-related corticolimbic structure and function, which, in turn, confers risk
for psychopathology. For iGxE research to reach its full potential it will have to address many challenges, of which we discuss:
(i) small effects, (ii) measuring the environment and neural phenotypes, (iii) the absence of detailed mechanisms, and (iv)
incorporating development. By actively addressing these challenges, iGxE research is poised to help identify the neural
mechanisms underlying genetic and environmental associations with psychopathology.
Neuropsychopharmacology Reviews (2016) 41, 275–296; doi:10.1038/npp.2015.216; published online 23 September 2015
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INTRODUCTION

All organisms strive to maintain homeostasis by regulating
physiology and behavior within a dynamic equilibrium.
Stress, the perception of inadequate resources in the context
of environmental pressures appraised as threatening, dis-
rupts homeostasis by triggering physiologic and behavioral
responses to meet the immediate demands on an individual
(Ganzel et al, 2010; Selye, 1936). Although stress promotes
adaptive responses to challenge when motivation is high and
resources available, the relationship between stress, especially
that which is chronic, unpredictable, and uncontrollable, and
the experience of psychopathology is unequivocal (McEwen
and Gianaros, 2010). Nearly 40% of individuals report
experiencing adversity during childhood, which predicts 30%
of adult-onset and 45% of childhood-onset psychiatric
disorders (Green et al, 2010; Kessler et al, 2010). Similarly,
evidence suggests that ubiquitous adult-onset stressful
experiences, as well as perceived stress increase risk for the
emergence and relapse of various forms of psychopathology
(Dohrenwend, 2000; Monroe and Reid, 2009). These robust

transdiagnostic associations have propelled research across
species to investigate the neurobiology of stress responsive-
ness and adaptation, as well as how individual differences in
this neurobiology develop and confer relative vulnerability or
resiliency to the pathogenic effects of stress (de Kloet et al,
2005; Hill et al, 2012; Lucassen et al, 2014; Lupien et al, 2009;
McCrory et al, 2011; McEwen and Morrison, 2013; Teicher
and Samson, 2013).
The neurobiology of stress responsiveness is well under-

stood due in large part to its conservation across species.
When a threat is detected coordinated autonomic, neuroen-
docrine, metabolic and immune system responses are
initiated by governing interconnected corticolimbic circuitry,
which also functions to return the body to homeostasis
following stressor removal (de Kloet et al, 2005; Ulrich-Lai
and Herman, 2009; Whalen and Phelps, 2009). The central
structure, or hub, within this network is the amygdala, which
has extensive afferent and efferent connections with other
corticolimbic circuitry nodes including the thalamus, sensory
cortex, autonomic and neuromodulatory brainstem nuclei,
hypothalamus, insula, hippocampal formation, and prefron-
tal cortex (Figure 1; for more detailed reviews of this circuitry
see (Duvarci and Pare, 2014; Hariri, 2015; Janak and Tye,
2015; Kim et al, 2011; Price and Drevets, 2012; Whalen and
Phelps, 2009). Broadly, the amygdala and its connections to
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these regions are necessary for first recognizing possible
threat in the environment and then generating and
regulating appropriate reactions in physiology and behavior.
Given the quintessential role of corticolimbic circuitry in

stress responsiveness, it is not surprising to find consistent
differences in corticolimbic function and structure across
various forms of psychopathology and associated behavioral
risk factors, such as negative emotionality or neuroticism
(Hariri, 2015). In particular, relative hyperactivity of the
amygdala to threatening contexts and stimuli has emerged as
a core feature of stress-related disorders such as anxiety,
PTSD, and depression (Bruhl et al, 2014; Groenewold et al,
2013; Hayes et al, 2012; Swartz and Monk, 2014a). Highly
convergent findings from preclinical models of human
psychopathology, especially anxiety disorders, further under-
score the importance of corticolimbic circuitry broadly and
the amygdala specifically in the emergence of stress-related
disorders (Bukalo et al, 2014; Duvarci and Pare, 2014).
Relative to the consistent and convergent observations of

amygdala hyperactivity in stress-related disorders, differ-
ences in amygdala structure have been mixed. For instance,
first-episode depression is associated with larger amygdala
volume, whereas smaller volumes or no differences have
been observed in patients with recurrent depression (Frodl
et al, 2002, 2003). Mixed volumetric findings have also been
reported among individuals with PTSD and anxiety dis-
orders as well as individuals stratified according to the
experience of early life stress (Hanson et al, 2015; Hilbert
et al, 2014; Luby et al, 2013; Sheridan et al, 2012; Tottenham
et al, 2010). What is clear, however, is that there are vast
individual differences in stress-related corticolimbic struc-
ture and function, with increasing evidence that these
differences may mediate associations between stress and
later psychopathology (Burghy et al, 2012; Gee et al, 2013;
Gorka et al, 2014; Swartz et al, 2014b; 2015; Tottenham et al,
2011).
Imaging genetics is an emerging research strategy poised to

identify mediating mechanisms through which variability in
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Figure 1. The amygdala functions as the hub of the corticolimbic circuit. The basolateral complex of the amygdala (BLA) receives low-resolution sensory
information from the thalamus and olfactory tract, as well as high-resolution sensory information from unimodal sensory cortex and multimodal association
areas. The BLA relays this information to the central nucleus of the amygdala (CeA), which further projects to the sublenticular extended amygdala (SLEA)
composed of the substantia innominata (SI) and the bed nucleus of the stria terminalis (BNST). The CeA and SLEA drive physiobehavioral output through
projections to corticolimbic nodes (brainstem, hypothalamus, insula, hippocampal formation, prefrontal cortex). CeA and SLEA projections to brainstem
nuclei facilitate sympathetic arousal while relays to the hypothalamus excite the hypothalamic-pituitary-adrenal (HPA) axis producing a stress hormone
response. Diffuse cholinergic projections from the nucleus basalis of Meynert within the SI to the cortex increase neuronal sensitivity to input, including
sensory and interoceptive information, to facilitate acuity and awareness/alertness. BLA and SLEA projections to the insula facilitate interoceptive
awareness in conjunction with convergent somatosensory and interoceptive projections from the body, allowing for a representation of one's bodily states
(eg, heart rate). Amygdala and EA projections to the hippocampus potentiate encoding and recall of the context in which a stimulus triggered an amygdala
response. A secondary role of the hippocampus within the corticolimbic system is to provide negative feedback inhibition of the HPA axis. Corticolimbic
nodes further project back to the amygdala to further regulate its function. For instance, projections from the dorsomedial PFC can serve to inhibit
amygdala response during emotion regulation and fear extinction. (For more detailed reviews of this circuitry see Duvarci and Pare, 2014; Hariri, 2015;
Janak and Tye, 2015; Kim et al, 2011; Price and Drevets, 2012; Whalen and Phelps, 2009.)
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the genome and epigenome shape individual differences in
corticolimbic function and structure associated with risk
for psychopathology (Bogdan et al, 2013a; Hariri, 2009).
Inspired by: (i) non-human animal models and neuro-
imaging research documenting effects of the environment,
and in particular stress, on brain function and structure
(Gee et al, 2013; Lupien et al, 2009; Tottenham and Sheridan,
2009), and (ii) models of gene× environment inter-
action influencing psychopathology (Caspi et al, 2010; Karg
et al, 2011; Zannas and Binder, 2014, but see also Duncan and
Keller, 2011), imaging genetics studies have begun to examine
how assessed and manipulated environments moderate
associations between genetic variation and the brain.
Our review highlights emerging imaging gene × environ-

ment interaction (iGxE) research that is beginning to inform
our understanding of individual differences in corticolimbic
circuitry and how these differences may confer psycho-
pathology risk (Caspi and Moffitt, 2006; Hyde et al, 2011a).
We begin by providing a brief introduction of the basic
structure and regulation of the hypothalamic-pituitary-
adrenal (HPA) axis, as well as its associations with
psychopathology and corticolimbic structure and function
to help orient the reader to the processes subsequently
considered within the iGxE framework. Next, we review
iGxE research of the HPA axis and corticolimbic circuitry, as
well as several iGxE studies that have been conducted with
variants outside of the canonical HPA axis. Lastly, we
address several key challenges that confront iGxE and are
familiar to traditional genetic, neuroimaging, psychiatric,
and environmental research, including: (i) small effects of
common genetic variation further constrained by the
frequency of environmental events (Duncan and Keller,
2011), (ii) how best to assay and/or manipulate the
environment and neural phenotypes (Monroe, 2008), (iii)
limited understanding of detailed mechanisms (Bogdan et al,
2013a), and (iv) the importance of considering develop-
mental timing (Lupien et al, 2009). By actively confronting
these challenges, iGxE, in concert with traditional neuroima-
ging, environmental, and molecular and behavioral genetic
research can uniquely inform who is at risk for psycho-
pathology and through what specific neurogenetic mechan-
isms this risk emerges. A deeper understanding of risk
mechanisms can subsequently inform ongoing efforts to
refine psychiatric nosology and identify novel therapeutic
targets to combat the development of stress-related
psychopathology.

HPA AXIS

Within corticolimbic circuitry, the neuroendocrine HPA axis
is a central regulator of stress responsiveness and adaptation
(for reviews see de Kloet et al, 2005; Lupien et al, 2009;
Ulrich-Lai and Herman, 2009). HPA axis activity follows a
daily oscillation governed by the circadian system and is
provoked by stress. The HPA axis is controlled by the
paraventricular nucleus (PVN) of the hypothalamus, which
receives afferent innervation from the central amygdala

(CeA) and sublenticular extended amygdala (SLEA), as well
as brainstem nuclei, other hypothalamic nuclei, the hippo-
campus, and prefrontal cortex (Ulrich-Lai and Herman,
2009). These projections convey a wide array of sensory,
emotional, contextual, and perceptual information and serve
to activate (and inhibit) a three-step hormonal cascade.
PVN activation stimulates the release of corticotropin-

releasing hormone (CRH), which triggers adrenocorticotro-
pic hormone (ACTH) secretion from the pituitary. ACTH
stimulates release of cortisol (corticosterone in rodents),
which operates on multiple targets through a binary
corticosteroid receptor system consisting of mineralo-
corticoid (MR) and glucocorticoid (GR) receptors. Owing
to their high affinity for cortisol, MRs are typically occupied
throughout the circadian cycle allowing cortisol to provide
a stable excitatory tone in the hippocampus that inhibits
the HPA axis under basal and stressful circumstances. In
contrast, GRs, which have a low affinity for cortisol, only
become occupied following large spikes in cortisol, such as
circadian rhythm peaks (eg, the awakening response) or
following stress. Within the hippocampus, GRs inhibit
continued HPA axis activity and facilitate a return to
homeostasis after a stressor has passed (though cortisol-GR
binding in other regions, such as the amygdala, can
potentiate the HPA axis response; Kolber and Muglia,
2009). Generally, CRH and ACTH signaling stimulate HPA
axis activity while cortisol-MR binding constrains the initial
HPA axis response, and cortisol-GR binding returns the
body to homeostasis after a stress-precipitated response (de
Kloet et al, 2005; Lupien et al, 2009).
The influence of the HPA axis extends directly to other

brain regions and the transcriptome. HPA axis hormone
receptors are widespread throughout the brain with high
concentrations in corticolimbic structures. For instance,
CRH binding within the amygdala has been tightly linked
to models of stress-related psychopathology in rodents,
including anxiety and depression (Binder and Nemeroff,
2010; Hauger et al, 2009; Kehne and Cain, 2010). The HPA
axis gains access to the genome through intracellular
corticosteroid receptors. When bound with cortisol, these
receptors can translocate to the nucleus where they bind to
regulatory elements of DNA, known as GR response
elements (GREs), to enhance or suppress the transcription
of a wide range of genes (de Kloet et al, 2005, 2008; Menke
et al, 2012). Access to the transcriptome allows the HPA axis
to extend its reach to a diverse array of proteins and may
contribute to the pleiotropic effects of stress, including
subsequent vulnerability to psychopathology (Arloth et al,
2015). Interestingly, individual differences in cortisol-
stimulated gene expression are more robust predictors of
psychopathology than baseline differences (Menke et al,
2012), emphasizing the importance of considering the
transcriptome in the context of stress and related psycho-
pathology (Frodl et al, 2012, 2014a). Here, it is important to
note that there are many additional factors that interact with
the HPA axis (eg, urocortins, vasopressin, neuropeptide Y,
inflammation) that are appealing candidates for further
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study in the context of stress-related disorders; however, with
few exceptions these additional factors have yet to be
extensively investigated in the iGxE literature and hence
are not further considered in our review (Hauger et al, 2006;
Horowitz and Zunszain, 2015).

Genetic and Environmental Origins of HPA Axis
Variability

There are vast individual differences in diurnal HPA axis
rhythms and responsiveness to challenge that are generally
stable over time and moderately to largely heritable
(Federenko et al, 2004; Franz et al, 2010; Gustafsson et al,
2011; Van Hulle et al, 2012; Wust et al, 2000). Candidate
gene and genome-wide association studies (GWAS) have
begun to link common genetic variation within the HPA axis
cascade to individual differences in diurnal and stress-evoked
HPA axis function (Bolton et al, 2014; DeRijk, 2008, 2009).
Furthermore, many of these variants have been shown to
interact with stress exposure to convey vulnerability to
psychopathology and other stress-related diseases (for
reviews see: DeRijk et al, 2008; Zannas and Binder, 2014).
In addition to genetic factors, animal models have

consistently documented that stress, particularly when
chronic and early in life, results in long-lasting changes to
the HPA axis (for review see: Lupien et al, 2009). For
example, maternal separation in rodents increases CRH
receptor expression in the pituitary and reduces hippocam-
pal GR binding sites, resulting in heightened basal HPA axis
output and an atypical diurnal pattern (Anisman et al, 1998;
McEwen, 2000). Similar associations (ie, elevated ACTH and
cortisol and reduced GR expression in the hippocampus)
have been found in non-human primates and humans
exposed to adversity in early life suggesting that these effects
are conserved across species (Miller et al, 2007; Tyrka et al,
2013).
Rodent models suggest that early life stress-related HPA

axis differences may emerge from epigenetic modifications.
Most notably, Meaney and colleagues have shown that rat
maternal care affects the later adult behavior of offspring
through epigenetic regulation of the HPA axis (Turecki and
Meaney, 2014; Weaver et al, 2004, 2005). Briefly, rats raised
by a low-caring mother (ie, one providing little licking and
grooming, as well as arched back nursing) show behavioral
susceptibility to later stress (eg, anxiety-like behavior), which
is mediated by a cascade of cellular changes that persist
throughout the rat’s lifespan. Offspring of low-caring
mothers have reduced nerve growth factor-inducible protein
A expression, which leads to increased methylation of the
GR gene (NR3C2) in the hippocampus, and thus less GR
expression. As GR-cortisol binding within the hippocampus
provides negative feedback regulation of the HPA axis, this
epigenetic change results in poor stress recovery, much like
what is observed in humans with depression. Remarkably
consistent findings in a human post mortem study suggest a
striking conservation of this epigenetic pathway across
species (McGowan et al, 2009). Perhaps most interestingly,

in cross-fostering experiments, this epigenetic change was
transmitted inter-generationally whereby low-caring mothers
raised offspring, who became low-caring mothers themselves
transmitting this epigenetic signature across generations
creating a heritable behavioral pattern uncoupled from DNA
sequence.

HPA Axis Variability, Psychopathology, and
Corticolimbic Structure and Function

Decades of research have shown that the HPA axis is
disrupted across psychopathologies (de Kloet et al, 2005;
Doom and Gunnar, 2013; Faravelli et al, 2012; Marques et al,
2009). The most consistent evidence is found regarding
depression, which is often characterized by elevations in
CRH, ACTH, and cortisol, as well as impaired negative
feedback of the HPA axis (Pariante and Lightman, 2008).
Alongside non-human animal models demonstrating that
HPA axis manipulation (eg, knockout, pharmacologic
challenge) produces anxiety- and depressive-like behaviors
(Kolber and Muglia, 2009; Lupien et al, 2009), human studies
indicate that chronic HPA axis stimulation (eg, for the
treatment of medical conditions such as asthma or
rheumatoid arthritis) can induce severe psychiatric symp-
toms that remit following treatment cessation (Fardet et al,
2012; Patten and Neutel, 2000; Wada et al, 2000). Moreover,
successful treatment of stress-related disorders normalizes
HPA axis function, prompting hope that novel treatments
targeting this system may be more broadly therapeutically
efficacious (de Kloet et al, 2008; Ising and Holsboer, 2007;
Otte et al, 2010; Thomson and Craighead, 2008).
In contrast to many studies linking HPA axis function to

psychopathology, far less research has examined HPA axis
correlates of corticolimbic function and structure in humans.
A few notable exceptions complement a rich foundation of
non-human animal data (Dedovic et al, 2009; Lupien et al,
2009; McEwen and Gianaros, 2011). For instance, individuals
with Cushing’s syndrome (ie, a tumor leading to large
amounts of ACTH and cortisol release) have increased
threat-related activation of the amygdala and hippocampus,
as well as diminished hippocampal gray matter volume
(Andela et al, 2015; Maheu et al, 2007, 2008). Human
pharmacologic challenge studies document that cortisol
signaling increases amygdala activation and functional
connectivity with other corticolimbic nodes in response to
threat-related stimuli (Henckens et al, 2010, 2012; Vogel
et al, 2015).
Similarly, circulating concentrations of endogenous corti-

sol, correlate with differential activity and connectivity
within corticolimbic circuitry. Specifically, elevated cortisol
is associated with increased amygdala and decreased
ventromedial prefrontal cortex (vmPFC) activation during
regulation of negative affect, providing an intriguing putative
mechanism (ie, deficient emotion regulation) through which
HPA axis dysfunction may contribute to psychopathology
(Urry et al, 2006). Recent evidence further suggests that early
life stress exposure leads to early ‘maturation’ of amygdala-
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prefrontal connectivity during adolescence (ie, negative
coupling comparable to that in adults) that is mediated by
circulating concentrations of cortisol, and that individuals
exposed to early life stress exhibiting relatively immature
amygdala-prefrontal functional connectivity experience
more anxiety (Gee et al, 2013). Lastly, in girls, greater early
life adversity has been associated with heightened cortisol
during childhood, which negatively predicts amygdala-
vmPFC resting-state intrinsic coupling and greater subse-
quent risk for stress-related disorders in young adulthood
(Bogdan and Hariri, 2012a; Burghy et al, 2012). Collectively,
these studies suggest that dysfunction of the HPA axis may
play a causal role in upregulating amygdala activity and
altering its functional connectivity with the prefrontal cortex,
which may weaken the capacity to effectively regulate stress
responses and hence, contribute to the emergence of
psychopathology.

iGxE OF CORTICOLIMBIC CIRCUITRY

Given clear associations between exposure to stress and
expression of psychopathology, as well as transdiagnostic
evidence for HPA axis dysregulation, understanding how
genetic variation moderates the impact of stress on
corticolimbic structure and function is critical for identifying
mechanisms of risk and resilience. Although in its infancy,
research adopting an iGxE framework is beginning to
improve our etiologic understanding of psychopathology
risk by identifying putative neural mechanisms. Current
iGxE research has primarily focused on candidate poly-
morphisms of documented functional relevance in the HPA
axis that are also predictive of psychopathology risk. More
recently, and consistent with the polygenic architecture of
HPA axis function, as well as the resolution at which neural
and behavioral genetics research is conducted, additive
genetic profiles have been constructed that seek to better
capture the cumulative influence of multiple variants on
HPA axis response and regulation, and subsequently, the
impact of such variability on corticolimbic phenotypes, as
well as associated risk for psychopathology. Below, we first
review studies of candidate polymorphisms within the HPA
axis, before turning to polygenic scores and investigations of
iGxE outside of the canonical HPA axis (Table 1; Table 2).

FK506 Binding Protein 5 (FKBP5)

FK506 binding protein 5 (FKBP5) is a co-chaperone of the
GR complex that diminishes GR sensitivity to cortisol, as
well as its access to the transcriptome. Seminal studies by
Binder, Ressler, and colleagues have identified a common
functional polymorphism within FKBP5, rs1360780, asso-
ciated with pleiotropic stress-related health effects (eg,
depression, immune dysfunction (Zannas and Binder,
2014). The minor T allele of this C/T polymorphism is
associated with greater FKBP5 expression following GR
activation (Binder et al, 2004). The T allele further predicts a
prolonged cortisol response to stress and impaired negative

feedback of the HPA axis, as well as elevated early life stress-
related depression and PTSD (Binder et al, 2008; Zannas and
Binder, 2014; Zimmermann et al, 2011).
Recently, the molecular mechanisms that likely drive the

functional consequences of rs1360780 genotype have been
detailed (Klengel et al, 2013). This polymorphism influences
the 3D structure of FKBP5 by changing the physical
proximity of a long-range enhancer region in intron 2 with
the transcription start site. Specifically, the greater FKBP5
expression in T allele carriers appears to result from
increased physical contact between a GRE within intron 2
and the transcription start site which is likely driven by
T allele conferred increased affinity for TATA-box binding
protein. As such, the T allele facilitates FKBP5 expression in
the context of GR activation, and hence, reduced cortisol-GR
binding and impaired HPA axis negative feedback. This
effect can be further compounded by T allele-specific
childhood stress-related demethylation of a functional
GRE within intron 7 of FKBP5, which comes into physical
contact with the transcription start site. Demethylation here
enhances FKBP5 expression in the context of GR stimula-
tion, resulting in a further reduction in HPA axis negative
feedback among T allele carriers. This pattern of allele-
specific methylation likely originates from prolonged HPA
axis response following stress, owing to the 3D conforma-
tional changes linked to rs1360780 genotype. Interestingly,
the epigenetic effects on FKBP5 may only emerge during
early life, which may help explain the preponderance of
research suggesting that adversity in early life, but not
adulthood, robustly moderates the effects of this genotype on
multiple stress-related phenotypes.
On the basis of clinical associations and the functional

characterization of rs1360780 genotype, several recent iGxE
studies have examined the impact of this polymorphism and
stress exposure on corticolimbic structure and function. For
example, we have shown that rs1360780 genotype interacts
with childhood adversity to predict increased threat-related
reactivity of the dorsal amygdala in European-American
(n= 139) T allele carriers (White et al, 2012). This rs1360780
genotype x early life stress interaction has subsequently been
replicated in young European (n= 153) and European-
American (n= 308) adults in two independent studies
(Di Iorio et al, submitted; Holz et al, 2014). That this
finding has been most pronounced in the dorsal amygdala,
which encompasses the CeA and thus the principal efferent
innervation of the PVN (Figure 1), is consistent with rodent
literature suggesting that stress upregulates FKBP5 in the
CeA, but not the basolateral complex (Scharf et al, 2011).
Thus, the interaction of FKBP5 genotype and early adversity
on dorsal amygdala activity may reflect sensitized responses
to threat. This interpretation is consistent with data
suggesting that T allele carriers show an attention bias
toward threatening stimuli, as well as increased function
connectivity throughout corticolimbic circuitry (Fani et al,
2013; Holz et al, 2014).
In contrast to research on the interaction between early life

stress and rs1360780 genotype, evidence for main effects with
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regard to corticolimbic structure and function has been less
consistent. For instance, one study reported a main effect of
rs1360780 genotype on threat-related amygdala reactivity,
wherein the risk T allele was associated with greater
reactivity (Holz et al, 2014). However, other studies have
yielded null main effects on amygdala reactivity (Di Iorio
et al, submitted; White et al, 2012). Hippocampal structure
has been the most studied structural phenotype with null
reports of rs1360780 main effects on hippocampal volume
(Fani et al, 2013; Hernaus et al, 2014; Pagliaccio et al, 2014).
Notably, FKBP5 methylation in intron 7 has been negatively
correlated with anterior hippocampal volume, further
suggesting that neural effects may only be observable in the
context of adversity (Klengel et al, 2013). Moreover, an effect
of rs1360780 genotype on differences in hippocampal
function and morphology has been observed in a trauma-
exposed sample of African-Americans (Fani et al, 2013).
Specifically, the risk T allele was associated with greater
threat-related hippocampal activity, as well as greater spatial
displacement in hippocampal morphology in the CA1
region. This finding is particularly intriguing in light of
evidence that CA1 atrophy and impaired long-term poten-
tiation are induced by stress and chronic corticosterone
administration in rodents (Alfarez et al, 2003; Sousa et al,
2000), as well as abnormalities in CA1 shape in stress-related
psychopathology (Kempton et al, 2011).
Lastly, some effects of rs1360780 genotype have been

reported with the structure of the anterior cingulate cortex
(ACC), which contributes to monitoring and regulating
behavioral responses including those to threat. In a healthy

Japanese sample, the T allele has been linked to reduced
dorsal ACC volume and reduced white matter integrity in
the dorsal anterior cingulum as well as the posterior
cingulum, two pathways linking the ACC with other brain
regions. Impaired white matter integrity of the posterior
cingulum has also been reported among African-American T
homozygotes (Fani et al, 2014). These findings suggest that
FKBP5 rs1360780 genotype may disrupt white matter
integrity within the cingulum and, possibly, white matter
connectivity between the ACC and corticolimbic nodes
including the amygdala and hippocampus, which may
impact the capacity to effectively regulate stress and threat
responses. However, notably, these white matter integrity
results were not consistent with methodology (ie, mean
diffusivity, fractional anisotropy) across these two studies
suggesting that further validation is needed.
Collectively, iGxE studies of FKBP5 rs1360780 genotype

suggest that the risk T allele is associated with potentiated
amygdala reactivity to threat in the context of early life
adversity. Such potentiated reactivity may set the stage for
the development of stress-related disorders later in life
(Figure 2). That this association primarily arises in the
context of early life adversity is concordant with evidence
that allele-specific epigenetic signatures in intron 7 of FKBP5
are developmentally constrained (Klengel et al, 2013).
Importantly, however, this does not suggest that later life
stress may not be important. Indeed, given evidence that
FKBP5 genotype moderates susceptibility to later PTSD
(Binder et al, 2008), this interaction and the heightened
amygdala reactivity it confers may predispose individuals to

Figure 2. Understanding neural mechanisms underlying psychopathology in iGxE research: Moderated mediational models of FKBP5. Structural
equation models allow researchers to examine indirect pathways to examine theoretical mechanisms. (a) FKBP5 genotype is proposed to interact with
early life stress to influence FKBP5 methylation. This may, in turn produce differences in cortisol output (and its effect on the transcriptome), and in turn,
amygdala activation to threat-related stimuli. (b) Similarly, amygdala activation (in conjunction with many other phenotypes) may partially mediate the
association between the interaction of FKBP5 genotype and early life stress on psychopathology. Although models a and b could be combined, it is
unlikely that large enough data sets will exist in the near future that have adequately captured these phenotypes.
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greater sensitivity to future stressful experiences. Although
requiring larger samples, it would be interesting to test
whether the early life stress × rs1360780 genotype interaction
better predicts future psychopathology and related neural
phenotypes in the context of recent life stress (ie, early life
stress × recent life stress × genotype). It will also be important
to assess whether FKBP5 methylation, HPA axis function,
and related transcriptome effects mediate the relationship of
the interaction between rs1360780 genotype and early life
stress and corticolimbic function and structure and further, if
these differences mediate the link to psychopathology
(Figure 2).
Not surprisingly, this research has motivated attempts to

develop FKBP5 treatments. Up until recently, this work has
largely been unsuccessful due to the structural similarity
between FKBP5 and FKBP2 (which has opposing functional
effects). Notably, however, an FKBP5 specific inhibitor was
recently developed that produced antidepressant like effects
in mouse models of stress (Gaali et al, 2015). These results
are particularly encouraging and are suggestive that FKBP5
inhibition may, eventually, become a useful tool in the
psychiatric treatment arsenal.

MR Receptor (NR3C2)

A functional missense Iso/Val polymorphism (rs5522)
located in exon 2 of the MR gene (NR3C2) influences its
functional efficiency. The Val allele has been associated with
reduced cortisol-related function, as well as blunted diurnal
cortisol variation and heightened stress reactivity as indexed
by neuroendocrine, autonomic, and self-report measures in
some but not all studies (DeRijk et al, 2006, 2008; van
Leeuwen et al, 2010). Interestingly, reduced MR expression is
found in post mortem brains of depressed individuals
consistent with observations that the Val allele predicts late
life depression and depression-like HPA axis dysfunction
(DeRijk et al, 2008; Klok et al, 2011a; van Leeuwen et al,
2010). Moreover, there is evidence from animal models that
upregulated MR expression in the basolateral amygdala,
wherein primary synaptic circuits for inhibition of amygdala
output are located, can have anxiolytic and antidepressant
effects (Mitra et al, 2009).
We have found evidence that the val allele interacts with

early life stress to influence threat-related amygdala reactivity
in children (n= 279) (Bogdan et al, 2012b). Specifically, there
was a positive association between emotional neglect and
threat-related amygdala reactivity in Iso allele homozygotes.
In contrast, in the context of low childhood adversity, val-
allele carriers had increased amygdala reactivity relative to
iso allele homozygotes. There were no genotype differences
in reactivity at high levels of maltreatment. Thus, even in the
context of low prior adversity, Val allele carriers display
amygdala activation similar to individuals with stress-related
psychopathology. As such, Val allele carriers may be more
vulnerable to the development of stress-related illness, even
in the absence of significant environmental stress, perhaps
due to the relative reduction in HPA axis inhibition. This

interpretation is consistent with evidence that MR blockade
raises basal cortisol levels but does not affect stress-induced
HPA axis response (Vogel et al, 2015). Notably, this
relationship has only been observed in children just entering
adolescence and was not replicated in young adults (n= 308;
Di Iorio et al, submitted). Given evidence of continued
amygdala development into adulthood, it is possible that
stress-related increases may be observed in Val allele carriers
later in life; however, it is also possible that this is a false
positive. Clearly, additional replication attempts and exten-
sions to different developmental periods are needed. Lastly,
emerging research has shown that along with rs2070950,
rs5522 forms a haplotype that is further predictive of
differential MR function and risk for psychopathology
(Klok et al, 2011b). This haplotype may help explain
conflicting reports of the relationship between the rs5522
variant in single SNP analyses of HPA axis function and
psychopathology (Klok et al, 2011a; van Leeuwen et al, 2011)
and allow future iGxE research to more accurately char-
acterize functional consequences of variation in the MR gene
on stress-related risk phenotypes (Di Iorio et al, submitted).

Polygenic Profiles

The vast majority of iGxE research has examined the
association between single-polymorphic loci and individual
differences in neural phenotypes. In light of small effects
typically conferred by single polymorphisms and the utility
of multilocus approaches in traditional psychiatric research
(Purcell et al, 2009), imaging genetics broadly has begun to
incorporate multilocus genetic profiles to quantify aggregate
genetic influence (Bogdan et al, 2013a; Holmes et al, 2012;
Nikolova et al, 2011). This approach has two primary scoring
schemes: (i) the summation of risk alleles or weighted effects
providing a ‘risk’ score for a given condition across the
genome or within a specified set of genes, or (ii) a
biologically informed multilocus profile score (BIMPS) based
upon previously reported associations with gene function or
downstream consequences representing the function of a
biological system (eg, the HPA axis).
Most polygenic research in imaging genetics has used

BIMPS. In this approach, genetic polymorphisms are
selected based upon known functional associations (eg,
receptor expression). In the case of iGxE, this approach has
been most often used with regard to measures of HPA axis
function (eg, cortisol levels). Strengths of this approach
include the use of a priori knowledge, which enhances the
interpretation of findings and better integrates this research
within the general field of neuroscience and psychiatry. A
related limitation, of course is the necessity for a priori
functional knowledge. With few exceptions (eg, FKBP5
rs1360780), common polymorphisms have generally been
poorly characterized with little to no replication of functional
associations. Moreover, additive polygenic profiles typically
assume additive effects, despite the strong likelihood of
epistatic interactions. Notably, when polygenic approaches
are constrained to neural systems and pathways they likely
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bring genetic data to a resolution that is more consistent with
neural and behavioral phenotypes. That is, as neuroimaging
assesses higher-order circuit function reflecting the overall
activity of thousands of neurons and glia, a polygenic profile
assesses higher-order function of a signaling cascade in
comparison with a single polymorphism with a likely small
effect on only one component of a signaling cascade.
In a study of young adult college students (n= 308) we

have found that a BIMPS reflective of HPA axis function
comprised of FKBP5 rs1360780, CRHBP rs10473984, CRHR1
rs110402; NR3C2 rs5522/rs4635799, predicts threat-related
amygdala reactivity and amygdala gray matter volume in the
context of early life stress (Di Iorio et al, submitted).
Specifically, individuals with elevated BIMPS, reflective of
relatively increased HPA axis activity and/or impaired
negative feedback, also reporting greater exposure to early
life stress had increased threat-related amygdala activity and
reduced amygdala gray matter volume, whereas an opposite
pattern of findings was observed in those with low BIMPS. In
addition, we found that HPA BIMPS predicted elevated
anxious arousal, though there was no evidence that the
effects on the amygdala mediated this relationship. These
functional findings are consistent with a wealth of literature

suggesting that HPA axis hyperactivity predicts relatively
exaggerated corticolimbic responses and, importantly, iden-
tifies individual polygenic liability to these effects.
That elevated exposure to early life stress was associated

with smaller amygdala gray matter volume in those with high
HPA axis BIMPS (ie, associated with heightened HPA axis
activity), but reduced amygdala gray matter volume in those
with low BIMPS provides insight into inconsistent (ie, larger,
smaller, equivalent) amygdala volume reports in those
exposed to early life stress (Hanson et al, 2015; Sheridan
et al, 2012; Tottenham et al, 2010). Specifically, these data
suggest that individual differences in HPA axis function may
meaningfully contribute to variability in early stress-related
brain structure. Some prior evidence is consistent with this
speculation as temporally-limited ELS predicts increased
amygdala volume, whereas a longer duration of exposure,
which is associated with impaired HPA axis negative
feedback, has been linked to reduced amygdala volume
(Mehta et al, 2009). This interpretation is consistent with
the hypothesis that initial stress-related hypertrophy within
the amygdala may eventually lead to amygdala atrophy in the
context of continued adversity and/or HPA axis activity
(McEwen, 2003).

TABLE 1 iGxE of Polymorphisms within the HPA Axis

Gene/
profile

Variant (s) Environment Outcome measure Finding Sample
size

Study

FKBP5 rs1360780 (C/T) Early life stress Amygdala activation to
threatening faces and
amygdala volume

T carriers: increased amygdala
activation and reduced amygdala
volume in the context of early
life stress

308 Di Iorio et al, submitted

Trauma-exposure Hippocampal activation to
threatening faces and
volume

T carriers: increased activation of
bilateral hippocampus
Greater spatial displacement in
hippocampal morphology in the
CA1 region

36 women Fani et al, 2013

Early life stress Amygdala activation to
threatening faces,
amygdala volume, and
amygdala-OFC-
hippocampal connectivity

T carriers: increased activation of
right amygdala in the context of
early life stress

153 Holz et al, 2014

Childhood emotional
neglect/ Early life
stress

Amygdala activation to
threatening faces

T carriers: increased activation of
bilateral dorsal amygdala in the
context of early life stress

139 children White et al, 2012

NRC32 rs5522 (iso/val) Childhood emotional
neglect

Amygdala activation to
threatening faces

Iso/Iso: increased activation in the
context of elevated emotional
neglect
Decreased activation in the
context of low adversity

279 children Bogdan et al, 2012b

Early life stress Amygdala activation to
threatening faces and
amygdala volume

No effect 308 Di Iorio et al, submitted

HPA BIMPS FKBP5 (rs1360780), CRHBP
(rs10473984), CRHR1 (rs110402),
and NR3C2 (rs5522, rs4635799)

Early life stress Amygdala activation to
threatening faces and
amygdala volume

Higher BIMPS was associated with
elevated amygdala activation and
reduced amygdala volume in the
context of elevated early life stress

308 Di Iorio et al, submitted

CRHR1 (rs4792887, rs110402,
es242941, rs242939, rs1876828),
NR3C2 (rs5522), NR3C1
(rs41423247, rs10482605,
rs10052957), and
FKBP5 (rs1360780)

Cortisol response to
an acute stressor and
early life stress

Amygdala and
hippocampal volume

Higher BIMPS was associated with
increased volume of the left
hippocampus and left amygdala in
the context of elevated early life
stress

120 children Pagliaccio et al, 2014
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In an independent longitudinal study of children (n= 120),
we have found that an HPA axis genetic risk profile predicts
cortisol response to an acute stressor, which mediates the
relationship between the genetic profile and later childhood
amygdala volume (Pagliaccio et al, 2014). Here, the risk
profile was comprised of ten SNPs (CRHR1 (rs4792887,
rs110402, es242941, rs242939, rs1876828), NR3C2 (rs5522),
NR3C1 (rs41423247, rs10482605, rs10052957), and FKBP5

(rs1360780)) associated with HPA axis function and/or
depressive phenotypes. Consistent with literature from
which the profile was derived, the profile was associated
with elevated cortisol response to acute stress. Most
interestingly, the profile interacted with stressful life events
during early childhood to predict increased amygdala and
hippocampal gray matter volume measured between ages
7–12, which is consistent with a cortisol-mediated

Figure 3. Genetic determinants of the transcriptome response predict depression and generalized amygdala function. In a multisite study, the GR
agonist dexamethasone was administered to healthy and depressed participants who were genotyped. RNA expression was measured before and after
(+3 h) dexamethasone administration. First, we identified SNPs that were associated with dexamethasone-related changes in gene expression. Next, we
examined whether these SNPs were significantly enriched in psychiatric disorders. (a) Evidence of significant enrichment in patients with depression from
the PGC depression mega analysis. The red line indicates the number of SNPs that were predictive of GR-related gene expression and depression; the
blue and gray bars represent enrichment with regard to random SNPs and SNPs associated with baseline gene expression, respectively. As can be seen,
permutation analyses indicated that GR-expression related SNPs are overrepresented in their association with depression. (b–e) the results
of these genetic polymorphisms on threat-related amygdala function. We first created a multilocus profile score representing SNPs associated with both
GR-related gene expression and depression before regressing this score on threat-related amygdala activation. Curiously, the genetic profile was
predictive of relatively reduced amygdala reactivity to threatening stimuli ((c) angry and fearful faces4neutral faces). However, post hoc tests revealed that
this profile was predictive of elevated amygdala response to neutral faces ((d); ie, neutral faces4shape matching control task) while being unrelated to
threatening faces ((e) angry and fearful faces4shape matching control task). These findings suggest that SNPs associated with both GR-related gene
expression and depression predict an overgeneralized amygdala response, wherein neutral faces elicit relatively increased activation. Figure adapted from
Arloth et al, 2015.

GxE corticolimbic circuitry
R Bogdan et al
.....................................................................................................................................................................

283

REVIEW

...................................................................................................................................................

Neuropsychopharmacology REVIEWS



mechanism predicting later structural differences. Notably,
this finding is opposite the finding we have observed in
young adults mentioned above (Di Iorio et al, submitted).
This lack of consistency may be the result of developmental
timing wherein, in young childhood, early life stress
correlates with larger amygdala volume (ie, hypertrophy) in
the context of elevated HPA axis activity; however, later, in
the context of continued HPA axis activation, this associa-
tion may transition to atrophy as has been speculated
(McEwen, 2003). It will be critically important for further
longitudinal research to examine transitions between devel-
opmental windows (eg, childhood to adolescence) to directly
test this speculation.
Lastly, the pleiotropic effects of stress likely emerge, at least

in part, due to the influence of HPA axis function on the
transcriptome. In a multisite collaborative study led by
Binder’s group (Figure 3), we recently identified genetic
polymorphisms that predict transcript-specific mRNA ex-
pression differences following GR agonism (Arloth et al,
2015). Interestingly, we found that polymorphisms predict-
ing GR-driven differences in gene expression were also
overrepresented in the major depression mega analysis
conducted by the Psychiatric Genomics Consortium (PGC;
http://www.med.unc.edu/pgc/downloads). Further, we found
that an additive profile across these SNPs predicted
depression in a community sample, as well as abnormal
amygdala activity (specifically, increased reactivity to neutral
relative to threatening facial expression) in a sample of young
adult college students. Thus, these results suggest that SNPs
predicting individual differences in GR-related gene tran-
scription and depression may potentiate a non-specific
amygdala response that speculatively may lead to fear
overgeneralization that alters perception of otherwise neutral
stimuli as threatening. We are currently collecting concur-
rent imaging and gene expression data in the context of a
dexamethasone challenge to ascertain whether GR-related
gene expression mediates associations between dexametha-
sone challenge and corticolimbic function.

iGxE Outside of the HPA Axis

Several candidate polymorphisms residing outside the HPA
axis have been examined in an iGxE framework with regard
to corticolimbic structure and function in the context
of stress (Table 2). Because the vast majority of this work
has investigated the 5-HTTLPR variant of the serotonin
transporter gene (SLC6A4) and the Vall66Met (rs6265)
polymorphism of the brain-derived neurotrophic factor gene
(BDNF) we focus predominantly on these lines of research.
The serotonin transporter-linked polymorphic region

(5-HTTLPR) is an imperfect repeat polymorphism within
the 5′ regulatory region of the serotonin transporter gene
(SLC6A4) that, in conjunction with 5′ SNPs rs25531 and
rs25532, may alter serotonin transporter expression, confer
vulnerability to the depressogenic effects of stress, and be
associated amygdala function. Relative to the long allele, the
short allele at this locus has been linked in some, but not all,

studies to reduced 5-HTT expression, increased vulnerability
to the depressogenic effects of stress, and heightened
amygdala reactivity to threatening stimuli (Bastiaansen
et al, 2014; Duncan and Keller, 2011; Hariri et al, 2002;
Karg et al, 2011; Kaufman, 2015; Lesch et al, 1996; Murphy
et al, 2013; Sharpley et al, 2014). A handful of iGxE studies
have examined whether this polymorphism interacts with
the environment to predict variability in corticolimbic
circuitry with evidence that the short allele is associated
with elevated amygdala activity at rest and in response to
threatening stimuli among those exposed to relatively
elevated life stress (Table 1; Alexander et al, 2012; Canli
et al, 2006; Williams et al, 2009). Moreover, two 5-HTTLPR
iGxE studies suggest that 5-HTTLPR short allele carriers
have smaller hippocampal volume in the context of early life
stress (Frodl et al, 2010) and stressful life events (Rabl et al,
2014); however, these findings were not replicated with
regard to ELS (Gatt et al, 2009) and were in an opposing
direction when considering perceived stress in another study
(Zannas et al, 2013). Lastly, one study provides evidence that,
in women, 5-HTTLPR genotype moderates the association
between stressful life events and resting-state functional
connectivity of the parahippocampus and posterior cingulate
cortex, as well as structural connectivity of the hippocampus
and both the amygdala and putamen (Favaro et al, 2014).
Notably, iGxE research on the 5-HTTLPR to date has been
conducted in relatively small samples with no direct
replications (ie, same neural phenotype and environmental
assessment/manipulation). As such, although this prelimin-
ary research suggests that stress and 5-HTTLPR genotype
may interact to shape corticolimbic structure and function,
which may contribute to increased stress-related psycho-
pathology in short allele carriers, validation of these results
are needed, particularly in light of mixed effects reported in
the literature (Bastiaansen et al, 2014; Duncan and Keller,
2011; Karg et al, 2011; Kaufman, 2015; Murphy et al, 2013).
Given evidence that 5-HTTLPR× stress effects are most
pronounced when considering early life adversity, as
opposed to lifetime measures of stress, iGxE studies focusing
on early life stress exposure may prove most fruitful (Bogdan
et al, 2014; Karg et al, 2011).
The Met allele of the BDNF Vall66Met (rs6265) poly-

morphism has been linked to reduced BDNF function, as
well as depression and reduced hippocampal volume in
some, but not all studies (Egan et al, 2003; Elzinga et al, 2011;
Verhagen et al, 2010). Perhaps most interestingly from a GxE
perspective, there is evidence that Met allele carriers who
have been exposed to childhood abuse had the lowest
levels of serum BDNF (Elzinga et al, 2011). Given the key
role of BDNF supporting the survival and growth of
neurons, several iGxE studies have examined associations
between rs6265 genotype and gray matter volume. Across
these studies, reduced hippocampal volume has been
reported among Met allele carriers who have been exposed
to elevated levels of stress (Table 2; Carballedo et al, 2013;
Frodl et al, 2014b; Gatt et al, 2009; Rabl et al, 2014; but see
also Gerritsen et al, 2012). These results suggest that
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TABLE 2 iGxE of Polymorphisms Outside of the HPA Axis

Gene Variant Environment Outcome measure Finding Sample size Study

ADRA2B − 4825 indel Induced stress (movie clips) Amygdala BOLD activation
to emotional morphing faces

Non-deletion homozygotes: blunted phasic
amygdala activation under stress relative to control
manipulation and deletion carriers
under stress

41 Men Cousijn et al, 2010

Induced psychological stress
after encoding, before
recognition

Amygdala and hippocampal
BOLD activation during
fearful and neutral face
recognition

Deletion carriers: blunted amygdala response to
neutral faces under stress, increased amygdala
response to neutral faces under control
manipulation
Non-deletion homozygotes: increased right
hippocampal activation to fearful faces after stress

22 Li et al, 2015

BDNF rs6265 (Val66Met) Early life stress Hippocampal volume Met carriers: smaller hippocampal volume in the
context of higher lifetime stress. Val/Val no
differences.

133 (62 MDD patients) Carballedo et al, 2013

Early life stress Hippocampal subfield
volume

Met carriers: smaller hippocampal subfields in the
context of higher lifetime stress
Val/Val: no differences

82 (38 MDD patients) Frodl et al, 2014b

Early life stress Hippocampal, amygdala, and
prefrontal volume

Met carriers: smaller hippocampal and lateral PFC
volumes in the context of early life stress
Val/Val: larger amygdala and prefrontal volume in
those exposed to early life stress

89 Gatt et al, 2009

Early life stress Cingulate, hippocampal,
amygdala, and prefrontal
volume

Met carriers: smaller subgenual ACC volume in the
context of early life stress with no differences in
any other region

568 Gerritsen et al, 2012

Pain acute stress Ventral striatal D2/3
receptor availability

Met carriers showed increased dopamine release
during pain and reduced release during placebo

49 Peciña et al, 2014

Lifetime stress Hippocampal volume Met carriers: smaller hippocampal volume in the
context of elevated lifetime stress
Val/Val: no association between volume and life
stress

153 Rabl et al, 2014

COMT rs4680 (Val158Met) Lifetime stress Hippocampal volume Met/Met: smaller hippocampal volume in the
context of elevated lifetime stress
Val/Val: larger hippocampal volume in the context
of elevated life stress

153 Rabl et al, 2014

Lifetime stress rs4680 methylation and PFC
activation during N-back

Greater stress predicts reduced methylation among
Val homozygotes, which in turn predicts elevated
PFC activation

84 Ursini et al, 2011

Moderate acute stress PFC activation during
N-back

Val carriers show blunted activation during control
and elevated activation following stress

41 (within subject design) Qin et al, 2012

NPSR1 rs324981 Acute psychosocial stress
and urban upbringing

Amygdala and ACC
activation during stress

T/T: positive association between urbanicity and
amygdala activation during acute stress
A/A: negative association between urbanicity and
amygdala activation during acute stress

42 Streit et al, 2014

OPRK1 rs6989250 Acute psychosocial stress BOLD activation during
stress

C/G: increased activation of the amygdala and
midbrain during stress

13 (5 CG) abstinent
cocaine-dependent

Xu et al, 2013

SLC6A4 5-HTTLPR Lifetime stress Amygdala BOLD activation
to faces; Amygdala-
hypothalamic functional
connectivity

Short/Short: positive association between life stress
and amygdala reactivity to fearful faces, as well as
functional coupling of the amygdala and
hypothalamus

48 Alexander et al, 2012

Lifetime stress Amygdala BOLD resting
activity and response to
neutral faces

Short carriers: positive correlation between life
stress and amygdala activity at rest; negative
correlation with response to neutral faces
Long/Long: negative correlation between life stress
and amygdala activity at rest; positive correlation
with response to neutral faces

48 Canli et al, 2006

Negative life events Hippocampal resting-state
fMRI and DTI

Short carriers: increased connectivity between the
parahippocampal gyrus and posterior cingulate in
the context of elevated life stress
Long/Long: altered DTI tractography between the
hippocampus and amygdala and putamen in the
context of elevated life stress

34 women Favaro et al, 2014

Early life stress Hippocampal volume Short carriers with a history of emotional neglect
have reduced hippocampal volume

24 MDD patients Frodl et al, 2010

Early life stress Amygdala and medial
prefrontal cortex volume

No effect 89 Gatt et al, 2009

Lifetime stress Hippocampal volume Short carriers: negative association between
hippocampal volume and stress
Long/Long: positive association between
hippocampal volume and life stress

153 Rabl et al, 2014

Early life stress BOLD conscious and
activation to faces

Short carriers: early life stress potentiated
conscious face processing-related activation in
the medial prefrontal cortex and brainstem
Early life stress potentiated unconscious face
processing-related activation in the amygdala,
medial prefrontal cortex, and anterior cingulate
cortex

39 Williams et al, 2009
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BDNF reductions in Met allele carriers exposed to early
life stress, may potentiate stress- and cortisol-related effects
on hippocampal volume, perhaps by not buffering the
survival of these cells (Frodl and O’Keane, 2013). Such stress-
related moderation may explain inconsistent main effect
associations between rs6265 genotype and hippocampal
volume (Molendijk et al, 2012).
In addition to the SLC6A4 5-HTTLPR and BDNF

Val66Met polymorphisms, a handful of other iGxE studies
have explored polymorphisms within other genes (ADRA2B,
NPSR1, COMT, OPRK1; Table 1). Because these findings
have largely emerged in single studies, we only briefly review
polymorphisms for which two or more iGxE reports exist
(additional single studies are noted in Table 2). First, a
common deletion (−4825 indel) in the gene coding for the
presynaptic noradrenergic α2B receptor (ADRA2B) is
associated with blunted agonist-promoted receptor desensi-
tization, elevated re-experiencing of traumatic memory and
elevated amygdala reactivity to negative pictures, may
moderate the effects of acute stress on corticolimbic circuitry
(de Quervain et al, 2007; Rasch et al, 2009; Small et al, 2001).
However, the two reports iGxE reports on this findings have
used vastly different paradigms. In one study, acute stress
blunted amygdala reactivity to emotionally morphing faces
among non-deletion carriers (Cousijn et al, 2010); however,
in the other, it was deletion carriers who had blunted
amygdala reactivity when recognizing pictures depicting
neutral facial expressions, whereas fearful faces were not
associated with − 4825 indel genotype (Li et al, 2015).
Whether these different findings are the result of task
differences or may be indicative of false positives is presently
unclear.
Three studies have examined whether a common func-

tional polymorphism (rs4680; Val158Met) within the
catechol-O-methyltransferase gene (COMT), which codes
for a catecholamine catabolic enzyme, moderates associa-
tions between stress exposure and corticolimbic neural
phenotypes. The Val158Met polymorphism has been pri-
marily associated with differential prefrontal dopamine
function, schizophrenia, and working memory, though
meta-analyses suggest these main effects may not be stable
(Bilder et al, 2004; Egan et al, 2001; Munafo et al, 2005; Rabl
et al, 2014; Wardle et al, 2013). Met allele homozygosity,
which is associated with reduced COMT expression and
hence elevated catecholamine levels in the prefrontal cortex,
is predictive of a negative relationship between stressful life
events and hippocampal volume; an opposing, positive
pattern was observed in Val homozygotes (Rabl et al, 2014).
An independent line of research has examined associations

between COMT rs4680 genotype and stress with working
memory and related neural function. One such study found
that among Met allele homozygotes, acute stress induced
poorer working memory performance, and blunted dorso-
lateral prefrontal cortex (DLPFC) activation; whereas
performance benefits and increased DLPFC activation was
observed in Val allele carriers (Qin et al, 2012). Lastly, in one
of the first neuroimaging studies incorporating measures of

methylation, Ursini et al (2011) noted that the Val allele at
rs4680 creates a CpG site wherein methylation can occur that
is absent in the Met allele. Here, in Val homozygotes, a
composite measure of lifetime stress was associated with
reduced methylation in COMT, which in turn was associated
with increased peripheral measures of COMT expression.
Perhaps most interestingly, elevated methylation, which was
associated with reduced stress exposure, was predictive of
greater working memory performance and reduced pre-
frontal cortex activity (interpreted as greater efficiency)
among Val homozygotes. Thus these results, suggest that in
the absence of stress exposure, the increased methylation
present among Val homozygotes may produce COMT
expression more similar to the Met allele and improvements
in working memory performance; whether this would then
leave individuals homozygous for the Val allele with no
lifetime stress exposure susceptible to acute stress-induced
deficits in memory performance and blunted DLPFC
activation is unclear. However, it is possible that such GxE
interactions may at least partially contribute to mixed main
effects observed in the literature of this candidate poly-
morphism (Munafo et al, 2005; Wardle et al, 2013).
Collectively, these results point to the importance of
considering GxE in the context of neuroimaging, particularly
when there are probable molecular mechanisms that may
promote such effects (eg, the creation of a methylation cite
by the Val polymorphism of the Val158Met polymorphism).

CONCLUSIONS AND FUTURE DIRECTIONS

Genetic variation, particularly within the HPA axis, predicts
stress-related differences in coticolimbic structure and
function. The most replicated association has been an
interaction between FKBP5 rs1360780 genotype and early
life adversity predicting threat-related amygdala function.
This finding complements psychiatric associations by
providing evidence that potentiated stress-related enhance-
ment of corticolimbic function is a plausible neurobiological
mechanism underlying clinical association. Greater faith in
this finding comes from convergent research in non-human
animals and the molecular characterization of this poly-
morphism (Klengel et al, 2013; Scharf et al, 2011; Zannas and
Binder, 2014). With the exception of the BDNF rs6265
Met allele conferring reduced hippocampal volume in the
context of elevated stress, other investigations of single-
polymorphic loci have not yet been replicated (Frodl et al,
2014b). Recently, polygenic approaches have been used
which aggregate genetic variation across the HPA axis. This
approach is intuitively appealing as it is likely more
consistent with the resolution at which neural and behavioral
genetics research is conducted and polygenic HPA axis
research is already beginning to shed light on individual
difference factors that may contribute to mixed findings
within the psychiatric/early life stress literature (eg, amygdala
structure enlargement and reductions (Di Iorio et al,
submitted; Pagliaccio et al, 2014)). However, notably, such
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polygenic analyses have not been regularly conducted and
are in need of replication and developmental extension. Like
all research approaches, iGxE research is confronted by
many challenges, four of which are among the most
daunting: (i) small effects, (ii) measuring the environment
and neural phenotypes, (iii) understanding detailed mechan-
isms, and (iv) incorporating development into research
design. Here we review these challenges and discuss
strategies to address them.

Small Effects—Increasing Sample Size and
Polygenic Analyses

Much like the effects of common genetic variation on
psychiatric vulnerability and behavior, evidence suggests that
common polymorphisms will have, at most, only a small
effect on neural measures (Hibar et al, 2015; Iacono, 2014).
Such weak penetrance is difficult to detect and may account
for inconsistent findings (ie, false positives and negatives)
within imaging genetics, particularly in studies using small
samples, such as those within the iGxE field reviewed here.
Traditionally, the prohibitive monetary and resource cost to
both neuroimaging and genetic research has constrained
sample sizes. However, improvements in availability, afford-
ability, and data management and analyses in both
neuroimaging and genetics have allowed for the development
of large-scale studies (Bogdan et al, 2012b; Holmes et al,
2015; Nikolova et al, 2012; Schumann et al, 2010), multisite
data pooling protocols (Barch et al, 2013; Holmes et al,
2012), and data sharing networks (Thompson et al, 2014) in
an effort to increase power to detect small effects.
Neuroimaging measures in genetics research have been

lauded for their value as biological processes intermediate to
genes and the expression of clinical syndromes (ie, as
intermediate phenotypes; Bogdan et al, 2013b; Cannon and
Keller, 2006; Gottesman and Gould, 2003; Hariri and
Weinberger, 2003; Hasler et al, 2004; Meyer-Lindenberg
and Weinberger, 2006). Consequently, we and others have
suggested that these phenotypes should produce relatively
larger effects than more distal behavioral and psychopathol-
ogy phenotypes (Bogdan et al, 2013b; Hariri and
Weinberger, 2003; Hasler et al, 2004; Meyer-Lindenberg
and Weinberger, 2006). Although there is some evidence to
support the assumption of larger effects sizes in neuroima-
ging relative to clinical and behavioral phenotypes, this
evidence is also confounded by studies characterized by
smaller samples, which generally report larger effects (Rose
and Donohoe, 2013). A series of reports originating from the
Minnesota Twin Family Study, the largest genetic study of
EEG-related phenotypes (n= 4905), suggests that neural
phenotypes may be linked to common genetic variation with
approximately the same strength of traditional psychiatric
and behavioral phenotypes (Iacono, 2014). The largest
investigation of intermediate phenotypes (discovery n= 13-
171; replication n= 17 546), the ENIGMA consortium,
recently identified genome-wide significant signals for
measures of brain volume (Hibar et al, 2015). The strongest

effect emerged within the putamen for an intergenic SNP,
rs945270, which is associated with KTN1 expression;
critically, the effect of this SNP is sobering as it explained
only 0.52% of variance in putamen volume. This relatively
small effect, is consistent with effects of single variants on
other complex traits (Schizophrenia Working Group of the
Psychiatric Genomics, 2014). Although intermediate pheno-
types have been assumed to provide better traction into
genetic architecture contributing to psychopathology, this
evidence challenges this assumption. Future research would
ideally compare effect sizes to neural intermediate pheno-
types and psychiatric and behavioral phenotypes within the
same sample. If indeed, neural intermediate phenotypes are
not associated with larger genetic effects, intermediate
phenotype research may prove most useful for under-
standing the neurobiological mechanisms through which
genetic variation influences behavior.
Although GxE research is intuitively appealing on a

theoretical basis, it is met with unique challenges from a
statistical power perspective (Dick et al, 2015; Duncan and
Keller, 2011). In GxE research, both genotype frequency and
variability in environmental experience constrain the sample;
this is potentiated in SNPs with relatively rare minor alleles
and in environments that are extreme or specific. For
example, a recent report suggests that opioid-related genetic
variation moderates the association between stressful life
events and depression in a modestly sized sample (n= 420).
However, the only group that differed had a cell sample size
of 6 (ie, carriers of the rare G allele at rs1799971 who were
also exposed to targeted rejection events (Slavich et al,
2014)); effects driven by such small cells, in the absence of
rare highly penetrant mutations, are unlikely to be stable. If
iGxE research is associated with similar effects of traditional
psychiatric GxE research (eg, Duncan and Keller, 2011), all
iGxE studies to date have been vastly underpowered. Lastly,
the statistical power of GxE is further reduced, particularly in
small studies, due to the need to account for genotype ×
covariate and environment × covariate interactions in
analyses, which limits degrees of freedom more than main
effect analyses (Keller, 2014). Going forward it will be
important for iGxE research to consider such interactions
between predictor variables and covariates of no interest
(ie, G × covariates and E× covariates), which is becoming
increasingly common (Carey et al, in press; Di Iorio et al,
submitted; Pagliaccio et al, 2014, 2015; Rabl et al, 2014).
In addition to increasing sample size, iGxE research may

be able to increase power by using polygenic analytic
techniques. Following increasing accessibility of genome-
wide data, novel methods have been developed to leverage its
high dimensionality. In particular, in addition to the additive
profile scores discussed above, three additional approaches
may prove fruitful: (i) polygenic risk scores, (ii) gene/
systems-level testing, and (iii) regression trees.
The polygenic risk scoring approach generally relies upon

well-powered GWAS results (though investigations have
been conducted in an unweighted fashion using candidate
genetic loci (Pearson et al, 2014) that are relevant to the
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neural phenotypes under study such as those provided
by mega analyses of categorical disorder risk conducted by
the PGC (http://www.med.unc.edu/pgc/downloads; Smoller
et al, 2013). A benefit of this approach is that it likely better
captures the polygenic nature of psychopathology. A
limitation is that these genetic risk scores are based on
statistical association with a phenotype and in isolation
provide limited insight into potential biological mechanisms
underlying observed neural associations. Moreover, like the
vast majority of widely employed polygenic methods, this
approach assumes an additive model, that neglects potential
epistatic effects. Notably, although epistatic effects are
suggested from molecular interactions in non-human animal
models (eg, Gray et al, 2015), reported epistatic interactions
in the imaging genetics literature have not been replicated to
our knowledge (eg, Andreasen et al, 2012; Tan et al, 2007).
Perhaps the most important limitations of disorder-based

polygenic risk scores when used in iGxE research, is that they
were generated without consideration of the environment
and are inherently constrained by the phenotype from which
they were generated. Psychiatric disorders are characterized
by heterogeneity in presentation, stability, and symptoms
(Flint and Kendler, 2014; Hasler et al, 2004). For instance,
according to DSM-5, five of a possible nine symptoms are
required to be diagnosed with depression (with at least one of
these symptoms being either depressed mood or anhedonia;
American Psychiatric Association, 2013). This results in
hundreds of possible different symptom combinations that
qualify for the same diagnosis but presumably reflect distinct
underlying pathophysiologies. This heterogeneity within
disorders produces polygenic risk scores that may not clearly
map onto discrete behaviors associated with a particular
neural phenotype. For example, although anhedonia, which
reflects an inability to anticipate and/or experience pleasure,
is a cardinal symptom of depression, according to some
studies it is only the fifth most common symptom endorsed
by depressed patients with a varied expression ranging from
37–77% (Lewinsohn et al, 1998; Pelizza and Ferrari, 2009).
As such, polygenic risk scores generated from a GWAS of
depression diagnosis alone likely include estimates unrelated
to anhedonia that may not be appropriate predictors for a
neuroimaging study of reward processing.
Put more generally, it is possible that distinct underlying

pathophysiologies may have a more specific polygenic basis
than what is captured in polygenic disorder risk scores. If
this in indeed the case, a research domain criteria approach
to generating polygenic risk scores that is free from
categorical diagnostic status may help catalyze research that
will be more readily translated to iGxE research (Insel et al,
2010). Notably, however, given the small effects of common
genetic variants, this approach is constrained by access to
large data sets with measured phenotypes; as such, GWAS of
individual symptoms may be a powerful starting point. In
addition to their potential utility for iGxE research, such
analyses could potentially inform psychiatric nosology by
showing genetic consistency or divergence across specific
symptoms and syndromes (Bulik-Sullivan et al, 2015).

This limitation notwithstanding, polygenic risk scores hold
great promise for iGxE research. In addition to their use
across the genome, polygenic scores could be calculated for
sets of SNPs within distinct neural systems. Such an
approach may be particularly important for providing SNP
level priors, when there is evidence to support a systems-level
involvement in a given neural phenotype, but limited
evidence to prioritize particular SNPs (eg, the circadian
system). Integrating prior information from psychiatric
disorder risk (ie, prioritizing particular SNPs) and neu-
roscience (ie, collating SNPs involved in a specific neural
system/s) may be informative for iGxE research of neural
risk mechanisms.
From an atheoretical perspective, various ways to mine

GWAS data have been developed. For example, software
packages have been developed (eg, GATES (Li et al, 2011);
VEGAS (Liu et al, 2010)) that combine single SNP p-values
generated from GWAS and assigns each SNP to gene to
create a summary statistic representing gene-based associa-
tions (Liu et al, 2010). This approach has identified
significant gene-based contributions to phenotypes when
single SNP GWAS have failed (eg, Agrawal et al, 2014). A
similar approach, gene-set enrichment, which can be
conducted with GWAS-based single SNP p-values using
various software packages (eg, Aligator (Holmans et al,
2009); INRICH (Lee et al, 2012); MAGENTA (Segre et al,
2010), evaluates whether sets of genes in predefined
biological processes or functionally-related genes (based
upon gene sets in online databases or user specified gene
sets) show patterns of enriched associations with a given
phenotype. For example, gene-set enrichment analyses have
linked voltage-gated cation channel activity-related genes to
working memory performance, related brain function, and
schizophrenia (Heck et al, 2014).
Lastly, in an attempt to characterize epistatic relationships,

machine learning approaches have been applied to data
(Andreasen et al, 2012; Arnedo et al, 2015). Although there
are promising associations reported, this approach is highly
susceptible to false positives and what constitutes replication
is unclear as the primarily predictive variables are generated
internally from the data set. It will be critical for future
regression tree-based exploratory research to ascertain
precisely what interactions are driving effects so that these
specific interactive pathways can be evaluated within
independent data set; this has been done in some
(Andreasen et al, 2012), but not other (Arnedo et al, 2015)
machine learning approaches. It will be important for future
iGxE studies, and imaging genetics research more generally
to complement traditional candidate gene approaches with
big data approaches to synthesizing complex data sets (eg,
gene-set enrichment, machine learning) that are becoming
more normative in psychiatric genetics. Moreover, in the
context of iGxE, it will be important for iGxE research to use
new developments in knowledge to target particular systems,
such as transcripts influenced by cortisol signaling (Arloth
et al, 2015).
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Measuring the Environment and Neural
Phenotypes

The ability to conduct research on a given construct is
constrained by how precisely it can be measured. With
sufficient quality control, genotyping can be measured very
reliably. However, measuring stressful experiences and
neural phenotypes of interest is fraught with difficulty (for
review see Glover, 2011; Monroe, 2008). Measuring life stress
in iGxE studies is particularly difficult, because the studies
that are powered to detect moderations are typically designed
to recruit a large number of participants to complete an
imaging protocol. The ability to assess other factors is often
limited by resources and the vast majority of these large
studies assess the environment with retrospectively reported
measures of early life stress and recent life stress checklists.
Although there are psychometric data supporting these
measures, there is also some evidence that more thorough
assessments may better capture stress (Bernstein et al, 2003;
Dohrenwend, 2006; Monroe, 2008). Notably, however, such
interview based methods such as the Life Events and
Difficulties Schedule (LEDS) or Stressful Life Events
Schedule (SLES) can often take hours to administer and
further hours from multiple trained raters to score (Brown
and Harris, 1978; Williamson et al, 2003). This additional
burden in already complex studies has largely excluded their
use in large-scale imaging genetics studies, despite their
potential utility. Notably, new computer-based stress assess-
ments have recently been developed that are less time
intensive to administer and score that may prove beneficial
for large-scale studies of stress exposure (Slavich and Epel,
2010). A further difficulty confronting large imaging genetics
studies incorporating the environment is that, with few
exceptions, these studies are generally cross-sectional which
prohibits the examination of change in neural phenotypes in
the context of a changing environment (Swartz et al, 2014b,
2015). Moreover, within some large cross-sectional studies
assaying stress, it is impossible to ascertain the temporality of
stress exposure in relation to concurrently measured
symptoms; indeed this temporality problem has resulted in
many studies evaluating only early life stress, as opposed to
recent life stress, when attempting to link environmental
experience, brain function, and psychiatric symptoms or
related behavior (Moffitt and Caspi, 2014).
A complementary approach to measuring the environment

is to acutely manipulate stress to examine its influence on
neural function in the context of genetic variation. Although
such studies are rare in a neuroscience context, some studies
have used stress manipulations while measuring neural
phenotypes and assaying genetic variation (Bogdan et al,
2011; Cousijn et al, 2010; Streit et al, 2014; Xu et al, 2013).
These within-participant studies are especially powerful
because they afford researchers a unique opportunity to
experimentally manipulate stress and ensure that each
participant is exposed to the same stressor, providing greater
reliability and validity of what stress is across participants
that is free from reporting biases. However, such studies are

intensive to run and exceptionally difficult to have large
numbers of participants complete and their ecological
validity is questionable. A related powerful and perhaps
more difficult methodology to implement is pharmacologi-
cally challenging circuits involved in stress response (eg,
HPA axis, norepinephrine), ideally in a placebo-controlled
crossover design (Bigos et al, 2008; Henckens et al, 2010,
2011). Pharmacologic challenge has identified genetic
differences in stress-related gene transcription that are
further associated with psychopathology and related brain
function (Arloth et al, 2015). However, it has yet to be
commonly employed in human genetic research. Moreover,
the ecological validity of such challenge studies is reduced
due to their specificity as these studies traditionally influence
a single receptor that in typical life experience is activated
alongside a symphony of other neural cascades.
Lastly, with regard to the environment, theoretical work

suggests that some genetic variants that have typically been
conceptualized as conferring risk to psychopathology in the
context of negative environments may be more accurately
conceptualized as conferring sensitivity to the environment,
for better or worse (Belsky et al, 2009). This theory has begun
to receive empirical support in candidate gene studies
showing that some genotypes previously conceptualized as
conferring risk to negative environments also confer benefits
in the context of positive environments (Hankin et al, 2011).
As such, it will be important for iGxE research, to not only
measure adverse environmental conditions, which is most
common in psychopathology-related research, but to also
measure enriching experiences (eg, social support, positive
parenting; Hyde et al, 2011b). It is highly probable that such
data would also further help untangle the complexity of
factors that influence neural phenotypes (eg, buffering effect
of supportive social relationships on negative life experi-
ences). There are cautions to be aware of with this research
approach, however. Most notably, data suggest that such
crossover interactions are more likely to emerge by chance
relative to other shapes of interaction (Dick et al, 2015);
given that the vast majority of results supporting the
plasticity model have been in small samples, it will be
important for these effects to be observed in more well-
powered studies.
Another outstanding issue in imaging genetics research,

and the field of neuroimaging more generally, is the largely
unexplored test–retest reliability of neural phenotype mea-
sures. Although structural measures such as gray matter
volume appear to be highly reliable (Bartzokis et al, 1993),
the reliability of functional measures is mixed. With regard
to tasks designed to elicit corticolimbic activation, some
studies suggest moderate to good reliability whereas other
studies suggest relatively poor reliability (Manuck et al, 2007;
Plichta et al, 2012, 2014; Sauder et al, 2013). Critically, the
vast majority of test–retest reliability research has used
exceptionally small samples (nso30) and further attention to
this issue is clearly needed, which may be achieved through
collaborative releases of large neuroimaging data sets (eg,
Zuo et al, 2014). Moreover, it will be critical for future
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research to not only assess test–retest reliability but to also
understand factors that may reduce reliability (eg, time of
day, hydration, fatigue, mood, etc) so that future studies may
be optimized (Nakamura et al, 2015). In the context of iGxE
research reliable imaging measures are needed to produce
replicable associations with genetic variation, environmental
experience, and psychopathology symptomatology.

Mechanistic Understanding

One of the primary goals of neuroscience, psychology, and
psychiatry is to understand the mechanisms that drive
behavioral variability. iGxE complements psychological and
psychiatric genetic research by adding a plausible biological
mechanism—the brain—through which genetic variation
and environmental experience give rise to the vast array
human behavior. iGxE is uniquely positioned to explicitly
test whether genetic variation and the environment con-
tribute to individual differences in neural phenotypes and
whether these neural differences indirectly link GxE to
behavior and psychopathology (Hyde et al, 2011a). To do
this, iGxE can use structural equation modeling tools such as
path analysis, which were developed by geneticist Sewall
Wright and are now most commonly used in the social
sciences (Figure 2; Duncan, 1966; Hyde et al, 2011a; Wright,
1920). Although testing these models allows one to evaluate
theoretical neural mechanisms underlying behavior, there
are important considerations when conducting these ana-
lyses. First, this analytic approach further emphasizes the
need for large samples which is potentiated when consider-
ing less common alleles and environmental experiences.
Second, the ideal manner in which to conduct mediational
analyses is between temporally distinct assessments. How-
ever, with few exceptions, the vast majority of iGxE research
assesses psychiatric symptoms and behaviors within days of
imaging data collection; as such, the strength of interpreta-
tion that neural differences or environmental experiences
preceded the development of psychiatric symptoms or other
behavior differences is an unsupported assumption that
needs to be considered in interpretation. Ideally, prospective
studies would be conducted (Burghy et al, 2012; Swartz et al,
2015). In addition to examining the brain as a mediator
between genetic variation and environmental experience and
behavior, it will be further critical to examine whether
biomarkers (eg, cortisol, gene expression) mediate links
between genetic variation and environmental experience and
brain phenotypes (Figure 2; Pagliaccio et al, 2014). Ideally,
such measures could be taken in the context of longitudinal
assessment and be measured under different conditions (eg,
cortisol: diurnal variation, stress-evoked activation).
Transdisciplinary research can be further used to detail

mechanisms underlying effects of genetic, environmental,
and neural mechanisms on behavior. Natural orthologous
genetic variants and the ability to manipulate genetic code in
non-human animals (eg, transgenic animals) and cell-based
assays are useful for interpreting iGxE research (Caspi et al,
2010). Transgenic mouse models have provided insight into

mechanisms through which differences in genetic sequence
impact neural function and behavior; these models are
particularly powerful in the context of iGxE as the
environment can be explicitly controlled and manipulated.
For example, a knock-in mouse model that parallels a
common human polymorphism, rs324420, in FAAH within
the eCB system was recently developed (Dincheva et al,
2015). The rs324240 polymorphism has been linked to
functional differences in FAAH and related correlations to
behavioral and neural phenotypes (eg, amygdala habituation,
stress sensitivity; Gunduz-Cinar et al, 2013a, b; Hariri et al,
2009). This genetic knock-in model shows remarkable
parallels in not only biochemistry, but also neurocircuitry
and behavior that are consistent with the naturally occurring
human polymorphism. Given reciprocal relationships bet-
ween AEA and the HPA axis, this provides a novel model
organism to better understand how this particular variant
might influence behavioral susceptibility to stress. Recent
developments in genetic engineering using the CRISPR/Cas9
system to disrupt genes across species provides more precise
targeted genetic manipulation that may ultimately prove
useful for not only clinical treatment but also modeling the
effects of polymorphisms (Jinek et al, 2012; Sander and
Joung, 2014); however, the recent use of this technology in
human embryos has generated significant ethical controversy
(Cyranoski and Reardon, 2015; Lanphier et al, 2015).
Lastly, an important potential mechanism underlying iGxE

results is epigenetic regulation. For example, genetically-
conferred differences in epigenetic regulation may underlie
FKBP5-related observations in psychopathology and brain
function (Klengel et al, 2013). Moreover, there is evidence
that a widely studied variant in COMT, rs4680, confers the
presence or absence of a methylation site that may underlie
at least some of this polymorphisms effects (Ursini et al,
2011). Indeed, the potential impact of methylation on human
brain function has been recently demonstrated (Booij et al,
2015; Dannlowski et al, 2014; Frodl et al, 2015; Klengel et al,
2013; Nikolova and Hariri, 2015; Nikolova et al, 2014; Ziegler
et al, 2015). For instance, methylation within the serotonin
transporter gene predicts increased threat-related amygdala
reactivity, as well as decreased SLC6A4 expression in post
mortem brain tissue (Nikolova et al, 2014). These results
suggest that considering methylation is critical to understand
the impact of the genome on psychiatrically-relevant brain
function and suggests that peripheral measures of methyla-
tion may, at least in some cases, be of utility in imaging
genetics research, provided that such measures find con-
vergence with post mortem tissue. In particular, it will be
important to examine epigenetic regulation as a potential
mechanism underlying GxE effects (eg, Ursini et al, 2011;
Figure 2). In addition to assaying methylation in ongoing
studies, novel bioinformatic tools, such as the Wash U
Epigenome Browser (http://epigenomegateway.wustl.edu/)
may be of utility for understanding the epigenetic landscape
within which a genetic polymorphisms reside (Carey et al, in
press; Zhou et al, 2011, 2013). This may be particularly useful
for understanding the potential impact of polymorphisms
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that have not been characterized functionally and may
provide very preliminary evidence of potential functional
consequences of a SNP, even if curated data sets (eg, Brain
Cloud: http://braincloud.jhmi.edu/, Colantuoni et al, 2011)
suggest the variant is unrelated to expression. Such knowl-
edge could prioritize genetic variants to examine in the
context of methylation-related research.

Developmental Timing

Despite evidence that there are vast differences within
corticolimbic circuitry according to development, very few
studies have examined neural phenotypes across develop-
mental windows (Giedd et al, 2015). Indeed rapid neural
growth and pruning in childhood might lead to a
developmentally sensitive period wherein the corticolimbic
circuitry may be most sensitive to negative and positive
experiences (Andersen et al, 2008; Teicher et al, 2003). For
example, a host of studies suggest that adolescence is
characterized by heightened amygdala responsivity coupled
with a low capacity for frontal regulation that may impair
emotion regulation and provide a developmental window
that is ripe for the development of stress-related psycho-
pathology (Johnson and Casey, 2015). Similarly, there is
evidence for differential HPA axis function across develop-
ment, as well as its association between early life stress and
indices of HPA axis function in childhood and adulthood
(Lupien et al, 2009; Shirtcliff et al, 2012; Tarullo and Gunnar,
2006). Although rare in neuroimaging studies, prospective
studies that allow for dynamic changes across development
are clearly needed in which both neural, environmental, and
genetic (eg, epigenetic, gene expression) factors are assayed
longitudinally; such designs, in large samples, would be
ideally positioned to assay the mechanisms through which
psychopathology develops (Luby et al, 2014; Pagliaccio et al,
2014; Swartz et al, 2014b).

CONCLUSIONS

The integration of the environment into imaging genetic
research has the potential to inform our understanding of the
origins of neural mechanisms underlying stress-related
psychopathology. Indeed, this research approach has yielded
novel insights into the neural mechanisms that may underlie
associations between both FKBP5 rs1360780 genotype and
BDNF rs6265 genotype with stress-related psychopathology
(Gatt et al, 2009; White et al, 2012). Research on additional
single variants and polygenic profiles have begun to report
significant effects that, if replicated, would help inform the
individual difference factors that give rise to variability in
stress-related neural phenotypes (Tables 1 and 2). It is critical
for iGxE research to address the challenges of: (i) small
effects, (ii) measuring the environment and neural pheno-
types, (iii) the lack of detailed mechanisms, and (iv)
integrating research into a developmental framework. To
address the problem of small effects, imaging genetics has
begun to rely on larger more well-powered studies and use

polygenic approaches such as enrichment to compliment
more traditional candidate polymorphism research (Hibar
et al, 2015). Imaging genetics has just begun to consider the
environment; going forward it will be important for this
research to measure environmental experience as accurately
as possible and to conduct challenge studies to explicitly
target stress-related neural circuitry (Dick et al, 2015).
Moreover, it will be important for the test–retest reliability
of imaging designs to be evaluated in large studies that
attempt to account for confounding factors. To understand
mechanisms, it will be important for well-powered iGxE to
assess moderated mediation models and for collaboration
across iGxE researchers and non-human animal models,
while also assessing signatures of epigenetic regulation
(Bogdan et al, 2013a; Hyde et al, 2011a). Lastly, given
evidence of differences across development in corticolimbic
circuitry and HPA axis function (Johnson and Casey, 2015;
Lupien et al, 2009), future iGxE studies using longitudinal
prospective designs will be particularly useful. Although
these challenges are undoubtedly daunting, addressing
them is paramount to the potential insight offered by
iGxE research. In doing so, iGxE will be uniquely able to
identify neural mechanisms through which genetic variation
and environmental experience confer vulnerability to
psychopathology.
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