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One of the main reasons for the inefficiency of multicenter randomized clinical trials (RCTs) in depression is the excessively high level of
placebo response. The aim of this work was to propose a novel methodology to analyze RCTs based on the assumption that centers with
high placebo response are less informative than the other centers for estimating the ‘true’ treatment effect (TE). A linear mixed-effect
modeling approach for repeated measures (MMRM) was used as a reference approach. The new method for estimating TE was based on a
nonlinear longitudinal modeling of clinical scores (NLMMRM). NLMMRM estimates TE by associating a weighting factor to the data
collected in each center. The weight was defined by the posterior probability of detecting a clinically relevant difference between active
treatment and placebo at that center. Data from five RCTs in depression were used to compare the performance of MMRM with
NLMMRM. The results of the analyses showed an average improvement of ~ 15% in the TE estimated with NLMMRM when the center
effect was included in the analyses. Opposite results were observed with MMRM: TE estimate was reduced by ~ 4% when the center effect
was considered as covariate in the analysis. The novel NLMMRM approach provides a tool for controlling the confounding effect of high
placebo response, to increase signal detection and to provide a more reliable estimate of the ‘true’ TE by controlling false negative results
associated with excessively high placebo response.
Neuropsychopharmacology (2015) 40, 2588–2595; doi:10.1038/npp.2015.105; published online 20 May 2015
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INTRODUCTION

The very-high frequency of failed and negative randomized
clinical trials (RCTs) has been recognized as a critical issue
for the clinical development of novel medications, especially
in central nervous system therapeutic area (Stein et al, 2006;
Alexopoulos et al, 2007). One of the most common reasons
for study failure is the unexpected and excessively high level
of placebo response (Khan et al, 2003). The interactions
between patients included in a trial and investigator at
recruitment centers have been recognized as one of the major
source of placebo response (Allan and Siegel, 2002; Trivedi
and Rush, 1994; Benedetti et al. 2005).
The level of placebo response has been shown to strongly

impact the probability of detecting active treatment super-
iority (Iovieno and Papakostas, 2012). Furthermore, growing
evidence indicates that placebo response in antidepressant
trials has been gradually increasing over time (Walsh et al,
2002). These findings indicate that there is an urgent need
for exploring, evaluating and implementing novel study
designs and data analyses methodologies to tackle the
uncontrolled and time-varying level of placebo response in

these trials. Critical thinking and novel approaches are
essential to improve the overall efficiency of clinical trials.
Different strategies have been proposed to account for a

higher-than-anticipated placebo response due to the diffi-
culties in precisely identifying placebo responders at inclu-
sion time, predicting placebo response rates, and reducing
the level of placebo response. These strategies included study
designs with increased sample size, increased symptom
severity at baseline, innovative study designs, enhanced
inter-rater reliability programs, surveillance of within-study
data to identify measurement error, site-independent subject
validation to minimize site-biases, and enhanced patient
education to minimize expectancy effects (Fava et al, 2003;
Kobak et al, 2007; Targum et al, 2008; Targum et al, 2012).
Among the different approaches for optimizing RCTs, the

sequential parallel comparison design (SPCD) was proposed
to reduce both placebo response and sample size (Fava et al,
2003; Papakostas et al, 2014). The SPCD involves two
double-blind stages of treatment, with stage 2 commencing
immediately at the conclusion of stage 1. Typically, only
subjects identified as not responding to placebo during stage
1 are included in the efficacy analysis of stage 2. The relevant
data from the two phases are pooled to compute an overall
P-value. Because of this pooling approach, use of SPCD with
a specified sample size can provide a reduction in P-value in
comparison with conventional parallel designs (Heger 2013;
Fava et al, 2012). A number of RCTs have been conducted
based on the SPCD design and the results confirmed that
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SPCD provides a large reduction in P-value with an increase
in power (Papakostas et al, 2014; Fava et al, 2012).
In an attempt to reduce placebo response, a double blinded

placebo lead-in phase was proposed to detect the level of
placebo response prior to the randomization of patients to
the treatment arms. A meta-analysis conducted on the FDA
database (86 RCTs in major depressive disorders (MDD) and
34 RCTs in schizophrenia) indicated that the placebo lead-in
design was an efficient approach in reducing the number of
placebo responders and thus reducing the average response
of placebo (Chen et al, 2011). However, an analysis of 75
RCTs conducted from 1981 to 2000 in MDD patients showed
that the average placebo response rate of studies that used
a placebo lead-in did not differ significantly from that of
studies that did not use a placebo lead-in (Walsh et al, 2002).
These results confirm the findings of a meta-analysis
previously conducted on 101 RCTs (Trivedi and Rush, 1994).
Recently, a band-pass filter analysis strategy was proposed

as a way to control the excessively high/low placebo response
rates and thereby enhance signal detection (Merlo-Pich et al,
2010; Gomeni 2014; Gomeni and Merlo-Pich, 2007; Gomeni
and Merlo-Pich, 2012; Merlo-Pich and Gomeni, 2008). This
strategy asserts that optimization of the signal-to-noise ratio
can be achieved by prospectively identifying the cut-off
values located at the high and low ends of the placebo
response distribution curve and subsequently filtering-out
the data of the centers that fall outside these boundaries
(Khan et al, 2007; Kilts et al, 2009). This methodology has
been applied to re-analyze data from negative antidepressant
RCTs. The results of this analysis showed an important
increase in signal (Targum et al, 2014).
The aim of this work was to propose a novel methodology

to analyze the outcomes of an RCT using the center-specific
level of placebo response as weighting factor to estimate the
treatment effect. Data generated in centers with high placebo
response will be considered as less informative than data
generated in the other centers to estimate the ‘true’ treatment
effect. This can be defined as the effect estimated in absence
of any confounding noisy factor such as the placebo
response. In contrast to the band-pass filtering approach,
the novel methodology will include in the analysis all data
of the patients randomized to the trial. This approach is
based on a nonlinear longitudinal modeling of the clinical
scores (NLMMRM), a natural extension of the linear mixed-
effect modeling approach for repeated measures (MMRM)
generally used for analyzing longitudinal data.

MATERIALS AND METHODS

Data

Data from five RCTs were used in the analyses. The same
data were previously analyzed for the assessment of the
band-pass filter approach as a novel population enrichment
strategy (Merlo-Pich et al, 2010). Data were derived from
GSK clinical databases (GSK clinical trial register [http://ctr.
gsk.co.uk/medicinelist.asp]). The five trials were selected
based on their similarities in key design factors, ie,
depression severity at baseline (HAMD⩾ 23), number of
treatment (TMT) arms (TMT= 0 for placebo and TMT= 1
and 2 for the low and high dose), and year of publications
(2002–2004). Details of the five RCTs are shown in Table 1.

Clinical Response Model

The clinical response (to either placebo or drug) was defined
by the time-varying HAMD scores, considered the ‘standard’
endpoint in MDD RCTs (Hedlund and Vieweg, 1979). The
trajectory of this clinical score usually shows a nonlinear
decrement from a high initial score (eg, ~ 23) to lower values
(eg ~ 10) associated with clinical remission, within 6–8 week
of treatment, the typical time-lag to detect reliable clinical
effect in MDD (Nierenberg and Wright, 1999). In each of the
five studies, the HAMD time-course in the three treatment
arms were independently analyzed using a mixed Weibull/
linear Equation 1:

f tð Þ ¼ Ae� t=tdð Þb þ hrect þ eps ð1Þ

A, b, td, and hrec were the fixed effect parameters and eps the
residual error. A represents the baseline HAMD score, td is
the time corresponding to 63.2% of the maximal change
from baseline, b is the shape or sigmoidicity factor, and hrec
is the remission rate. This model has been successfully
applied to describe the placebo response in different RCTs
(Gomeni and Merlo-Pich, 2007). The model parameters were
estimated using the nonlinear mixed effect modeling
approach (FOCE-I) implemented in the NONMEM software
(Beal et al, 2009). The random effects were assumed
normally distributed for A and log-normally distributed
for td, b and hrec with mean= 0 and variance=Ω with
a proportional residual error model. The random effect
for the baseline ‘A’ was assumed normally distributed
because the inclusion criteria in the studies limited the values
of the HAMD score at the inclusion within a predefined
range of values. Therefore, the normality assumption was

Table 1 Details of the Five RCTs Included in the Meta-Analysis. CR and IR Denote Controlled and Immediate Release Formulations
Respectively

Study Nb of Centers Nb of Patients Arm 1 Arm 2

Treatment Dose Treatment Dose

448 19 299 Parox_IR 20–50 mg -flex Parox_CR 25–62.5 mg -flex

449 20 333 Parox_IR 20–50 mg -flex Parox_CR 25–62.5 mg -flex

487 26 319 Parox_IR 10–40 mg -flex Parox_CR 12.5–50 mg -flex

810 38 489 Parox_CR 12.5 mg-fix Parox_CR 25 mg-fix

874 21 397 Parox_CR 12.5 mg-fix Parox_CR 25 mg-fix
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considered appropriate as we were not expecting extreme
values of HAMD at baseline. At variance of this assumption,
all the other parameters (including ‘td’) were considered free
to assume any possible positive value. As a consequence,
these parameters were assumed to follow a log-normal
distribution.
The mean placebo responses of each recruitment center

were estimated by averaging the Bayesian post-hoc individual
parameter estimates at those centers.

Estimate Treatment Effect Using MMRM

The treatment effect (TE) was defined as the difference in the
baseline adjusted clinical score between the active drug and
placebo arms at the end of the study.
The conventional approach applied for the evaluation of

TE was based on the linear mixed-effects modeling approach
for repeated measures (MMRM) (Mallinckrodt et al, 2008).
This analysis was implemented in SAS (SAS Institute Inc,
2010) using an unstructured covariance matrix, time as a
classification variable, and baseline measurement as a
covariate, baseline x time interaction, and treatment × time
interaction with a significance level of α= 0.05 to establish
the significance of the treatment effect. Two analyses were
conducted using the MMRM approach: with and without the
inclusion of the study center as a covariate in the model and
the results of these analyses were used as a reference.

Estimate Treatment Effect Using NLMMRM

One of the main reasons for the inefficiency of multicenter
RCTs is the uncontrolled and excessively high level of
placebo response. Such a placebo response can be considered
as noise that impairs the signal-to-noise ratio. To overcome
this issue, a novel data analysis approach is proposed. The
basic assumption of this methodology is that centers with
high placebo response are less informative than the others
for estimating the ‘true’ treatment effect. As a consequence
the weight of the information generated in that center should
be lower than the weight of the information generated in the
centers with low placebo response.
The level of information associated with each recruitment

center was defined by the performance level of that center
(P) and the weighting factor for that center was assumed to
be inversely proportional to P (weight= 1/P). The perfor-
mance of a recruitment center was defined as the posterior
probability of detecting a signal of a TE43 units in the
HAMD clinical score and was estimated using a methodol-
ogy previously developed (Merlo-Pich and Gomeni, 2008).
The probability (P) of detecting a TE43 was estimated by
the logistic model (Equations 2,3):

l ¼ y1 þ y2 �HAMD17ðBaselineÞ þ y3 �HAMD17ðStudyEndÞ ð2Þ

P ¼ el

1þ el
ð3Þ

with: θ1= 2.310, θ2= 0.291 and θ3=− 0.278.
The new method for estimating TE was based on the

assumption that the HAMD longitudinal scores can be
described by a nonlinear model and the parameters of this
model can be estimated using a nonlinear mixed-effect

modeling approach. This novel method will be referred to as
nonlinear mixed-effect modeling (NLMMRM).
The longitudinal time-course of the HAMD scores in the

three treatment arms (TMT= 0 for placebo and TMT = 1
and 2 for the low and high dose) were defined by the
Equations 4,5,6:

F0ðt;TMT ¼ 0Þ ¼ A0e
�ðt=td0Þb0 þ hrec0t þ eps ð4Þ

F1ðt;TMT ¼ 1Þ ¼ A1e
�ðt=td1Þb1 þ hrec1t þ eps ð5Þ

F2ðt;TMT ¼ 2Þ ¼ A2e
�ðt=td2Þb2 þ hrec2t þ eps ð6Þ

Each equation was re-parameterized as a function of the
HAMD score at week 8 (F8):

F8i ¼ Aie
�ð8=tdiÞbi þ hreci8 ð7Þ

and

hreci ¼ F8i � Aie�ð8=tdiÞbi

8
ð8Þ

The change from baseline of the HAMD score at week 8
in the placebo arm was defined by Equation 9:

Dp ¼ F8i � Ai ð9Þ

Using this value, the equations describing the treatment in
the first arm (TMT= 1) and in the second arm (TMT= 2)
were re-parameterized in order to include in the model a
parameter defining TE1 (treatment effect of the first arm)
and TE2 (treatment effect of the second arm):

TE1;2 ¼ Dp� F81;2 � A1;2
� � ð10Þ

The residual error model (‘eps’) was defined as the sum of
two components:

eps ¼ eþW j ð11Þ

where eps is a random variable with means= 0 and variance
equal to the sum of ε (an additive error component) and Wj

is a center-specific weighting factor defined as 1/pj (pj= level
of the performance of centerj). According to this approach,
all data belonging to center j were affected by a weight Wj.
The centers with higher W (reflecting higher uncertainty in
the measurements at that center) contributed less to the
estimation of the model parameters; consequently, the model
parameters were predominantly influenced by the data in the
informative centers (with a lower W).
For each one of the five RCTs selected for the analysis, the

NLMMRM was then implemented in five stages:

1. Only the placebo data from each center were analyzed and
the model predicted individual HAMD trajectories were
used to derive the typical value of the placebo response at
baseline and at end of the study in each recruitment
center.

2. The performance of each recruitment center was esti-
mated using the logistic model previously defined in
Equations 2,3.
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3. A new analysis data set was constructed by merging the
original data set with the probability values estimated
in step 2.

4. An initial NLMMRM analysis was conducted on the
three-arm data without including the center performance
as a weighting factor.

5. The final NLMMRM analysis was conducted on the
three-arm data using the center performance as a
weighting factor.

In the initial setting of the model, all the model para-
meters, including the eps term, were estimated by mini-
mizing a likelihood function. In this framework, the final
value of eps was expected to provide an estimate of
the residual error. As one component of eps (Wj) was fixed,
the estimation procedure was unable to provide the ‘true’
residual error estimate. To overcome this problem, the ε
term was fixed to a ‘reasonable’ value of the residual
error. This value was set equal to the residual error estimated
in the analysis of the placebo data alone (step 1 in the
analysis) assuming that the same residual error was affecting
the three treatment arms in the final step of the analysis
(step 5).
The statistical evaluation of TE resulting from the

NLMMRM analysis was done using the Wald test (Wald)
(Harrell, 2001). According to this approach, the maximum
likelihood estimate of TE2,3 were compared to zero,
assuming that TEi is χ2 distributed with one degree of
freedom. In the univariate case, the Wald statistic is
defined by:

Wald2 ¼ TEið Þ2
varðTEiÞ ð12Þ

The values var(TEi) were provided by NONMEM once the
maximum likelihood convergence was achieved.

RESULTS

The summary results of the MMRM and the NLMMRM
analyses conducted across the five RTCs are presented
in Table 2. The TE estimates were obtained either by inde-
pendently fitting the HAMD scores in each study to a mixed
Weibull/linear equation using the NLMMRM approach or
by analyzing the HAMD changes from baseline using the
MMRM approach implemented in the SAS PROC MIXED
procedure. The assessment of the statistical relevance of
the estimated TEi was done by using the Wald test for the
NLMMRM approach and by using the LSMEANS option
in SAS.
The results of the analyses of the five RCTs provided

consistent results. The results of the MMRM analyses
indicate that the inclusion of the study center as covariate
in the model leaves unchanged or decreases the estimated TE.
A complete opposite trend is observed with the NLMMRM
analysis. In this case, the inclusion of the center-specific level
of placebo response as a weighting factor had the net effect to
increase the estimated TE value in all the studies. These
findings are graphically presented in Figure 1.
Figure 2 displays the mean % change in signal detection

(TE value) across all the five RCTs selected when the center
effect is included in the analysis.
The average improvement in the TE estimated with

NLMMRM associated with the inclusion of the center effect
in the analysis was on average of 17% in the first arm (low
doses) and of 13% in the second arm (higher doses).
Opposite results were observed with MMRM: TE estimate
was reduced by 3.8% at low doses and by 4.1% at the higher
doses when the center effect was considered.
These results represent a critical finding since the

progression of a new drug to late phase development stages
often depend on the outcome of proof-of-concept studies
initially conducted in phase II. Domino effect could then
include selection of wrong doses (often higher doses

Table 2 Summary Tables of Results Obtained with the MMRM and the NLMMRM Approaches With and Without the Center Effect

Study MMRM analysis NLMMRM analysis

Arm1-Pla P Arm2-Pla P Arm1-Pla P Arm2-Pla P

No center effect

448 1 0.316 2.14 0.031 0.85 0.219 1.75 0.068

449 2.75 0.004 3.28 0.001 2.58 0.012 2.81 0.009

487 1.63 0.056 2.27 0.008 1.34 0.039 1.26 0.085

810 1.22 0.156 2.9 0.001 2.26 0.01 4.21 0.001

874 1.32 0.086 2.5 0.001 0.91 0.001 2.04 0.001

With center effect

448 1 0.314 2.14 0.029 1.97 0.068 2.46 0.019

449 2.74 0.004 3.13 0.001 2.39 0.028 3.35 0.001

487 1.58 0.049 2.23 0.006 2.63 0.005 2.78 0.002

810 1.03 0.221 2.52 0.004 2.73 0.001 4.39 0.001

874 1.32 0.085 2.47 0.001 1.67 0.023 2.69 0.001

Arm1.2-Pla represents the TE for the two treatment arms and P the associated probability level.
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resulting in safety issues), dosing frequency or final decision
to discontinue the clinical development of the drug.
The rationale for including covariates in a model is to

increase the chance to find a statistical significant TE by
explaining and reducing part of the variance of TE and
therefore increasing the signal-to-noise ratio for TE. In the
MMRM analyses, the center effect was always retained as

statistical significant covariate however, the TE estimated
with the center as covariate was lower than that estimated
without the center as covariate. One of the possible reasons
for this outcome is the violation of the assumptions required
by MMRM to account for covariates.
MMRM assumes that the variability in the response

variable (TE) can be explained by a linear combination of
various constant levels corresponding to different combina-
tions of the factors and/or a linear dependence on the values
of the covariate(s). In all cases, the residual variations from
such a hypothetical model are assumed to be independent
normal deviates with constant variance. In addition, it is
assumed that each level of the factor/covariate should be
normally distributed with equal variance. This assumption
would require that the TE should be equally distributed with
equal variance in each center.
This assumption was strongly violated in each trial

evaluated. As an example, the heterogeneous distribution of
TE by center in the two treatment arms is shown in Figure 3
for the study 810. When the response in a MMRM model is
observed under possibly nonparametric effects of a con-
founding covariate, a direct application of MMRM model
may lead to biased estimates of the regression relationship of
interest (Nguyen et al, 2008).
At variance of this limitation of the MMRM approach, the

methodology used in the NLMMRM analysis for accounting
for the center effect fully satisfies the modeling assumption.
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Figure 1 Treatment effect estimates using: (a) the linear mixed-effects model for repeated measures with and without the inclusion of center as a covariate
in the model (light and dark gray bars), (b) the nonlinear mixed-effects model for repeated measures without and with the inclusion of the center performance
as a weighting factor in the analysis (light and dark gray bars).
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across the five randomized clinical trials considered with the modeling
approach for repeated measures and the nonlinear longitudinal modeling of
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In this approach, the center effect was assumed to be a
component of the normally distributed residual error
variance that, and in this way, was assumed to vary center
by center.

DISCUSSION

Development of pharmacotherapy for CNS disorders has
become increasingly challenging due to the enormous failure
rates in their Phase IIB ad Phase III trials with poor
separation of treatment related efficacy from placebo. Often,
well established marketed treatments used as positive control
also fail to distinguish from placebo.
The present paper presents a novel methodology to

estimate the TE using a nonlinear mixed-effects model for
repeated measures approach. NLMMRM can be considered
as the natural generalization of the likelihood-based mixed-
effects model for repeated measures (MMRM) approach that
is today recognized as the most efficient and reliable method
for conducting the primary analysis of continuous end points
in longitudinal clinical trials. However, the analyses demon-
strated that NLMMRM provides a more powerful methodol-
ogy than MMRM for analyzing longitudinal clinical scores in
such RCT scenarios.
The NLMMRM approach assumes that the trajectory of

the response in a specific study can be described by a
longitudinal model. However, this methodology doesn’t
require that the model used (Equation 1) should be the only
possible model. Any other model that adequately charac-
terizes the longitudinal scores (HAMD or other) in the trial
following the administration of an antidepressant drug can
be used with this approach.
The performance of the NLMMRM approach and the

comparison of this method with the conventional MMRM
analysis was conducted using data from five RCTs which
tested paroxetine in a total of 1837 MDD patients from 124
recruitment centers. NLMMRM used the center-specific level

of placebo response as a weighting factor in the evaluation of
TE. The underlying assumption of this analysis is that
centers with high placebo response are less informative than
the others for estimating the ‘true’ treatment effect. As a
consequence the weight of the information generated in
centers with high placebo response should be lower than the
weight of the information generated in the centers with low,
or more ‘normal,’ placebo response.
In this analysis each recruitment center was considered as

an independent source of information characterized by its
own level of noise defined by the level of placebo response.
The overall TE was considered as the resultant of the
weighted TE estimated in each recruitment center. Within a
given RCT, centers with high placebo response will propor-
tionally contribute less in detecting the clinical efficacy of an
antidepressant treatment, than the centers with low placebo
response.
A similar situation is described by the signal detection

theory, when the signal and the background noise are
inversely correlated.
A center’s performance was defined as the probability of

detecting a signal of a treatment effect. This signal was
defined by a clinically relevant separation between active
treatment response and placebo response. In this framework,
the level of placebo response was considered as a confound-
ing factor (noise) that conditions the probability of signal
detection.
The basic assumption in this analysis is that the centers

with high placebo responses do not allow to detect an
efficacy signal, and that combining these centers with others
dilutes the treatment effect, and can sometimes render the
overall multicenter trial failed. An important issue associated
with this assumption is whether this occurrence of centers
with high placebo response is randomly or is nonrandomly
distributed. To address this point we have explored the
distribution of the efficacy signal (the treatment effect)
by center. The evaluation has been done by using the
Wald–Wolfowitz test (Wald and Wolfowitz, 1943), also
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for the study 810 by treatment arm.
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known as the Runs test for randomness. This test is used to
test the hypothesis that a series of numbers (in our case the
value of the treatment effect) is random. A run is a set of
sequential values that are either all above or below the mean.
To simplify computations, the data were first centered about
their mean. To carry out the test, the total number of runs
was computed along with the number of positive and
negative values. A positive run is then a sequence of values
greater than zero, and a negative run is a sequence of values
less than zero. We can then test if the number of positive and
negative runs is equally distributed. The results of the
analysis clearly indicated that the TE is not randomly
distributed. In addition, we explored the distribution of this
value across the different centers in a given study and we
found that such a distribution is not normal and is different
study by study.
A legitimate question associated with the application

of the proposed methodology concerning the potential
risk of inflating the Type I error. To discharge this risk, we
considered the worst case scenario where the weight
associated with the uninformative centers was set to 0. This
corresponds to excluding these centers from the analysis and
to applying the band-pass filter approach where only the
informative centers are used for estimating TE (Merlo-Pich
et al, 2010). The risk of false positive results associated with
the use of this methodology was evaluated by using a clinical
trial simulation (Gomeni and Merlo-Pich, 2012). The results
of the analysis indicated the band-pass filter methodology
preserved the Type I error rate irrespective of whether band
pass filtering approach was implemented. Based on these
results, we can expect no estimation bias of the proposed
methodology by just down weighting uninformative centers,
considering no bias has been shown in worst case scenario of
excluding such uninformative centers.
One of the major advantages of the NLMMRM method is

that it is based on a model. This approach, on one hand,
enables to perform clinical trial simulation for evaluating the
performances of different study design (including the
evaluation of optimal study design) and, on the other hand,
allows to account for the level of placebo response in the
estimation process. One limitation with this approach is that
the NLMMRM method requires a longitudinal model.
Therefore, the appropriate model has to be developed and
validated prior to implement this approach. However, it has
historically been possible to develop such longitudinal
models characterizing the disease severity scores.
The main limitation of this study may be the restricted

number of RCTs used to evaluate the performances of
MMRM and NLMMRM. While the analyses evaluated five
RCTs with large number of subjects, the results need to be
replicated in other collections of clinical trials with different
study designs, inclusion and exclusion criteria, placebo
treatment durations, arm numbers, and dates of execution.
The authors believe that such an undertaking will only lead
to further evidence of the utility of this approach.
In conclusions, the proposed NLMMRM approach pro-

vides a critical tool to control the confounding effect of high
placebo response, to increase signal detection and to provide
a more reliable estimate of the ‘true’ treatment effect by
controlling false negative results associated with excessively
high placebo response. This is of particular relevance when
decision for investment on progressing into phases IIb–III

for a New Chemical Entity is based on the efficacy signal
detected in proof-of-concept trials.
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