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Circadian rhythm and sleep disruptions occur frequently in individuals with alcohol use disorders (AUD) and present significant barriers

to treatment. Recently, a variant of adenosine transporter, equilibrative nucleoside transporter 1 (ENT1), was associated with the co-

occurrence of sleep problems and AUD. We have previously shown that mice lacking ENT1 (ENT1 KO) have reduced adenosine levels

in the striatum and drink more alcohol compared with wild types (WT). However, it is unknown whether ENT1 deletion disrupts

circadian rhythms, which may contribute to alcohol preference in ENT1 KO mice. Here we used these mice to determine whether

endogenous adenosine regulates circadian genetic and behavioral rhythms and influences alcohol intake during chronodisruption. We

examined circadian locomotor activity in ENT1 KO vs WT littermates and found that ENT1 KO mice were both active earlier and

hyperactive compared with WT mice at night. We used real-time PCR and immunohistochemistry to estimate striatal clock gene levels

and found that PER2 expression in the striatum was blunted by ENT1 deletion or A2A receptor (A2AR) antagonism. Next, we exposed

ENT1 KO and WT mice to constant light (LL) and found further elevation in ethanol intake in ENT1 KO, but not in WT mice, supporting

the notion that circadian dysfunction may contribute to increased alcohol intake in ENT1 KO mice. Finally, we showed that A2AR agonist

administration normalized PER1 and PER2 expression and circadian locomotor activity in ENT1 KO mice. Together, our results

demonstrate that adenosine signaling regulates cellular and behavioral circadian timing and influences alcohol intake during

chronodisruption.
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INTRODUCTION

Circadian rhythm and sleep problems are common, treat-
ment-resistant components of alcohol use disorders (AUD)
that greatly contribute to relapse (Brower, 2003; Brower and
Perron, 2010). Alcohol is highly disruptive to circadian
hormonal and activity rhythms, whereas conversely, circa-
dian desynchrony arising from sleep disorders (Roehrs and
Roth, 2001), shiftwork, or repeated jetlag (Gordon et al, 1986;
Smart, 1979) increases risk of developing AUD. Thus,
misalignment of circadian time may be central to the
pathophysiology of AUD (Rosenwasser, 2010).
At the cellular level, circadian timing is determined by

oscillatory loops of transcription and translation of clock
genes (Lowrey and Takahashi, 2004). A central role for the
circadian system in AUD is underscored by evidence linking
most clock genes with AUD (Albrecht et al, 2001; Franken

et al, 2000; Gamsby et al, 2013; Kovanen et al, 2010;
Le-Niculescu et al, 2008; Lopez-Molina et al, 1997; Melendez
et al, 2011; Perreau-Lenz et al, 2012; Spanagel et al, 2005;
Steinlechner et al, 2002; Wang et al, 2012; Yang et al, 2012).
In addition to ethanol (Melendez et al, 2011), morphine
(Hood et al, 2011) and amphetamine (Wongchitrat et al,
2013) alter circadian variation in clock gene expression in
the mesolimbic reward system during chronic use and/or
withdrawal, which may contribute to addictive behavior
and/or circadian misalignment. However, little is known
about clock gene regulation outside of the suprachiasmatic
nucleus (SCN) circadian clock.
Adenosine signaling has an essential role in acute ethanol

intoxication, including ataxia, anxiolysis, and sedation,
while long-term ethanol exposure leads to neuroadaptation
in adenosine signaling that contributes largely to alcohol
dependence (Asatryan et al, 2011; Dunwiddie and Masino,
2001; Ruby et al, 2010). Adenosine transporter equilibrative
nucleoside transporter 1 (ENT1) is blocked by acute ethanol
and downregulated by chronic ethanol exposure (Nagy et al,
1990; Nagy et al, 1989), and studies associate ENT1 with
AUD in humans (Gass et al, 2010; Kim et al, 2011). Mice
lacking ENT1 (ENT1 KO) display high tolerance to ethanol
intoxication and drink alcohol excessively (Choi et al, 2004)
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because of low adenosine tone in the striatum (Nam et al,
2011; Wu et al, 2010). Recent evidence links a variant of
ENT1 with circadian sleep disruption and AUD (Gass et al,
2010).
As a regulator of circadian timing (Antle et al, 2001;

Hallworth et al, 2002; Sigworth and Rea, 2003), sleep
(Halassa et al, 2009), and alcohol intake (Asatryan et al,
2011; Dunwiddie and Masino, 2001; Ruby et al, 2010),
adenosine signaling may contribute to chronodisruption
in AUD. Adenosine modulates both photic (light) and
nonphotic (behavioral) circadian clock resetting (Antle
et al, 2001; Hallworth et al, 2002; Sigworth and Rea, 2003).
Caffeine, an adenosine A1 receptor (A1R)/A2A receptor
(A2AR) antagonist, lengthens (Oike et al, 2011), whereas
ethanol shortens (Seggio et al, 2009), free-running
(endogenous) circadian period. Circadian variation in
astrocytic ATP release, extracellular adenosine concentra-
tion, and ENT1 and A1R expression has been reported in
sleep/wake-promoting areas of the brain (Alanko et al,
2003; Marpegan et al, 2011; Murillo-Rodriguez et al, 2004;
Virus et al, 1984). Together, this evidence suggests that
adenosine may regulate cellular circadian timekeeping.
To explore a role for endogenous adenosine in regulating

circadian genetic and behavioral rhythms, we examined
circadian entrainment (locomotor activity under a 12:12
light:dark, or LD, photocycle) and striatal clock gene
expression in adenosine-challenged ENT1 KO mice (Nam
et al, 2011) and wild-type (WT) littermates. We then
measured ethanol intake in ENT1 KO and WT mice during
constant light (LL), a circadian challenge. Finally, we
investigated whether selective inhibition of A1R or A2AR
in WT mice mimicked some of the clock gene expression
changes we observed in ENT1 KO mice, and whether
activation of A2AR improved circadian rhythms in ENT1
KO mice.

MATERIALS AND METHODS

Animals

ENT1 KO mice were generated (Choi et al, 2004). We used
F2 hybrid ENT1 KO and WT littermates when they reached
10 weeks old, with a C57BL/6J� 129� 1/SvJ background
(Crusio et al, 2009) to avoid strain-specific influences on
behavior or gene expression. Mice were housed in standard
Plexiglas cages with food and water available ad libitum.
The chamber was maintained on 12 h light (500 lux) and
12 h dark (o0.5 lux) cycle (LD) except during constant
light (LL; see below). Animal care and handling procedures
were approved by Mayo Clinic IACUC according to NIH
guidelines.

Circadian Activity and Drinking

Mice under LD were individually caged and their circadian
locomotor rhythms were monitored using infrared sensors
interfaced with Clocklab (Coulbourn Instruments, White-
hall, PA). For 2 weeks, mice of each genotype were
acclimated to lickometers (Coulbourn Instruments) to
visualize circadian drinking patterns. After the acclimation
period, mice received ethanol in two-bottle choice (see
below); mice using lickometers received ethanol solutions in

the lickometer for the duration of the experiment. After
2 weeks at 10% ethanol in LD, mice were exposed to LL
for 2 weeks.
Entrainment to the LD photocycle was determined by

calculating the daily activity onset relative to Zeitgeber Time
12 (ZT12), the beginning of the dark phase (active phase for
nocturnal rodents). Onset was defined as the first 10min
activity that (1) exceeded 10% maximum daily rate; (2) was
preceded by X4 h inactivity; and (3) was followed by
X30min sustained activity. Offset was defined as the final
10min that was preceded byX60min sustained activity and
followed by X4 h inactivity. Alpha (the active phase) was
calculated as the period between activity onset and activity
offset (h). Activity distribution was assessed using activity
bout analysis (Ruby et al, 2009). A bout was defined as a
period of continuous activity (regardless of duration)
separated by at least 10min of inactivity. Activity duration
(min of activity) and intensity (activity counts) were
summed over the active phase (night) and over the inactive
phase (day), and averaged over 8 days at each condition
(basal, ethanol, and constant light) for each animal.

Quantitative, Real-Time PCR

Mice were anesthetized with CO2 and rapidly decapitated at
ZT6, ZT10, ZT14, or ZT18. nucleus accumbens (NAc) was
isolated under a surgical microscope. RNA was isolated
using the RNAeasy-Plus Mini kit (Qiagen, Valencia, CA).
Real-time, quantitative RT-PCR was performed with the
iCycler IQ real-time PCR detection system (Bio-Rad,
Hercules, CA) using QuantiTect SYBR Green RT-PCR Kit
(Qiagen; (Wu et al, 2010). Gene-specific primers were
purchased (Qiagen). Protocol: reverse transcription (30min,
50 1C), denaturation (15min, 95 1C), and 45 amplification
and quantification cycles (15 s, 94 1C; 10 s, 55 1C; and 30 s,
72 1C), each with 1 fluorescence measurement. mRNA
expression was normalized by GAPDH. Percentage changes
were calculated by subtracting GAPDH Ct values from Ct

values for the gene of interest (Livak and Schmittgen, 2001).

Immunohistochemistry

Mice were anesthetized with pentobarbital (80mg/kg) at
ZT22 (peak for PER2 protein in the striatum) and
transcardially perfused with 4% paraformaldehyde (Sigma-
Aldrich) in PBS. Brains were removed and post-fixed for
24 h in the same fixative at 4 1C. Brains were immersed in
30% sucrose for 24 h, frozen, and cut in 40 mm sections
using a cryostat (Leica). Free-floating sections were
incubated in 50% ethanol, then 10% normal donkey serum
in PBS for 30min, then antibodies against PER2 (1:250,
Santa Cruz), and NeuN (1:100, Millipore) or GFAP (1:300,
Cell Signaling) overnight. Sections were then incubated in
2% normal donkey serum in PBS for 10min followed by
Alexa 488-conjugated secondary goat anti-rabbit (for PER2,
1:1000, Cell Signaling) and Alexa 555-conjugated goat anti-
mouse (for GFAP or NeuN, 1:1000, Cell Signaling) for 2 h.
Images from each brain region of interest (NAc core, NAc
shell, DMS, DLS, and SCN) were obtained using a LSM 510
confocal laser scanning microscope (Carl Zeiss). Areas of
PER2 expression within regions of interest (450� 450 mm)
were quantified using NIH Image J software. Quantitative
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analysis was performed using a selected region-of-interest
background correction method and calculated as a percen-
tage of WT.

Pharmacological Treatment

For gene expression experiments, C57BL/6J mice were
treated with either DPCPX (6.0mg/kg, i.p.; Tocris), ZM-
241385 (20.0mg/kg, i.p.; Tocris), or vehicle (15% DMSO,
15% Cremaphor in 0.9% NaCl) for 3 days at ZT22 (peak for
PER proteins in the NAc). ENT1 KO and WT mice were
treated with CGS-21680 (2.0mg/kg; Tocris) or vehicle for 3
days at ZT22. On day 4 at ZT14 (peak for Per mRNA in the
NAc), mice were anesthetized with CO2, rapidly decapitated,
and the NAc was isolated and frozen until real-time PCR
was performed. For behavioral experiments, a separate
group of ENT1 KO and WT mice was treated with CGS-
21680 (1.0mg/kg) or vehicle for 5 days at ZT22, and their
behavior was analyzed using Clocklab. Drug doses and
treatment length (3–5 days) were selected based on
antidipsotropic efficacy (Nam et al, 2013); timing of doses
and killing is shown in Figure 4a.

Ethanol Self-Administration

Oral alcohol self-administration and preference were
examined using two-bottle choice (Lee et al, 2013). Mice
had 24 h access to two bottles, one containing tap water
and the other containing ethanol. The ethanol concentration
was raised every fourth day from 3 to 6 to 10% (v/v)
ethanol. After 2 weeks at 10% ethanol, mice were exposed to
constant light (LL) for 2 weeks. A separate group was
maintained on 10% ethanol for 4 weeks in LD to control for
length of ethanol exposure. Fluid intake and body weight
were measured every 48 h to calculate average ethanol
consumption (g/kg/day) and preference (% ethanol solu-
tion/total fluid consumption).

Statistical Analyses

Student’s t-test or one-way ANOVA was used to compare
circadian activity and gene expression within a single time
point between genotypes or treatments. Two-way ANOVA
was used to examine circadian gene expression between
genotypes or behavioral response to drugs. Two-way RM
ANOVA was used to compare ethanol intake between
genotypes during LD vs LL. ANOVA were followed by
Tukey post hoc tests where interactions were found. Results
were significant where Po0.05.

RESULTS

Early Onset, Long Active-Phase and Nighttime
Hyperactivity in ENT1 KO Mice

To explore the effect of endogenous adenosine concentra-
tion on circadian entrainment and activity level, we
analyzed daily activity onset relative to ZT12 (beginning
of the dark phase), alpha (active-phase length), and the
duration and intensity of activity bouts during the night vs
day in adenosine-challenged ENT1 KO mice vs WT
littermates. Representative actograms from WT and ENT1

KO mice are shown in Figure 1a. In contrast to WT, ENT1
KO mice had a positive phase angle of entrainment in LD,
becoming active E20min before ZT12 (t¼ 3.376, P¼ 0.003;
Figure 1b). Alpha was longer in ENT1 KO mice (t¼ 3.381,
P¼ 0.003; Figure 1c). ENT1 KO mice showed greater 24 h
activity duration (t¼ 4.059, Po0.001) and intensity
(t¼ 2.419; P¼ 0.025) owing to increased nighttime duration
(t¼ 4.643, Po0.001; Figure 1d) and intensity (t¼ 2.519;
P¼ 0.020; Figure 1e), as daytime activity duration and
intensity were similar between genotypes. These data
indicate that ENT1 KO mice are hyperactive at night.

Altered Clock Gene Expression in the ENT1 KO Striatum

Clock gene expression in the striatum participates in the
timing and intensity of daily locomotor activity (Iijima et al,
2002), yet little is known about striatal clock gene
regulation. We found that circadian expression of Clock
and Dbp was altered in ENT1 KO mice (Supplementary
Figure S1), but the most striking difference was in Per2.
Two-way ANOVA indicated a main effect of genotype
(F1,38¼ 13.617, Po0.001). A time-of-day effect indicated
that Per2 expression was circadian (F3,38¼ 14.230,
Po0.001). A genotype � time-of-day interaction (F3,38¼
4.117, P¼ 0.014) and subsequent post hoc testing revealed
60% reduction in peak Per2 mRNA levels in the ENT1 KO vs
WT NAc at ZT14 (Po0.001; Figure 2a).
Immunofluorescence confirmed that peak PER2 protein

levels (which occur at ZT22, E8 h after peak Per2 gene
levels) were also reduced, both in the NAc (t¼ 3.153,
P¼ 0.004) and caudate–putamen (CPu; t¼ 3.741, Po0.001;
Figure 2b). Background-corrected PER2 immunofluores-
cence-integrated density averaged 9.0� 106±3.8� 105 in
WT and 6.9� 106±4.6� 105 in ENT1 KO mice in the NAc,
and 8.4� 106±3.4� 105 vs 6.6� 106±3.2� 105 in the CPu,
respectively. Confocal images showing reduced PER2
immunofluorescence in the striatum are shown in
Figure 2c. Colocalization of PER2 with NeuN but not with
GFAP (Supplementary Figure S2a) indicated that PER2 was
neuronal. No genotype difference in PER2 immunofluores-
cence was seen in the SCN (Supplementary Figure S2b).

Chronodisruption-Induced Escalation in Ethanol Intake
by ENT1 KO Mice

If circadian misalignment influences the baseline heavy-
drinking phenotype of ENT1 KO mice (Choi et al, 2004),
then chronodisruption should further increase their ethanol
consumption. Higher baseline ethanol intake in ENT1
KO mice during training was confirmed (Supplementary
Figure S3). Following 2 weeks at 10% ethanol, mice were
exposed to 2 weeks LL. ENT1 KO mice consumed more
ethanol (F1,103¼ 4.731, Po0.034), while a genotype � photo-
cycle interaction (F1,103¼ 10.736, P¼ 0.002) and post hoc
testing revealed increased drinking (P¼ 0.002) by ENT1 KO
mice and a genotype difference (P¼ 0.006) during LL
(Figure 3a). A genotype � photocycle interaction on ethanol
preference (F1,103¼ 8.355, P¼ 0.006) and post hoc testing
showed that ethanol preference increased during LL only in
ENT1 KO mice (P¼ 0.003; Figure 3b). Representative,
double-plotted drinkograms (circadian ethanol drinking
patterns) are shown in Figure 3c. No changes in ethanol
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intake occurred in ENT1 KO or WT mice held in LD for the
same duration (Lee et al, 2013). These data indicate that LL-
induced chronodisruption further increases ethanol drinking
in ENT1 KO mice.

A2AR Regulates Per Expression and Circadian Behavior
in ENT1 KO Mice

If an adenosine deficit decreases striatal Per expression in
ENT1 KO mice, then inhibiting adenosine receptors in WT
mice may mimic this change. Pharmacological agents were
given for 3 days at ZT22 (PER protein peak); killing took
place at ZT14 (per mRNA peak; Figure 4a). Treatment
with A1R antagonist DPCPX reduced Per1 expression in the
NAc (F1,23¼ 7.906, P¼ 0.003) vs vehicle. A1R antagonist
DPCPX (P¼ 0.005) and A2AR antagonist ZM-241385
(Po0.001) decreased Per2 expression (F1,21¼ 12.816,
Po0.001) vs vehicle (F1,21¼ 12.816, Po0.001; Figure 4b).
A2AR is enriched in the striatum and its inhibition by

caffeine in the NAc produces locomotor activation (Lazarus
et al, 2011). Increased alcohol consumption (Spanagel et al,
2005) and advanced entrainment (Brager et al, 2011) in Per2
mutant mice suggest that low Per2 expression may account
for early entrainment in ENT1 KO mice. As inhibition
of A2AR selectively downregulated Per2 expression, we
used A2AR agonist CGS-21680 to determine whether A2AR
activation would increase Per2. Three-day CGS-21680
treatment increased Per2 levels similarly (E 45%) in
ENT1 KO and WT mice, but increased Per1 only in
ENT1 KO mice relative to vehicle-treated WT controls
(t¼ � 3.229, P¼ 0.012; Figure 4c).

If compromised A2AR-mediated striatal Per expression
underlies circadian changes in ENT1 KO mice, then
increasing Per expression with CGS-21680 should norma-
lize behavior. As expected, we found main effects of
genotype (F1,21¼ 8.671, P¼ 0.009), 5-day CGS-21680
treatment (F1,21¼ 13.210, P¼ 0.002), and a genotype�
treatment interaction (F1,21¼ 8.783, P¼ 0.008). Post hoc
analysis revealed that CGS-21680 delayed onset in ENT1
KO (Po0.001) but not in WT mice. Both genotypes
responded similarly to vehicle, but differentially to
CGS-21680 (P¼ 0.001; Figure 4e). Main effects of geno-
type (F1,20¼ 6.634, P¼ 0.020), treatment (F1,20¼ 42.613,
Po0.001), and a genotype� treatment interaction (F1,20¼
5.454, P¼ 0.032) were also shown for alpha. Post hoc
analysis showed that CGS-21680 reduced alpha in ENT1
KO (Po0.001) and WT mice (P¼ 0.005), albeit to a
greater degree in the former (P¼ 0.004; Figure 3f). Repre-
sentative actograms of mice from each genotype�
treatment are shown in Figure 4d. These data support a
role for striatal A2AR-mediated Per expression in circadian
activity.

DISCUSSION

We provide strong evidence that adenosine signaling regu-
lates circadian clock gene expression in the striatum. We
also demonstrate that endogenous adenosine levels regulate
circadian entrainment, nightly activity level, and alcohol
intake during chronodisruption. Our study supports a role
for adenosine in maintaining circadian timing in reward
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circuitry and for striatal clock genes in regulating alcohol
intake and activity.
The hyperactive phenotype of ENT1 KO mice is

consistent with their low adenosine tone and hyperlocomo-
tion produced by caffeine, the latter mediated by inhibition
of A2AR in the NAc (El Yacoubi et al, 2000; Lazarus et al,
2011). In line with increased ethanol intake by A2AR KO
mice (Naassila et al, 2002), ENT1 deletion also induces
striatal A2AR signaling deficits that increase operant
reward responding (Nam et al, 2013). In contrast, A2AR
KO mice show lower exploratory activity, which may reflect
the lack of congruence between constitutive and temporary

reduction in A2AR signaling or differences between loco-
motor measures. In this regard, the present findings illus-
trate the pitfalls of relying on open-field locomotor testing,
which is typically brief (p1 h) and performed during the
daytime, when rodents sleep. The present data provide a
relevant example: genotype differences in activity only
occurred at night, whereas daytime circadian and open-field
activity is comparable in ENT1 KO and WT mice (Chen
et al, 2007; Choi et al, 2004; Ruby et al, 2011). As cellular
timing controls the expression of many genes and proteins
(Lowrey and Takahashi, 2004; Miller et al, 2007), the time of
day at which experiments are performed may be critical in
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determining the contribution of genes and proteins to
behavior.
Per2 mRNA and protein deficits in ENT1 KO mice are

intriguing in light of the resemblance ENT1 KO mice bear to
Per2 mutants. Both are well-established animal models of
glutamatergic dysregulation and compromised astrocyte
function in AUD (Choi et al, 2004; Lee et al, 2013; Nam et al,
2011; Spanagel et al, 2005). Early awakening in ENT1 KO
mice is also consistent with the role of Per2 in circadian
phase regulation (Albrecht et al, 2001). The circadian
phenotype in Per2 mutants is severe; they become active 2 h
before lights off (Bode et al, 2011; Brager et al, 2011),
whereas ENT1 KO were active E20min before ZT12. Per2
mRNA expression in ENT1 KO mice was also advanced
relative to WT (ZT10 vs ZT14, respectively), which could
indicate that peak PER2 protein expression occurred early.
However, Per2 mRNA levels in ENT1 KO mice at ZT10 were
still substantially lower than the ZT14 peak for WT mice.
Given that PER proteins inhibit their transcripts, examining
24 h striatal PER2 protein expression in ENT1 KO mice may
be informative.
ENT1 expression is very low in the hypothalamus

(Guillen-Gomez et al, 2004), and therefore may not be a

significant source of extracellular adenosine in the SCN.
Thus, ENT1 deletion would not be expected to greatly
alter SCN adenosine tonus. Although outside the scope of
this study, proper assessment would require examining
SCN adenosine levels, 24 h SCN PER2 expression, and
phase-resetting responses to A1R-gated photic input
(Sigworth and Rea, 2003) in ENT1 KO mice. However, the
present data support a role for striatal adenosine and Per2
in the observed genotype difference in behavior, as SCN
PER2 expression was comparable between genotypes.
Moreover, activation of A2AR, which is enriched in the
striatum but scant in the hypothalamus, reversed the
deficits of ENT1 KO mice. In this regard, other evidence
exists for clock genes in reward circuitry contributing to
circadian amplitude (Mukherjee et al, 2010).
Our study indicates that cellular circadian timing in the

striatum may influence alcohol consumption and prefer-
ence, particularly during chronodisruption. LL usually
lengthens circadian period (Figure 3c) and dampens Per
expression (Ohta et al, 2005). Long-term LL (50þ days)
constitutively elevates PER2 protein in the murine SCN,
which negatively regulates Per2 transcripts (Munoz et al,
2005). Thus, the fact that LL did not change ethanol
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consumption or preference in WT mice indicates that
disruption of SCN timing alone is insufficient to affect
drinking. However, the additive effect of LL-induced
chronodisruption on ethanol intake in ENT1 KO mice
validates the idea that pre-existing circadian misalignment
may increase ethanol consumption during environmental
challenges to the circadian system.
Our findings implicate ENT1 and adenosine receptor-

mediated signaling in alcohol-induced flattening of Per gene
rhythms (Chen et al, 2004; Huang et al, 2010). Specifically,
A1R inhibition downregulated Per1 and Per2 expression,
whereas A2AR inhibition downregulated only Per2. How-
ever, A2AR agonist CGS-21680 treatment in Per1/Per2-
deficient ENT1 KO mice increased expression of both genes,
indicating that A2AR affects Per1 levels as well. Adenosi-
nergic regulation of NAc clock genes has important
implications regarding the influence of A1R/A2AR antago-
nist caffeine on alcohol consumption. Reduced sensitivity to
intoxication may underlie the frequently toxic blood alcohol
concentration achieved by consuming caffeinated alcoholic
beverages (Attwood, 2012; Attwood et al, 2012). Here, A2AR
antagonism only once a day for 3 days was sufficient to
reduce striatal Per2, which itself increases alcohol intake
(Spanagel et al, 2005). Furthermore, the dose of A2AR
antagonist ZM-241385 we used herein increases alcohol
intake (Nam et al, 2013).
As A2AR is enriched in the striatum, the observed A2AR-

mediated improvements in Per expression and circadian
behavior in ENT1 KO mice argue that the striatal cellular
clock participates in the timing and intensity of daily
activity. The dose range of CGS-21680 used also reduces
alcohol drinking in mice (Nam et al, 2013), implying a
relationship between circadian rhythm improvement and
decreased drinking. Similar to several studies (Houchi et al,
2013; Jones et al, 2012; Knapp et al, 2001; Rimondini et al
1997), we observed that CGS-21680 reduced locomotor
activity. Alpha (active-phase duration) was reduced in CGS-
21680-treated mice of both genotypes vs vehicle-treated WT
controls (Figure 4d). This is likely related to late-night
treatment timing, which coincided with peak PER2 protein
expression, but may have reduced late-night locomotion
(Figure 4d and e). However, alpha decreased more markedly
in ENT1 KO vs WT mice, as CGS-21680 delayed onset only
in ENT1 KO mice. As CGS-21680 was administered during
the day in Nam et al (2013), it is also unlikely that
hypolocomotion underlies reduced ethanol drinking in that
study.
Our results suggest a role for striatal adenosine signaling

in psychiatric disorders with a prominent hyperactivity
component and animal models thereof. Of note, adult
ADHD is linked with blunted Per2 expression (Baird et al,
2012). It is also interesting that the other clock genes with
altered circadian profiles in ENT1 KO mice, Clock and Dbp,
are associated with ADHD (Kissling et al, 2008; Roybal et al,
2007; Xu et al, 2010), bipolar disorder (Le-Niculescu et al,
2008; Lee et al, 2010; Shi et al, 2008; Soria et al, 2010),
anxiety (Le-Niculescu et al, 2011a), and AUD (Le-Niculescu
et al, 2011b; Le-Niculescu et al, 2008). Interestingly, ENT1
KO mice display mania-like behavior (Ruby et al, 2011)
similar to Dbp KO mice (Le-Niculescu et al, 2008). Stress-
reactive Dbp KO mice show reduced prefrontal cortical
EAAT2 (Le-Niculescu et al, 2008) consistent with the ENT1

KO striatum (Lee et al, 2013). Thus, future studies
examining a role for Dbp in ENT1 KO mice are warranted.
Our findings reveal that striatal A2AR-mediated signaling

may influence cellular and behavioral circadian timing and
activity level. Although clock timing in the SCN itself
does not appear to change alcohol intake, compromised
reward network timing may confer susceptibility to
increased drinking during chronodisruption. This has
important implications for individuals who experience
chronic environmental challenges to the circadian system,
as in shiftwork, jetlag, and sleep disruption. Our study also
implies that striatal dysfunction, which adversely affects
mood and drives drug intake, may partly underlie the high
prevalence of circadian misalignment in psychiatric and
substance use disorders.
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