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The age period spanning late adolescence to emergent adulthood is associated with the highest prevalence of cigarette smoking in the

United States, and is also a time of continued brain development. Nonetheless, although prior research has shown group differences in

brain structure associated with smoking status in adults, few studies have examined how smoking and associated behavioral states relate

to brain structure in this age group. Neuroimaging and lesion studies have suggested that the insula, a cortical region that integrates

heterogeneous signals about internal states and contributes to executive functions, plays an important role in cigarette smoking behavior.

Using high-resolution structural magnetic resonance imaging, we therefore measured cortical thickness of the insula in 18 smokers and 24

nonsmokers between the ages of 16 and 21 years. There were no group differences in insula thickness, but cigarette exposure (pack-

years) was negatively associated with thickness in right insula. Cigarette dependence and the urge to smoke were negatively related to

cortical thickness in the right ventral anterior insula. Although the results do not demonstrate causation, they do suggest that there are

effects of cigarette exposure on brain structure in young smokers, with a relatively short smoking history. It is possible that changes in the

brain due to prolonged exposure or to the progression of dependence lead to more extensive structural changes, manifested in the

reported group differences between adult smokers and nonsmokers. Structural integrity of the insula may have implications for predicting

long-term cigarette smoking and problems with other substance abuse in this population.
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INTRODUCTION

Young people in the age range of late adolescence to
emerging adulthood (18 to 25 years of age) have the highest
prevalence of cigarette smoking in the United States, and
B33% are considered smokers (USDHHS, 2012). Most
smokers start smoking in their teenage years, with half of
adolescent smokers transitioning into heavy smoking during
emerging adulthood (White et al, 2009). During adolescence
and emergent adulthood, the brain is still undergoing deve-
lopment (Sowell et al, 2003), and it has been hypothesized
that tobacco use during this critical period produces
neurobiological changes that promote tobacco dependence
later in life (DeBry and Tiffany, 2008). Understanding the
relationship between smoking behavior and gray-matter
integrity in emergent adults, therefore, has the potential to
help clarify the neurobiological mechanisms that underlie

the transition to tobacco dependence in adulthood and to
aid in the development of treatment strategies tailored for
this large subpopulation of smokers in the United States
(Stone et al, 2012).
Converging lines of evidence suggest that the insular

cortex plays a critical role in the maintenance of tobacco
dependence (Naqvi and Bechara, 2010). Within the human
cerebral cortex, the insula has the highest density of
nicotinic acetylcholine receptors, as indicated by positron
emission tomography using 2-[18F]F-A-85380 (Picard et al,
2013), a tracer for nicotinic acetylcholine receptors contain-
ing b2 subunits (Kimes et al, 2003). Damage to the insular
cortex, but not to other parts of the brain, disrupts smoking
behavior in stroke patients and animals (Naqvi et al, 2007;
Scott and Hiroi, 2011). Conversely, many studies have
shown that smoking-related cues elicit increases in glucose
metabolism and blood oxygenated level-dependent (BOLD)
signal in a network of brain regions including the insula
(Brody et al, 2002; Garavan, 2010). Moreover, self-reported
cigarette craving is related to change in glucose metabolism
of the anterior insular cortex in response to visual cues
(Brody et al, 2002), and to cerebral blood flow in the insula
elicited by overnight abstinence from smoking (Wang et al,
2007). It therefore appears that the insula, particularly the
anterior portion, plays an integral role in generating the
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conscious urge to smoke. Despite progress in understanding
how the function of the insula affects smoking behavior, less
is known about the importance of individual differences in
the structural integrity of the insula.
Structural magnetic resonance imaging (sMRI) has not

been used to examine gray-matter integrity in young smokers
despite evidence that exposure to nicotine produces cell
damage and loss in the brains of adolescent animals (Slotkin,
2002). The majority of studies in adult smokers find that
individuals who smoke have lower regional gray-matter
volume or density than nonsmokers in various brain regions
(Brody et al, 2004; Morales et al, 2012) including the insular
cortex (Gallinat et al, 2006; Zhang et al, 2011b). A single
study, however, found greater gray-matter density in the left
insula in smokers than nonsmokers (Zhang et al, 2011a).
Inconsistencies in the literature may be attributable to the
structural and functional heterogeneity of the insula. The
insula has been divided into three subregions on the basis of
cytoarchitectonic information in macaques (Mesulam and
Mufson, 1982a), and on the basis of resting-state functional
connectivity, task-evoked activation, and structural connec-
tivity (Deen et al, 2011; Kelly et al, 2012) in humans. Previous
studies have indicated a role of the dorsal anterior insula in
cognition and executive control, the ventral anterior insula in
emotion, and the posterior insula in the reception of primary
interoceptive and exteroceptive information (Chang et al,
2013; Craig, 2002).
In the current study, therefore, we measured cortical

thickness in the whole insula and in three insula subregions,
and we hypothesized that smokers in emergent adulthood
would have thinner insular cortex than nonsmokers in the
same age group. Although insula lesions disrupt smoking
behavior, duration of nicotine dependence is negatively
correlated with insula volume in adult polysubstance
abusers (Tanabe et al, 2013); suggesting that there is a
complicated relationship between insula structure and
function. Based on these studies, we predicted that cigarette
exposure and dependence would be negatively correlated
with insula thickness. As the ventral and dorsal anterior
insula are structurally and functionally connected to the
orbitofrontal cortex, anterior cingulate (ACC), and dorso-
lateral prefrontal cortex (Deen et al, 2011; Mesulam and
Mufson, 1982b), regions commonly implicated in craving
and in the ability to control the urge to smoke (Hayashi
et al, 2013; Kober et al, 2010; Li et al, 2013), we
hypothesized that thickness of the anterior insula would
be negatively correlated with the urge to smoke.

MATERIALS AND METHODS

Participants

As described in a previous report (Galvan et al, 2011), parti-
cipants were recruited through online and print advertise-
ments. After receiving a detailed explanation of the study
(approved by the UCLA Institutional Review Board), parti-
cipants X18 years of age gave written informed consent.
Those under the age of 18 years gave assent, and their
parents provided written informed consent. A total of 24
English-speaking, right-handed nonsmokers and 18 daily
smokers completed study procedures. No participant
reported a medical or neurological disorder that would

affect brain function or structure. The Structured Clinical
Interview for DSM-IV (First et al, 1995) was used to exclude
participants meeting diagnosis for any Axis I psychiatric
disorder, including current drug abuse or dependence
(except nicotine for the smokers). Abstinence from
substance use (except nicotine for smokers) was confirmed
by urine drug screening on test days.
Participants were classified as nonsmokers if they self-

reported smoking of o5 cigarettes in their lifetime, had
carbon monoxide (CO) concentrations of o5 p.p.m. in
expired air (Smokelyzer, Bedfont Scientific, Kent, UK), and
had urinary cotinine values below the threshold of
determination (NicAlert test strips, Nymox Pharmaceutical,
Hasbrouck Heights, NJ). Smokers endorsed daily cigarette
smoking, had CO concentrations X6 p.p.m. in expired air,
and/or urinary cotinine X200 ng/ml. Pack-year smoking
history, accounting for periods of abstinence and fluctua-
tions in average number of cigarettes smoked per day, was
calculated to determine lifetime exposure to cigarettes (pack
years¼ packs smoked per day� years as a smoker).
Severity of cigarette dependence was assessed with the
Cigarette Dependence Scale (CDS-12; (Etter et al, 2003)).
Participants were only asked to refrain from smoking
during the 30min immediately preceding the scan (average
duration of abstinence before scan: 258±248min).

Scan Acquisition

A high-resolution magnetization-prepared rapid-acquisition
gradient echo (MPRAGE) was acquired on a 3T Siemens Trio
MRI scanner for measurement of cortical thickness (TR, 2.3;
TE, 2.1; FOV, 256; matrix, 192� 192; sagittal plane; slice
thickness, 1mm; 160 slices).

sMRI Preprocessing

The FreeSurfer image analysis suite (version 5.0) was used
for semiautomatic measurement of cortical thickness from
MPRAGE images. The methods, fully described elsewhere
(Dale et al, 1999; Fischl and Dale, 2000; Fischl et al, 1999),
are briefly described here. The intensity of the images was
normalized to remove bias fields and a watershed algorithm
was applied to remove non-brain tissue (Segonne et al,
2004). White matter was segmented from the rest of the
brain, and errors in white-matter topology were corrected
automatically (Fischl et al, 2001). A tessellation was formed
along the boundary between gray and white matter. The
tessellation on the white-matter surface was grown outward
toward the intensity gradient separating the gray matter
from the cerebrospinal fluid (pial surface). White-matter
and pial surfaces were visually inspected for accuracy and
manual corrections were made in cases where the white
matter was not accurately classified (mostly in temporal
lobes) and in cases where the pial surface included dura or
skull. Finally, the cortical surfaces were mapped onto a
spherical coordinate system and registered to an average
template by maximizing the correspondence between sur-
face convexity measures.
Whole insula thickness was determined using the

Desikan–Killiany Atlas (Desikan et al, 2006). The insula
was parcellated into three subdivisions based on boundaries
determined via functional parcellation studies (Deen et al,
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2011). Dorsal anterior, ventral anterior, and posterior insula
labels were created on an average template (Figure 1) and
then mapped back to individual subjects in order to
measure average cortical thickness within each of the three
subdivisions from each participant’s data. The posterior
and anterior insula were divided along the left/right plane of
the anterior commissure (MNI coordinate: Y¼ 4). Dorsal
and ventral anterior insula were delineated in the coronal
plane based on the convexity of the gyri in anterior insula
(MNI coordinates: Z¼ � 4).

Statistical Analysis

Thickness values were extracted from gray-matter regions of
interest (ROIs) and were imported into SPSS v20. Group
comparisons were conducted using analysis of covariance
(ANCOVA) with thickness as the dependent variable, group
as a between-subjects factor with two levels (smoker/
nonsmoker), and age, sex, alcoholic drinks per week, and
frequency of marijuana use as continuous covariates.
Correlations were conducted to test the relationships
between thickness values, pack-years, and CDS-12 scores.
Multiple-comparison correction was performed by control-
ling for the rate of false discoveries (FDRs; 5% a-level)
(Benjamini and Hochberg, 1995). The insular cortex is
thought to play an integral role in generating the conscious
urge to smoke: therefore, exploratory post hoc analyses
correlated responses from the CDS question ‘After a few
hours without smoking I feel an irresistible urge to smoke’
with thickness in ROIs that correlated with the total CDS
score. Alcoholic drinks per week and frequency of marijuana
use were not correlated with pack-years, CDS scores, or
thickness; therefore, they were not included as covariates in

the partial correlations. To determine the neuroantomical
specificity of correlations between thickness and pack-years
or CDS scores, secondary statistical analyses were conducted
vertex-wise across the whole brain. Maps were smoothed
using a Gaussian kernel of 10-mm full-width half maximum
and Monte Carlo simulations were performed to identify
significant clusters (cluster forming threshold po0.01;
cluster-wise significance threshold po0.05).

RESULTS

Participant Characteristics

No differences were detected between smokers and
nonsmokers in sex distribution (w2 (1, 42)¼ 0.008,
p¼ 0.93), age (t(40)¼ � 1.02, p¼ 0.32), Weschler Adult
Intelligence Scale (WAIS) combined score (t(40)¼ 0.06
p¼ 0.95), years of education (t(40)¼ � 0.47, p¼ 0.64), or
ethnicity (w2 (1, 42)¼ 6.21, p¼ 0.18). Young smokers and
nonsmokers differed on alcoholic drinks per week
(t(40)¼ � 2.90, p¼ 0.009, unequal variance) and on mar-
ijuana use in the past 30 days (t(40)¼ � 2.33, p¼ 0.032,
unequal variance). On average, young adult smokers started
smoking at 15.1 years of age (SD¼ 2.4), smoked 6.7
(SD¼ 2.3) cigarettes per day, had a 0.9 (SD¼ 0.7) pack-
year smoking history, and a cigarette dependence score of
35.0 (SD¼ 7.3; Table 1).

Cortical Thickness Results

No differences in cortical thickness were detected between
nonsmokers and smokers in bilateral insula thickness
(Figure 2a) or in the thickness of bilateral dorsal anterior,

Figure 1 Relationships between cigarette dependence, craving, and insula thickness. The insula was parcellated into three subregions: dorsal anterior
(red), ventral anterior (blue), and posterior insula (green). Correlations show that right ventral anterior insula thickness is negatively correlated with total
score on the Cigarette Dependence Scale (CDS-12) and the urge to smoke after a few hours without smoking.
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ventral anterior, or posterior insula (p’s40.4). In data from
young adult smokers, pack-year smoking history was
negatively correlated with the thickness of the right insula

(r¼ � 0.639, p¼ 0.004; FDR threshold for significance:
po0.00625, Figure 2b), but no correlation was detected on
the left (r¼ � 0.059, p¼ 0.817, Figure 2b). Pack-year
smoking history was also negatively correlated with right
dorsal anterior (r¼ � 0.581, p¼ 0.011) and right posterior
insula (r¼ � 0.497, p¼ 0.036) thickness; however, these
associations did not reach statistical significance after con-
trolling for the rate of false discoveries. CDS scores did not
correlate with whole insula thickness (right hemisphere:
r¼ � 0.301, p¼ 0.224; left hemisphere: r¼ � 0.035, p¼ 0.892),
but were negatively correlated with right ventral anterior
insula thickness (r¼ � 0.653, p¼ 0.003; FDR threshold for
significance: po0.003125, Figure 1), with a similar trend
observed in the right dorsal anterior insula (r¼ � 0.507,
p¼ 0.032). Similarly, the urge to smoke was correlated with
right ventral anterior insula thickness (r¼ � 0.593, p¼ 0.01;
uncorrected, Figure 1). No other correlations were detected
and whole-brain voxel-wise analyses did not yield any
significant results.

DISCUSSION

This study provides evidence that cigarette exposure,
dependence, and craving are related to thickness of the
insula in emergent adults with relatively little smoking
experience. Although brain structure has been studied
extensively in adult smokers, studying the neural correlates
of smoking behavior in emerging adulthood is of utmost
importance, as it may help us understand why smoking

Table 1 Participant Characteristicsa

Nonsmokers
(n¼24)

Smokers
(n¼ 18)

Sex (M/F) 13/11 10/8

Age (years) 19.5 (1.4) 19.9 (1.3)

WAIS combined score 93.3 (10.6) 93.1 (6.4)

Education (years) 13.4 (1.4) 13.6 (1.2)

Ethnicity

White Caucasian 4 6

African American 5 1

Hispanic 2 5

Asian 9 4

Other 4 2

Marijuana (days used in past 30 days)b 0.08 (0.3) 0.9 (1.6)

Alcohol (drinks/week)b 0.8 (1.3) 4.0 (4.6)

Cigarette smoking

Age of first use (years) 15.1 (2.4)

Cigarettes per day 6.6 (2.4)

Pack-years 0.9 (0.7)

Cigarette dependence score 35.0 (7.3)

aMean (SD).
bSignificant group differences by Student’s t-test Po0.05.

Figure 2 Group differences in whole insula thickness and correlations of insula thickness with cigarette exposure. In the anatomically defined right and left
insula regions of interest (left hemisphere depicted in (a)), there were no statistically significant group differences in average thickness (error bars: mean±
2 SD). Correlations show that pack-year smoking history was correlated with right but no correlation was detected with left insula thickness (b).
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during this developmental epoch has such a profound
impact on lifelong smoking behavior (Sussman, 2002).
Unlike studies in adult smokers (Brody et al, 2002; Morales
et al, 2012), this examination of young participants did not
reveal group differences in cortical thickness between
smokers and nonsmokers, suggesting that differences seen
in adults develop as a result of prolonged cigarette smoking
or that they arise later in the developmental trajectory
because of other factors.
Negative correlations between cortical thickness and

cigarette exposure may be attributable to the neurotoxic
effects of nicotine or to other constituents of tobacco
smoke. Participants in this study began smoking in
adolescence (mean age of initiation: 15.1 years old), and
studies in animals indicate that exposure to nicotine during
adolescence reduces the number of cells in the cerebral
cortex by 5–10% as indexed by DNA content; however, DNA
content was measured in fairly gross anatomical regions
precluding determination of anatomical specificity and
possibly masking the true magnitude of the effect
(Slotkin, 2002). Effects of continued exposure may explain
reports of lower gray-matter density in insula in adult
smokers than nonsmokers (Gallinat et al, 2006; Zhang et al,
2011a). Although one study reports greater insula gray-
matter density in adult smokers than nonsmokers, left
insula density was correlated with symptoms of alexithymia,
but not with cigarette exposure or dependence (Zhang et al,
2011a), suggesting that other factors comorbid with
smoking may contribute to the discrepant results. Differ-
ences in the methods used to index gray-matter integrity
could also contribute to the heterogeneity in the literature.
This study focused on the insular cortex because of its

central role in the maintenance of tobacco dependence;
however, studies of adult smokers suggest that cigarette use
is associated with gray-matter abnormalities throughout the
brain. These studies have shown a dose-dependent effect of
tobacco exposure on gray-matter integrity in prefrontal
cortex (Zhang et al, 2011a), temporal cortex, and cerebellum
(Gallinat et al, 2006); however, such effects were not
observed in whole-brain vertex-wise analyses conducted in
this sample. These discrepancies may be attributable to the
low levels of exposure in this sample (0.9 pack-years on
average). Notably, a study of adult smokers found that
individuals with high levels of exposure (18.6 pack-years on
average), but not those with lower levels of exposure (7.2
pack-years on average), had lower gray matter density in
the prefrontal cortex than nonsmokers (Zhang et al, 2011a).
Furthermore, correlations between exposure, dependence,
and prefrontal gray-matter density were only present in the
high-exposure group (Zhang et al, 2011a).
The CDS assesses an individual’s subjective experience of

symptoms such as craving, compulsion to use, levels of
stress when unable to smoke, and difficulty quitting or
controlling intake (Etter et al, 2003). Overall experience of
these subjective feeling states and the severity of the urge to
smoke were negatively correlated with the thickness of the
right ventral anterior insula, a brain region that integrates
primary interoceptive information with emotional informa-
tion and that is believed to generate conscious awareness of
feeling states (Craig, 2002; Gray and Critchley, 2007).
Although this is the first report to link cigarette dependence
and craving to insula thickness, studies of adult smokers

have found that craving is negatively correlated with resting-
state functional connectivity between the right anterior insula
and the ventromedial prefrontal cortex (Sutherland et al,
2013). More work is necessary to determine whether indi-
vidual differences in gray-matter thickness influence the
circuit-level interactions of the insula with other brain
regions implicated in craving.
Future studies should directly examine neurobiological

differences between the right and left insula in smokers.
Although differences between right and left insula were not
explicitly tested in this study, results indicate that cortical
thickness of the right insula is related to cigarette exposure,
dependence and craving, but no correlations between
smoking behavior and left insula thickness were detected,
suggesting that the right insula may be particularly relevant
to smoking behavior. Although lesions to both the right and
left insula disrupt smoking behavior, a greater proportion
of those with right insula lesions experience a disruption in
smoking behavior (Naqvi et al, 2007). Another study found
that rsFC connectivity between the right (but not left)
anterior insula and ventromedial prefrontal cortex was
related to tobacco craving and alexithymia (Sutherland
et al, 2013). Given the importance of the anterior cingulate
in smoking behavior (Azizian et al, 2010; Sharma and
Brody, 2009; Sutherland et al, 2012), it is also of interest that
the right ventral anterior insula shows greater rsFC with
anterior cingulate cortex than left ventral anterior insula
(Cauda et al, 2011). Despite this evidence, however, the left
insular cortex is also implicated in cigarette dependence
(Gallinat et al, 2006; Moran et al, 2012) and studies
specifically designed to clarify the differential roles of right
and left insula in cigarette smoking behavior are needed.
Neuroimaging and animal studies suggest that cigarette

smoking is linked to other aspects of brain structure and
function in adolescence and emergent adulthood. Adoles-
cent smokers exhibit higher fractional anisotropy (FA) in
the brain than nonsmokers, and FA is positively correlated
with cigarette exposure (Jacobsen et al, 2007). These differ-
ences in white matter microstructure persist into adulthood
(Hudkins et al, 2012) and may be related to the effects of
nicotine on the expression of myelin genes (Cao et al, 2013)
or on oligodendrocytes precursor cells (Bartzokis, 2007).
Studies in adolescent animals also show that exposure to
nicotine results in suppressed neural activity and persistent
desensitization of cholinergic responses (Slotkin, 2008).
Furthermore, prior studies by our research group using
functional magnetic resonance imaging to study a subset of
the participants in the present study have shown that the
Heaviness of Smoking Index is related to brain activation
during response inhibition and risky decision making in
emergent adults (Galvan et al, 2011; Galvan et al, 2013),
suggesting that alterations in brain function related to smoking
may have a meaningful impact on behavior. Together, these
studies begin to reveal a holistic picture of the effects of
smoking on the developing brain, and future work to
integrate these findings may lead to a better understanding
of the neural mechanisms that support addiction.
This work is not without limitations. The cross-sectional

study design makes it impossible to dissociate causal effects
of cigarette exposure and dependence from biological
susceptibility factors that promote drug use. Our sample
was relatively small, precluding our ability to test how other
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factors, such as sex (Brown et al, 2012) and genetic vulnera-
bility for tobacco addiction (Hong et al, 2010), may influence
the relationship between smoking and brain measures.
Although nonsmoking and smoking groups differed on
alcoholic drinks per week and frequency of marijuana use,
these variables were included in statistical models used to
test for group comparisons. Alcoholic drinks per week and
frequency of marijuana use were not correlated with pack-
years or cigarette dependence scores and correlations
between clinical features of cigarette use and brain structure
remained significant with these variables included in the
statistical model. Furthermore, levels of alcohol and mar-
ijuana use were low in all groups and no participants met
DSM-IV criteria for substance abuse or dependence.
In emergent adult smokers, anterior insula thickness is

negatively correlated with cigarette exposure, dependence,
and craving. We found no group differences in insula
thickness, suggesting that interventions that result in early
smoking cessation may prevent the development of neuro-
biological differences commonly observed between adult
smokers and nonsmokers. Prospective studies are needed to
determine whether abnormalities in insula thickness during
emergent adulthood serve as a neurobiological susceptibility
factor for cigarette dependence in adulthood. This study
extends previous studies that implicate the insula in addiction
among adult smokers, as these results may reflect the initial
effects of cigarette smoking on insula thickness.
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