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Brief abstinence from smoking impairs cognition, particularly executive function, and this has a role in relapse to smoking. This study

examined whether working memory-related brain activity predicts subsequent smoking relapse above and beyond standard clinical and

behavioral measures. Eighty treatment-seeking smokers completed two functional magnetic resonance imaging sessions (smoking satiety

vs 24 h abstinence challenge) during performance of a visual N-back task. Brief counseling and a short-term quit attempt followed.

Relapse during the first 7 days was biochemically confirmed by the presence of the nicotine metabolite cotinine. Mean percent blood

oxygen level-dependent (BOLD) signal change was extracted from a priori regions of interest: bilateral dorsolateral prefrontal cortex

(DLPFC), medial frontal/cingulate gyrus, posterior cingulate cortex (PCC), and ventromedial prefrontal cortex. Signal from these brain

regions and additional clinical measures were used to model outcome status, which was then validated with resampling techniques.

Relapse to smoking was predicted by increased withdrawal symptoms, decreased left DLPFC and increased PCC BOLD percent signal

change (abstinence vs smoking satiety). Receiver operating characteristic analysis demonstrated 81% area under the curve using these

predictors, a significant improvement over the model with clinical variables only. The combination of abstinence-induced decreases in left

DLPFC activation and reduced suppression of PCC may be a prognostic marker for poor outcome, specifically early smoking relapse.

Neuropsychopharmacology (2015) 40, 1311–1320; doi:10.1038/npp.2014.318; published online 7 January 2015
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INTRODUCTION

Maladaptive behaviors such as tobacco use, unhealthy
diet, and physical inactivity have far reaching health
and economic implications. Even with the best available
interventions, many unhealthy behaviors remain difficult
to modify. Emerging research suggests that impaired
cognition, particularly executive cognitive function, plays
a central role in failed attempts at behavior change (Filevich
et al, 2012). Executive cognitive function refers to a core
set of cognitive processes that support cognitive (self)
control (Botvinick et al, 2001). Working memory, a central
domain of cognitive control, is required to focus on goal-
related information and to sustain goal-directed behavior
(Baddeley, 2003). Indeed, objective measures of working
memory performance predict a variety of lifestyle beha-
viors, including smoking and maintenance of a healthy
body weight (Gonzales et al, 2010; Hege et al, 2013;
Patterson et al, 2010).

Functional magnetic resonance imaging (fMRI) studies
have explored the effects of brief abstinence from smoking
(eg, 24–72 h) on working memory and associated neural
activation, using within-subject contrasts of smokers in
the abstinent vs smoking satiety states (Falcone et al, 2014;
Jacobsen et al, 2007; Loughead et al, 2009). In addition to
reducing working memory performance (Mendrek et al,
2006; Myers et al, 2008), brief abstinence is associated
with reduced working memory-related activation in the
dorsolateral prefrontal cortex (DLPFC) and medial frontal/
cingulate gyrus (MF/CG; Falcone et al, 2014; Loughead et al,
2010), decreased working memory-related suppression of
activity in regions within the default mode network
(posterior cingulate cortex (PCC), ventromedial prefrontal
cortex (vmPFC); Beaver et al, 2011; Falcone et al, 2014;
Loughead et al, 2010), and dysregulated inter-network
functional connectivity during task performance and at rest
(Jacobsen et al, 2007; Lerman et al, 2014; Sutherland et al,
2013). FDA-approved medications, such as varenicline
and bupropion, can reverse abstinence-induced working
memory deficits and related neural activation in studies of
abstinent smokers tested during medication vs placebo
(Loughead et al, 2010; Perkins et al, 2013). To our knowl-
edge, no study has examined whether working memory-
related brain signal predicts relapse to smoking.
We tested the hypothesis that abstinence-induced

changes in working memory-related neural activation
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would predict the likelihood of early smoking relapse
(biochemically confirmed in the first 7 days of a quit
attempt) above and beyond standard clinical and behavioral
measures. Prior work suggests that regions within the
brain’s executive control network (eg, DLPFC, MF/CG) are
vital for cognitive control (Fassbender et al, 2004; Krain
et al, 2006), whereas regions within the default mode
network (eg, PCC, vmPFC) are involved in self-referential
and stimulus-independent thought processes that can
compete with executive control functions (Gusnard et al,
2001; Smith et al, 2009). Given the importance of outwardly
focused attention and cognitive control in smoking
behavior change (Ashare et al, 2013b; Kollins et al, 2013;
Sutherland et al, 2012), we expected that short-term relapse
would be predicted by reduced activation in DLPFC and
MF/CG, and less suppression of activation in PCC and
vmPFC, as assessed during a pre-quit abstinence challenge
(vs smoking satiety).

MATERIALS AND METHODS

Participants

Treatment-seeking smokers aged 18–65 years who reported
smoking X10 cigarettes/day for X6 months were recruited
through mass media (N¼ 80). Participants provided written
informed consent and completed a physical examination
including a breath alcohol test, urine drug screen, and urine
pregnancy test (females). Persons with a history of DSM-IV
Axis I psychiatric or substance disorders (except nicotine
dependence) assessed with the Mini International Neuro-
psychiatric Interview (Sheehan et al, 1998) and those
taking psychotropic medications were excluded. Exclusion
criteria also included: current use of chewing tobacco, snuff,
or smoking-cessation products; pregnancy, planned preg-
nancy or breastfeeding; history of brain injury; left
handedness; presence of fMRI contraindicated material
in the body; low or borderline intelligence (o90 score on
Shipley Institute of Living Scale; Zachary, 1986); and
any impairment that would prevent task performance.
Eligible participants completed the six-item Fagerström
Test for Nicotine Dependence (Heatherton et al, 1991).
The University of Pennsylvania Institutional Review Board
approved all procedures.

Functional Brain Imaging Sessions

Two blood oxygen level-dependent (BOLD) fMRI sessions
were acquired in counterbalanced order: (1) smoking satiety
and (2) 24 h abstinence challenge. The 24-h period was
selected because the majority of relapses occur in the first
day of a quit attempt (Piasecki, 2006). Imaging sessions were
separated byB2 weeks. Subjects were to refrain from alcohol
and other drugs 24 h before the imaging session and those
with a positive drug screen, a breath alcohol test 40.01,
or a breath carbon monoxide (CO) test 49 ppm (abstinence
challenge condition only) were excluded. Before imaging,
participants completed the Minnesota Nicotine Withdrawal
Scale (MNWS; Hughes and Hatsukami, 1986), Questionnaire
of Smoking Urges (QSU-Brief; Cox et al, 2001), and the
Positive and Negative Affect Schedule (PANAS; Watson et al,
1988). For the smoking satiety condition, participants

smoked immediately before scanning to standardize expo-
sure (B30min prior to task performance).
Working memory was assessed during BOLD imaging

with a visual N-back task (Ragland et al, 2002) used in our
prior research (Loughead et al, 2010; Loughead et al, 2009).
This task presents complex geometric figures (fractals)
under four conditions: 0-back, 1-back, 2-back, and 3-back.
In the 0-back condition, participants respond with a button
press to a specified target fractal; for the 1-back condition,
participants respond if the current fractal was identical to
the previous one; for the 2-back condition, if the current
fractal was identical to the item presented two trials back;
etc. No response was required for nontargets. Images were
presented for 500ms with an interstimulus interval of
2500ms. The task began with a 48 s baseline rest period
(fixation point) of which the first 24 s was discarded to
ensure the MRI signal reached steady state. Each condition
was presented three times in 20-trial blocks (33% targets;
60 s). Blocks were presented in order of increasing memory
load for one set, after which conditions were presented
pseudo-randomly; visual instructions (9 s) preceded each
block to indicate the upcoming condition. Equivalent forms
with unique stimuli were used and task version order was
counterbalanced.

fMRI Data Acquisition

BOLD fMRI was acquired with a Siemens Trio 3T (Erlangen,
Germany) system using a whole-brain, single-shot gradient-
echo echoplanar sequence with the following parameters:
TR/TE¼ 3000/30ms, FOV¼ 220mm, matrix¼ 64� 64, slice
thickness/gap¼ 3.4/0mm, 48 slices, effective voxel resolu-
tion of 3.4� 3.4� 3.4mm. RF transmission utilized a
quadrature body coil, and reception used a 32-channel
head coil. Prior to BOLD fMRI, 5-min magnetization-
prepared, rapid acquisition gradient echo T1-weighted
image (MPRAGE, TR 1620ms, TE 3.87ms, FOV 50mm,
matrix 192� 256, effective voxel resolution of 1� 1� 1mm)
was acquired for anatomic overlays of functional data and
to aid spatial normalization to standard atlas space.

Smoking Cessation Procedures

Approximately 1–2 weeks after imaging, participants took
part in a standardized counseling session during which they
discussed strategies for quitting (including nicotine fading,
identifying and managing triggers, problem solving, relapse
prevention, and stress management) with a trained smoking
cessation counselor (Lerman et al, 2004). During this
counseling session, participants set a target quit date
(TQD) to occur B1 week later and received a self-help
booklet to take home (UDHHS, 2006). Participants com-
pleted a brief in-person visit on the TQD, which included
a 20-min booster counseling session to reinforce and refine
strategies discussed at the initial session. See ‘Outcome
Measure’ below for the assessment of subsequent quit
status.

Image Preprocessing

BOLD time series data were preprocessed and analyzed
by standard procedures using fMRI Expert Analysis Tool
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(FEAT version 5.98) of FSL (FMRIB’s Software Library,
Oxford, UK). Single-subject preprocessing included skull
stripping using the FSL Brain Extraction Tool (Smith, 2002),
slice time correction, motion correction to the median
image using MCFLIRT (Jenkinson and Smith, 2001), high
pass temporal filtering (138 s), spatial smoothing using
a Gaussian kernel (6mm full-width at half-maximum,
isotropic), and mean-based intensity normalization of
all volumes with the same multiplicative factor. The median
functional volume was coregistered to the anatomical
T1-weighted structural volume and transformed into a
standard anatomical space (T1 MNI template), using
FLIRT (Jenkinson et al, 2002; Jenkinson and Smith, 2001).
Transformation parameters were later applied to statistical
maps for group-level analyses.

ROI Definition

As noted above, prior work with the visual N-back task by
our group (Ashare et al, 2013b; Falcone et al, 2014; Lerman
et al, 2014; Loughead et al, 2009, 2010) and others (Owen
et al, 2005; Satterthwaite et al, 2013) has identified three
task-active (right DLPFC, left DLPFC, MF/CG) and two
task-negative (PCC, vmPFC) regions sensitive to abstinence
challenge. ROI masks were functionally defined using the
main effect of memory load (controlling for condition) in a
whole-brain repeated measures condition (smoking satiety,
abstinence challenge) by memory load (N-back level)
ANOVA. Seven-day quit outcome was not included in this
analysis. The resulting activation map was thresholded for
family-wise error correction at pp0.001 (ZX5.87) to
account for five a priori ROIs and then segmented by
clustersX150 voxels using a watershed algorithm imple-
mented in MATLAB (The Mathworks, Natick, MA). The five
functionally defined a priori ROI masks (right DLPFC, left
DLPFC, MF/CG, vmPFC, and PCC) were transformed to
native subject space using parameters obtained in the time
series analysis (Table 1). Each participant’s mean percent
signal change was calculated for the memory load condi-
tions in each ROI and exported for further statistical
analysis.

Outcome Measure

The smoking cessation outcome measure was short-term
abstinence; specifically, the ability to remain completely
abstinent from smoking (not even a puff) for 7 days
following the TQD. Participants completed a monitoring
visit on day 7, during which smoking behavior was assessed
using a timeline follow-back method (Brown et al, 1998)
and biochemically confirmed using NicAlert urine test
strips (Nymox Pharmaceutical Corporation, Hasbrouck
Heights, NJ). NicAlert test strips utilize an immunochro-
matographic assay to provide a semiquantitative measure
of the concentration of cotinine (the primary metabolite
of nicotine) in urine. Results appear as categorical levels of
usage (range: 0–6). Following manufacturer guidelines,
NicAlert results of level 2 or below (corresponding to a
urine cotinine concentration of p100 ng/ml) were required
to biochemically confirm abstinence; levels 3–6 were consi-
dered indicative of current smoking. The 7-day monitoring
period was chosen because 50–75% of smokers who relapse
do so within the first 7 days of a quit attempt (Hughes et al,
2004). Further, this measure is a well-validated indicator of
long-term smoking status; continuous abstinence for the
first week of a quit attempt is a highly significant predictor
of abstinence at 6 months following the TQD (Ashare et al,
2013a). Sixty-one smokers relapsed and 19 quit successfully
for this period. Of this sample, data from four relapsed and
four quit participants were excluded from analysis owing to
poor imaging data quality (root mean square mean relative
motion 40.4, total non-responses 466%).

Statistical Analysis

Descriptive statistics were obtained for all variables. To
examine expected abstinence challenge effects, mean
percent signal change was modeled using regression with
subject-level random effects, and estimated using maximum
likelihood techniques (Stata xt-reg; Stata Corporation,
College Station, TX) with mixed effects (Gaussian model).
The models of abstinence challenge effects on BOLD signal
included terms for the main effects of condition, categorical
memory load and relevant covariates (age, sex, FTND
score, Shipley IQ score, and condition order). Models of
abstinence effects on smoking measures and task perfor-
mance used similar regression models (subject-level
random effects, maximum likelihood techniques with mixed
effects), which utilized the measure of interest (CO reading,
MNWS, QSU-B, N-back accuracy, or N-back correct
response time) as the independent variable and included
terms for main effects of condition, categorical memory
load (for task performance) and relevant covariates (age,
sex, FTND score, Shipley IQ score, and condition order).
Multi-level mixed effects logistic regression (Stata xtmelo-
git) was used to examine whether BOLD signal in the a
priori regions predicted performance outcomes (N-back
accuracy, N-back correct response time), controlling for
condition and categorical memory load.

Predictive models. Forward stepwise regression with a
probability of 0.2 for removal and 0.1 for entry was used
to select predictors for a logistic regression model (STATA
logistic) of dichotomized 7-day relapse. Sex, age, and

Table 1 Functional Regions of Interest Identified by Main Effect of
Memory Load in a Whole-brain Repeated Measures ANOVA

Regiona Hemb Countc mm3 Z-maxd Xe Y Z

MF/CG R/L 422 16 586 14.87 0 16 48

DLPFC L 197 7743 12.13 � 44 24 26

vmPFC R/L 196 7703 12.05 0 42 � 6

DLPFC R 134 5266 8.55 42 32 28

PCC R/L 41 1608 8.05 0 � 50 26

Abbreviations: DLPFC, dorsolateral prefrontal cortex; MF/CG, medial frontal/
cingulate gyrus; PCC, posterior cingulate cortex; vmPFC, ventromedial
prefrontal cortex.
aSignificant clusters 4150 contiguous voxels.
bHem¼ cerebral hemisphere.
cVoxel count (3.4mm isometric).
dZ-max peak activation for cluster.
eCoordinates (mm) from Talairach and Tournoux (1988).

Working memory predicts smoking relapse
J Loughead et al

1313

Neuropsychopharmacology



nicotine dependence level (Heatherton et al, 1991) were
entered as baseline candidate predictors of relapse (Gourlay
et al, 1994; Hymowitz et al, 1997; Japuntich et al, 2011;
Sweitzer et al, 2013). Change scores (abstinence challenge
minus smoking satiety) for paired data collected during
abstinence challenge (MNWS, QSU-Brief, PANAS Positive,
PANAS Negative, task performance (accuracy and response
time), right DLPFC, left DLPFC, MF/CG, vmPFC, and PCC)
were also included in the model. Prior work has demon-
strated that nicotine abstinence effects are induced at the
highest working memory load (3-back level; Loughead et al,
2009, 2010). Therefore, we examined task performance and
BOLD signal acquired during performance of 3-back trials
(minus BOLD signal acquired during performance of
0-back trials to account for task-related cognitive processes
other than working memory). We required age and nicotine
dependence to be entered based on clinical relevance
(Hymowitz et al, 1997; Sweitzer et al, 2013); sex was
nonsignificant, and allowed to dropout.

Following logistic regression, receiver operating charac-
teristic (ROC) analysis was used to assess the predictive
potential of the models (Steyerberg, 2008). Classification
models, based on linear scores, selected a cut point for
separating predicted classes. ROC curve analysis varied the
cut point across the range of data, plotting true-positive rate
against the false-positive rate for each increment. Estimates
of predictive accuracy are expressed as area under curve
(AUC). The ROC curve is a plot of the sensitivity vs
1-specificity of a classification system, represents the
accuracy of the system, and provides a comparable metric
across experiments (Bradley, 1997). Following literature
standards (Fawcett, 2003; Harrell et al, 1996), we consider
ROC curve AUC of 0.50–0.60 as indicating prediction at
chance; 0.60–0.70 as indicating poor prediction; 0.70–0.80
fair prediction; 0.80–0.90 good prediction; and 0.90–1.0
excellent prediction.

Two resampling methods were used to validate predictive
models. First, bootstrap procedures were used to create
1000 replicates of the data with records chosen randomly
with replacement. Stepwise model regression (see above)
was applied to each replicate to assess model uncertainty
(Austin and Tu, 2004b). The frequency of a variable’s

inclusion in a model can be summarized and variables
selected most often are considered to be the most robust
(ie, least influenced by outliers and noise). To examine the
model’s potential for prediction in new cases, we performed
leave-one-out cross-validation (LOOCV) using standard
jackknife procedures (Steyerberg, 2008).

Exploratory Analysis

In a second validation analysis, a sub-sample of relapsers
was selected and matched for age and sex with the group of
quitters, resulting in a sample of 15 pairs. Matching was
conducted without replacement, and there were no cases
where more than one relapser was matched to a quitter. An
exploratory whole-brain condition (abstinence challenge vs
smoking satiety) by smoking cessation group (relapse vs
quit) voxelwise 2� 2 ANOVA at the 3-back level (minus
0-back) was conducted to identify novel regions sensitive to
quit-group status. Resulting statistical maps were corrected
for multiple comparison using random field theory with
group maps cluster corrected at Z41.96 and probability of
spatial extent po0.05.

RESULTS

Baseline Sample Characteristics and Abstinence
Challenge Effects

Of 72 participants included in the analysis, 44.4% were
female and 38.9% were Caucasian. The mean age was 41.9
years (SD 14.4), mean FTND score was 4.8 (SD 1.8), and
mean Shipley IQ score was 103.5 (SD 8.4). Mean CO,
MNWS, QSU-B, and N-back response times all showed
significant condition effects, indicating compliance with the
abstinence requirements (reduced CO readings during
abstinence challenge), more severe withdrawal symptoms
(MNWS) and craving (QSU-B), and slower response times
on the N-back task during abstinence challenge compared
with smoking satiety (psp0.05, Table 2). There was no
significant condition effect on N-back accuracy. Abstinence
challenge effects were observed on BOLD signal for MF/CG
(b¼ � 0.17, 95% confidence interval (CI) � 0.26 to � 0.08,

Table 2 Smoking Characteristics and Performance Across Condition (Abstinence Challenge, Smoking Satiety) and Group (Quit vs
Relapse) (N¼ 72)

Measure Quit Relapse

Smoking satiety Abstinence challenge Smoking satiety Abstinence challenge

Carbon monoxide (ppm)a 26.4 (17.6) 3.7 (2.6) 27.8 (12.5) 3.8 (2.1)

QSU-briefa 23.4 (8.7) 39.9 (13.0) 23.1 (11.9) 44.9 (16.1)

MNWSa 5.1 (5.1) 9.3 (5.4) 3.6 (4.3) 11.8 (8.6)

PANAS-negative affect 12.1 (3.1) 14.7 (4.7) 12.2 (3.7) 16.0 (7.0)

PANAS-positive affect 32.1 (7.8) 31.6 (6.6) 32.2 (8.2) 30.0 (10.0)

N-back total correct 50.1 (6.8) 49.0 (7.6) 46.2 (8.4) 45.0 (7.7)

N-back reaction timea 655.6 (116.5) 656.8 (109.2) 662.1 (112.6) 674.0 (111.8)

Abbreviations: MNWS, Minnesota Nicotine Withdrawal Scale; ppm, parts per million; QSU-Brief, Questionnaire of Smoking Urges.
Values are mean (SD).
aSignificant effect of abstinence challenge in overall sample (po0.05).
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po0.001), right DLPFC (b¼ � 0.13, 95% CI � 0.26 to
� 0.01, p¼ 0.039), left DLPFC (b¼ -0.17, 95% CI � 0.31 to
� 0.03, p¼ 0.016), and PCC (b¼ � 0.21, 95% CI 0.05
to 0.37, p¼ 0.008), consistent with the effects we previously
reported in an analysis of the abstinence challenge data for
a subset of these participants (Falcone et al, 2014) and
in prior studies (Loughead et al, 2009, 2010). Specifically,
in the task-positive regions (MF/CG, left DLPFC, and right
DLPFC), abstinence challenge (vs smoking satiety) was
associated with reduced activation during task perfor-
mance; whereas in the task-negative PCC, abstinence
challenge was associated with less deactivation during task
performance compared with smoking satiety. There was no
significant effect of abstinence challenge on BOLD signal in
the vmPFC. We examined associations between BOLD
signal, accuracy, and correct response times, controlling for
condition and memory load. BOLD signal in right and left
DLPFC was positively associated with accuracy (left DLPFC:
OR¼ 1.13, 95% CI¼ 1.04 to 1.23, p¼ 0.006; right DLPFC:
OR¼ 1.09, 95% CI¼ 1.01 to 1.18, p¼ 0.04). There was no
association between correct response time and BOLD signal
in any region (ps40.05).

Predictive Models for Quitting vs Relapse

Forward stepwise regression retained MNWS, left DLPFC,
and PCC as predictors (Figure 1) with participant age also
contributing to the model. Relapse (a reduced odds of
quitting success) was predicted by older age (OR¼ 1.07,
95% CI 1.01–1.13, p¼ 0.02) and greater withdrawal change
score (MNWS abstinence challenge minus smoking satiety,
OR¼ 1.22, 95% CI 1.01–1.37, p¼ 0.04). BOLD percent signal

change from two ROIs added significantly to the predictive
model of relapse; reduced left DLPFC activation in absti-
nence challenge (vs smoking satiety) predicted greater
odds of relapse (quitting failure) (OR¼ 0.14 per standar-
dized increase in percent signal change, 95% CI 0.03–0.74,
p¼ 0.02), and less deactivation in the PCC (task-negative
region) during abstinence challenge (vs smoking satiety)
predicted increased odds of relapse (OR¼ 3.45 per standar-
dized increase in percent signal change, 95% CI 1.05–11.32,
p¼ 0.04).
The predictive value of the relapse model was examined

using ROC curve analysis. The full model (age, FTND,
MNWS, QSU-B, MF/CG, right DLPFC, left DLPFC, PCC)
produced a relatively high AUC of 81% corresponding to
87.5% correct prediction rate at the optimal cut point (the
point of optimal model performance; Figure 2). This model
represents a significant improvement over clinical predic-
tors (age, FTND) alone (AUC 67%, X2(1)¼ 4.06, po0.05).
We also examined an intermediate model, using clinical and
withdrawal scores (age, FTND, MNWS, QSU-B), which
achieved an AUC of 73%, which did not differ significantly
from the full or clinical models (AUC 67%, X2(1)¼ 1.74,
po0.19).
The full model was validated using two resampling

methods. Bootstrapping (Austin and Tu, 2004a) generated
1000 replicates of the data and conducted model selection
on each replicate. Accounting for age and nicotine depen-
dence, the most frequent variables selected were withdrawal,
left DLPFC, and PCC—the same variables identified by
stepwise procedures. LOOCV further evaluated the potential
inflation of model performance. Compared with the 81%
AUC for the full model, LOOCV procedures yielded 71%
AUC, corresponding to 82.7% correct prediction rate at
the optimal cut point. Descriptively, performance of the
model under LOOCV fell in the ‘fair prediction’ range in
contrast to ‘good prediction’, demonstrated by the training
data. Shrinkage of coefficients obtained during the cross-
validation of the ROC analyses is expected and falls within
the typical range (Whelan and Garavan, 2014). The full

Figure 1 (a) Visualization of functionally defined N-back ROIs in the left
dorsolateral prefrontal cortex (DLPFC) and posterior cingulate cortex
(PCC). (b) Forward stepwise logistic regression retained the left
DLPFC, left PCC, and withdrawal scores. Greater abstinence-induced
change in withdrawal (increase), left DLPFC percent signal change (reduced
activation), and PCC percent signal change (less deactivation) were
predictive of relapse.

Figure 2 ROC curves for three predictive models of 7-day quit status.
The full model (black) includes clinical, withdrawal and brain variables,
yielding an AUC of 81%. Clinical predictors alone (red) achieved an AUC
of 67% and the intermediate model, using only clinical and withdrawal
scores, an AUC of 73% (blue).
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model LOOCV AUC (71%) exceeds the rule-of-thumb cutoff
for acceptable discrimination (an AUC of at least 70%;
Hosmer and Lemeshow, 2000). Notably, when subjected to
LOOCV procedures both the clinical and intermediate
model AUC fell in the ‘chance’ range.
The exploratory whole-brain condition (abstinence chal-

lenge, smoking satiety) by group (relapse, quit) voxelwise
2� 2 ANOVA in the matched sample (N¼ 30) identified
significant interaction effects in three clusters (Table 3).
These clusters overlapped considerably with our function-
ally defined a priori ROIs in the left DLPFC, right DLPFC,
and MF/CG (Figure 3a). An interaction effect in the PCC
was seen at an uncorrected threshold (po0.05). For the
MF/CG and right DLPFC clusters, percent signal change did
not differ between the quit and relapsed groups during
the smoking satiety condition; however, when abstinent,
MF/CG and right DLPFC signal decreased in relapsers and
increased in quitters (Figure 3b). In the left DLPFC, the quit
group (vs relapse) activated less during the smoking satiety
condition and this pattern reversed under abstinence
challenge (quit group showed increased signal). Consistent
with the ROI-based analysis described above, abstinence
challenge reduced signal in all clusters for the relapse group.

DISCUSSION

These data suggest that disruptions in working memory-
related neural activation during early abstinence may
distinguish successful quitters from those who fail. Speci-
fically, decreased left DLPFC and increased PCC percent
BOLD signal change and increased withdrawal symptoms
(in the abstinence challenge vs smoking satiety conditions)
predicted subsequent relapse. Further, an exploratory
whole-brain analysis revealed clusters overlapping with
the functionally defined a priori ROIs in the DLPFC and
MF/CG; however, the effect in the PCC was seen at an
uncorrected threshold only (po0.05). Both analyses are
consistent in that the relapse group is characterized by a
reduction in left DLPFC during abstinence challenge vs
smoking satiety. In terms of model prediction, receiver
operator curve analysis demonstrated 81% AUC for predict-
ing smoking relapse using these predictors, a significant
improvement over the model with clinical variables only.
Cross-validation results revealed an expected degree of
shrinkage; specifically, we observed a 10 percentage point

change (from 0.81–0.71), which falls within an expected
range for both model shrinkage (see Whelan and Garavan,
2014) and discrimination (an AUC of at least 0.70; Hosmer
and Lemeshow, 2000).
The current findings supporting the predictive value

of working memory-related DLPFC BOLD signal change
during abstinence challenge are consistent with emerging
data on cognitive neuroscience and behavior change. The
DLPFC is at the core of the brain’s cognitive control net-
work, supporting sustained attention to and memory of
long-term goals, and goal-directed decision-making
(MacDonald et al, 2000; Niendam et al, 2012). Indeed,
when the DLPFC is engaged, activation in reward-sensitive
regions (eg, nucleus accumbens, ventral striatum) can be
shifted away from the drive to obtain immediate gratifica-
tion in the form of smoking or eating unhealthy foods
(Hare et al, 2009; Kouneiher et al, 2009; Nestor et al, 2011).
Likewise, studies of resting state functional connectivity
have shown that activity in the executive control network
(which includes DLPFC) is inversely correlated with activa-
tion in the default mode network (Fox et al, 2005). The PCC
is a central hub in the default mode network (Andrews-
Hanna et al, 2010; Raichle et al, 2001), and suppression of
activation (or deactivation) is integral to shifting attention
away from stimuli irrelevant to a goal directed behavior (eg,
quitting). Stimuli that are disruptive to an abstinent smoker
include external environmental cues as well as internal
processes such as craving and intrusive thoughts about
wanting to smoke (Ashare et al, 2013b; Lerman et al, 2014).
Dopamine levels in the DLPFC are modulated, in part,

by signaling at both a4b2 and a7 nicotinic acetylcholine
receptors (nAChRs) in the ventral tegmental area (Arnsten
and Jin, 2014; Nocente et al, 2013). Consistent with these
molecular mechanisms and with the present data, we have
shown that varenicline, a partial agonist at a4b2 and full
agonist at a7 nAChRs, restores working memory perfor-
mance and increases DLPFC activity during abstinence
challenge compared with placebo during smoking absti-
nence (Loughead et al, 2010). In animal models, a7 nAChRs
modulate both dopamine and NMDA receptor function in
the DLPFC (Croxson et al, 2011) and working memory
deficits caused by ketamine can be restored with an a7
agonist (Brozoski et al, 1979). These findings suggest the
hypothesis that modulators of a4b2 and/or a7 nAChRs
could be particularly beneficial for smoking cessation
among smokers who exhibit larger abstinence-induced

Table 3 Condition (Smoking Satiety, Abstinence Challenge) by Group (Quit, Relapse) Whole-brain Interaction Results (Z41.96, po0.05)
for Matched Sample (N¼ 30)

Region (Brodmann)a Hemb p-value Count mm3 Z-maxc X (mm)d Y (mm) Z (mm)

DLPFC (BA 8) R o0.0001 87 3419 3.37 38 20 50

DLPFC (BA 8) L o0.0001 70 2744 3.17 � 52 10 34

MF/CG (BA 8) R o0.0005 48 1886 2.85 4 24 50

aSignificant clusters ZX1.96 and clusters probability po0.05.
bHem¼ cerebral hemisphere.
cZ-max values represent peak activation for cluster.
dEstimated Brodmann’s areas and coordinates from Talairach and Tournoux (1988).
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working memory deficits. Dopamine levels in DLPFC are
also influenced by levels of the enzyme catechol-
O-methyltransferase (COMT), and the COMT val158met
variant has been shown to modulate working memory
performance and associated BOLD signal change (Ashare
et al, 2014; Loughead et al, 2009). Smokers with the val/val
genotype (associated with a more active enzyme, resulting
in decreased prefrontal dopamine levels) demonstrated
impaired performance on the N-back task accompanied
by reduced activation in the DLPFC during abstinence
challenge compared to smoking (Loughead et al, 2009).
However, pharmacologic inhibition of COMT with short-
term tolcapone treatment had minimal effects on smoking
behavior and no effects on working memory-related BOLD
signal in either the DLPFC or PCC (Ashare et al, 2013b).
Future pharmacoimaging trials for smoking cessation
incorporating working memory testing and fMRI may be
useful to evaluate whether increased DLPFC activity, and
possibly reduced PCC activity, serves as an intermediate
biomarker of smoking cessation treatment efficacy (Bough
et al, 2013).
Nonpharmacologic interventions that augment DLPFC

function, support neuronal plasticity, and improve execu-
tive cognitive control may also have utility for smoking
cessation. Cognitive exercise training, real-time fMRI feed-
back, and transcranial direct current brain stimulation
(tDCS) have shown some promising initial results, support-
ing the enhancement of both working memory performance

and DLPFC function (Dresler et al, 2013; Snowball et al,
2013; Zhang et al, 2013). However, evidence for beneficial
effects on smoking behavior from preliminary studies is
mixed (Sheffer et al, 2013; Wing et al, 2013). Other recent
data suggest that concurrent treatment with both cognitive
training and DLPFC-targeted tDCS may be most profit-
able (Segrave et al, 2014).
Although the current study reveals the significant

contribution of neural activity to prospectively measured
smoking relapse, the relatively small sample of successful
quitters is a limitation. The low success rate is a conse-
quence of using brief behavioral counseling without medi-
cation to support the quit attempt. However, a majority of
quit attempts take place under similar conditions, making
our results representative of the natural environment. Given
the low success rates for unaided quitting, our study
focused on a short-term (7 day) relapse measure rather than
long-term cessation. It should be noted, however, that this
measure is highly predictive of long-term quitting success
(Ashare et al, 2013a). A replication sample is required to
validate the model; however the observed shrinkage in AUC
with the LOOCV procedure suggests that our results are
not likely to represent inflated predictive power.
Although the broad implementation of neuroimaging

assessment is not currently clinically or economically
feasible, the mechanisms identified are potential targets
for improved assessment instruments to assist in perso-
nalized intervention strategies. In addition to guiding

Figure 3 (a) Whole-brain condition (abstinence challenge, smoking satiety) by group (relapse, quit) voxelwise ANOVA interaction effect. Clusters
(orange/yellow) are corrected for multiple comparison (Z41.96 and probability of spatial extent po0.05) and superimposed outlines (blue) delineate
a priori ROIs. (b) MF/CG and right DLPFC clusters (see above) show comparable activation under the smoking satiety condition in both groups. There is
greater activation in the left DLPFC in the smoking satiety condition for the relapse group (vs quit). Under abstinence, challenge signal in all clusters decreases
for the relapse group and increases for the quit group.
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assessment, predictive models can identify therapeutic
targets for pharmacotherapies or neuroscience-based non-
pharmacologic interventions to promote smoking cessation.
Regardless of therapeutic approach, models sensitive to
relapse risk can guide the refinement of existing inter-
ventions and provide early signal regarding the efficacy of
novel tobacco dependence treatments.
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