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Inhibitory local circuit neurons (LCNs), often called interneurons, have vital roles in the development and function of cortical

networks. Their inhibitory influences regulate both the excitability of cortical projection neurons on the level of individual cells,

and the synchronous activity of projection neuron ensembles that appear to be a neural basis for major aspects of cognitive

processing. Dysfunction of LCNs has been associated with neurological and psychiatric diseases, such as epilepsy,

schizophrenia, and autism. Here we review progress in understanding LCN fate determination, their nonradial migration to the

cortex, their maturation within the cortex, and the contribution of LCN dysfunction to neuropsychiatric disorders.

Neuropsychopharmacology Reviews (2015) 40, 16–23; doi:10.1038/npp.2014.171; published online 17 September 2014
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INTRODUCTION

The cerebral cortex mediates higher-order cognitive process-
ing, learning, and memory. These functions are made
possible by intricate interactions of glia, excitatory projection
neurons, and inhibitory interneurons. Most cortical inter-
neurons, also termed local circuit neurons (LCNs), primarily
use the neurotransmitter GABA (g-aminobutyric acid) to
modulate neural activity. LCNs comprise about 20% of the
cortical neurons and can be subclassed based on neuro-
chemical markers, connectivity, and physiological properties
(Ascoli et al, 2008; DeFelipe et al, 2013; Kepecs and Fishell,
2014). Nearly all LCNs can be separated into three
neurochemically distinct subgroups that express the calcium
binding protein parvalbumin (PV), neuropeptide somatos-
tatin (SST), or the ionotropic serotonin receptor 5HT3aR
(Lee et al, 2010). The groups are biased for additional
distinctions. For example, the PV subgroup tends to have a
very rapid and nonaccommodating ‘fast-spiking’ firing
response to injected current and to target pyramidal neuron
somata, proximal dendrites, or axon-initial segments. The SST
subgroup tends to have burst spiking or accommo-
dating features and to target distal dendrites. The 5HT3aR
subgroup includes vertically oriented, bipolar or bitufted LCNs
that tend to target other interneurons. As we shall see below,
the PV-SST-5HT3aR subgroupings also have biases for
different spatial and temporal origins in the ventral forebrain.

LCNs have a vital role in the development and function of
cortical networks. Dysfunction of LCNs has been associated

with neurological and psychiatric diseases, such as epilepsy,
schizophrenia, and autism. Here we review the progress in
understanding LCN fate determination, their nonradial
migration to the cortex, their maturation within the cortex,
and the contribution of LCN dysfunction to neuropsychia-
tric disorders.

SPATIAL AND TEMPORAL ORIGINS OF
CORTICAL INTERNEURONS IN THE
TELENCEPHALON

In general, the CNS develops from the neural tube by the
radial migration of neurons from the proliferative zones
along the tube’s medial wall, to the mantle zones at the
tube’s periphery. Cortical projection neurons (glutamater-
gic, excitatory) follow this scenario. In contrast, cortical
LCNs originate in subcortical areas of the telencephalon, in
the same general region where the GABAergic projection
neurons of the basal ganglia are being produced. The reason
for this arrangement is not known, but in order to have a
mixture of excitatory and inhibitory neurons in the evolving
cerebral cortex the dorsal proliferative zone, generating
glutamatergic neurons, could have been modified with the
capacity to generate GABAergic ones. However, this would
have been a highly complex adjustment as distinct extra-
cellular signaling systems and transcription factor cascades
are involved in glutamatergic vs GABAergic fate determina-
tion (Hebert and Fishell, 2008). Alternatively, GABAergic
neurons could be imported into the evolving cortex from
more ventrally located parts of the neural tube that were
already producing these cells. Evolution chose importation,
and although there has been some support for the notion
that cortical LCN origins in primates may include the cortex
itself (Jakovcevski et al, 2011; Letinic et al, 2002; Yu and
Zecevic, 2011), the bulk of cortical LCN neurogenesis in
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humans and other primates occurs in the ventral, sub-
cortical forebrain (Hansen et al, 2013; Ma et al, 2013). The
following section discusses the main spatial and temporal
origins of cortical LCNs, based mainly on studies in rodents,
and their relationship with LCN subgroup fate.

The rostral forebrain, or telencephalon, consists of
cortical and subcortical developmental domains. The
subcortical (also termed subpallial or pallidal) telencepha-
lon consists of five major subdivisions: the lateral
ganglionic eminence (LGE), medial ganglionic eminence
(MGE), caudal ganglionic eminence (CGE), septum (SE),
and preoptic area (POA). Multiple studies in rodents,
generally supported by additional studies in ferrets and
primates (Anderson et al, 2002; Hansen et al, 2013; Ma et al,
2013), show that the MGE and CGE are the primary sources
of cortical LCNs, with a small, diverse subset also originat-
ing in the POA (Gelman et al, 2009).

Medial Ganglionic Eminence

The ganglionic eminences can be divided into medial (MGE),
lateral (LGE), and caudal (CGE) ganglionic eminence based
on their dorsal–ventral and rostral–caudal locations within
the subpallium. The MGE gives rise to about 60% of LCNs
in rodents. Studies using transgenic mice found that both
the somatostatin (SST)- and parvalbumin (PV)-expressing
subgroups originate mainly in the MGE (Butt et al, 2005;
Wonders and Anderson, 2006; Xu et al, 2004). On the basis
of the study of human holoprosencephaly, in which the
MGE-like region of the human ventral forebrain fails to
form, this tissue also appears to generate PV- and SST-
expressing LCNs in humans (Fertuzinhos et al, 2009).

Dissections and transplantations of subregions of rodent
MGE found a strong bias for SST-expressing LCNs to be
generated in the dorsal MGE, whereas PV-LCNs are gene-
rated by both dorsal and ventral MGE regions (Flames et al,
2007; Inan et al, 2012; Wonders et al, 2008). Thus far, only
one LCN type has been identified as having a distinct MGE
source. The axo-axonic (chandelier) cell, a fast-spiking
subclass of LCN that also frequently expresses detectable
levels of PV, has a strong bias for origination within the
ventral-most region of the MGE at the end of cortical
neurogenesis (Inan et al, 2012; Taniguchi et al, 2013).

In terms of birthdate, MGE LCNs follow the same general
inside-out relationship of birthdating to laminar location in
the cortex as do the projection neurons (Butt et al, 2005; Xu
et al, 2004). Within a given layer, PV and SST LCNs have
similar birthdates. However, as the ratio of PV to SST LCNs
is roughly 1.5 : 1 in layers 5 and 6, but is closer to 3 : 1 in
layers 2 and 3 (Xu et al, 2010b), a higher proportion of all
SST LCNs are born earlier in the neurogenic period than is
the proportion of all PV-LCNs.

In addition to location and time, retroviral lineage
analysis suggests that PV and SST interneurons can be
derived from the same radial glial cell (Brown et al, 2011).
To connect this finding with spatial and temporal biases for
differential origins of SST- and PV-expressing LCNs,

evidence suggests that PV interneurons preferentially
originate from intermediate progenitor divisions within
the subventricular zone. This suggestion is based on the
analysis of mice lacking cyclin D2, which is expressed in
intermediate progenitors throughout the telencephalon and
promotes their proliferation, and which have a reduction
of PV but not SST interneurons in the neocortex and
hippocampus (Glickstein et al, 2007a, b). Interestingly,
there appear to be less cyclin D2-expressing cells in the
dorsal-most MGE (Glickstein et al, 2007a).

Caudal Ganglionic Eminence

The CGE is the other main subpallial source of cortical LCNs
(Anderson et al, 2001; Nery et al, 2002, 2003), generating at
least 30% (Miyoshi et al 2010). Morphologically, the CGE
exists as a caudal fusion of the MGE and LGE that begins
at the coronal level of the mid-thalamus. Transplantation
studies as well as genetic fate mapping have demonstrated
that the CGE generates a remarkable diversity of LCN
subclasses, variably overlapping, based on their expression
of calretinin, vasoactive intestinal protein (VIP), reelin, and
NPY (Butt et al, 2005; Miyoshi et al, 2007, 2010). Remarkably,
nearly all of these subgroups express the 5HT3aR (Tricoire
et al, 2010). An additional feature of the CGE is that LCNs
from this region are born relatively late in neurogenesis, and
do not follow the ‘inside-out’ relationship of birthdate to
laminar location found for the MGE-derived cortical LCNs
(Butt et al, 2005; Rymar and Sadikot, 2007; Xu et al, 2004).

Preoptic Area

The preoptic area (POA) is a telencephalic region ventral to
the MGE that also expresses Nkx2.1 in progenitor cells
(Flames et al, 2007). Using in utero electroporation as well
as genetic fate mapping from Nkx5.1-expressing cells, the
POA was recently shown to give rise to a small number of
LCNs (Gelman et al, 2009). These were found mainly in the
superficial cortex, and about a third expresses NPY but not
SST, and tended to have a distinctive, rapidly adapting
electrophysiological property. Interestingly, these preoptic-
derived LCNs, unlike those developing from Nkx2.1þ
progenitors in the MGE, do not express the transcription
factor Lhx6 that, in the MGE, lies downstream of Nkx2.1 in
the specification of PV- and SST-expressing LCNs.

CORTICAL INTERNEURON FATE
DETERMINATION

As genetic fate-mapping and transplantation studies find
clear biases for the generation of distinct cortical LCN
subclasses from distinct subcortical progenitor domains,
LCNs appear to be fate committed either at or shortly after
cell cycle exit. Fate determination of the MGE-derived LCNs
requires the transcription factor Nkx2.1 (Sussel et al, 1999;
Xu et al, 2004, 2005). Upstream of Nkx2.1, the morphogen
sonic hedgehog (SHH) is required for initial patterning of
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the Nkx2.1 domain in the MGE (Fuccillo et al, 2004), and to
maintain Nkx2.1 expression in progenitors during neuro-
nogenesis (Xu et al, 2005, 2010b). Downstream of Nkx2.1,
Lhx6, a direct target of Nkx2.1 (Du et al, 2008), is expressed
permanently in most MGE-derived LCNs from around the
time of cell cycle exit (Lavdas et al, 1999; Liodis et al, 2007).
Little is known about the transcriptional cascades leading to
terminal maturation of cortical LCNs in the postnatal cortex,
although Sox6 appears to be an important effector of Lhx6
signaling (Azim et al, 2009; Batista-Brito et al, 2009), and Satb1
also has a role downstream of Lhx6 (Close et al, 2012).

The molecular mechanisms underlying the differential
fate determination of SST- vs PV-expressing LCNs in the
MGE are not clear. It has been proposed that there are
distinct progenitor domains within the MGE that give rise
to different classes of LCNs (Flames et al, 2007). However,
transplantation studies in which cells are labeled with
markers that indicate they were still in the cell cycle shortly
prior to transplantation, thus controlling for postmitotic
migration within the proliferative zone, do not support the
existence of such clear demarcations of domains committed
to the generation of distinct LNC subclasses (Inan et al,
2012). Although the dorsal MGE is strongly biased for
generating SST-expressing interneurons, PV-expressing
LCNs are generated throughout the MGE.

To date, there has been relatively little progress in
determining how distinct subclasses of LCNs become
specified. In the MGE, SST-expressing LCNs appear to be
specified at higher levels of Shh signaling, which appear to
be present in the dorsal-most MGE, whereas PV-expressing
LCNs require lower levels (Xu et al, 2010a). The putative
transcription factor LMO4 may also promote PV-LCN fate
(Au et al, 2013), but a connection between Shh signaling
and LMO4 expression, not to mention factors responsible
for interneuron subtype fate determination, has yet to be
established.

Relative to MGE-derived LCNs, even less is known about
the fate determination of the highly diverse subclasses of
CGE-derived LCNs. On the top of the transcriptional
hierarchy are two homeobox genes, Gsx1 and Gsx2. The
transcription factors generally function in the specification
of neuronal subclasses from LGE and CGE (Waclaw et al,
2009). Consistent with this role, elimination of Gsx2 results
in a selective reduction of the CGE-derived vertically
oriented CRþ population (Xu et al, 2010a). CoupTF2 is an
additional transcription factor that controls the generation of
CGE-derived interneurons (Lodato et al, 2011b), although
many more, particularly those involved in interneuron
subtype fate determination, remain to be discovered.

REGULATION OF CORTICAL INTERNEURON
MIGRATION

Motogens

In their sojourn from the subcortical telencephalon into the
cerebral cortex, LCNs face a variety of environments, for

which a variety of chemorepulsion, chemoattraction, migra-
tory substrates, and motogens contribute to the guidance
process (Guo and Anton, 2014). First, multiple transplanta-
tion and culture studies have demonstrated that the LCN
precursors (postmitotic, fate committed) have a strong migra-
tory drive. Hepatocyte growth factor/scatter factor (HGF/SF),
GDNF, BDNF, and NT4 are expressed by cells within the
paths of migrating LCNs and have all been shown to stimulate
tangential (nonradial glial-guided) migration (Polleux et al,
2002; Powell et al, 2001; Pozas and Ibáñez, 2005). Dopamine
D1 receptor signaling also appears to promote LCN migration
(Crandall et al, 2007). With a strong drive to migrate, the LCN
precursors then use a combination of attractive and repulsive
cues, together with permissive substrates, to guide their way
into and across the overlying cortex.

Guidance Cues

To push the LCN precursors away from the proliferative
zones lining the lateral ventricle, both Eph-ephrin and Slit-
Robo signaling appears to function (Rudolph et al, 2010;
Zhu et al, 1999; Zimmer et al, 2008). As the LCNs approach
the developing striatal mantle zone, semaphorin-neuropilin-
mediated chemorepulsion comes into play. Cortical LCNs
express the Sema receptor, Neuropilin-2, and therefore
migrate away from the semaphorin-expressing striatum,
whereas striatal LCNs, which also derive mainly from
Nkx2.1-expressing progenitors in the MGE, are neuropilin-
2-negative (Le et al, 2007; Marı́n et al, 2001; Nobrega-Pereira
et al, 2008). Interestingly, in contrast to cortical MGE-derived
LCNs, Nkx2.1 expression is maintained in striatal LCNs
(Marin et al, 2000; Nobrega-Pereira et al, 2008) and this
expression prevents the expression of NPN2 and hence
prevents the chemorepulsion away from striatum.

At least two chemoattractants affect the migration of
LCN precursors into and within the cortical plate. First,
a membrane-bound form of neuregulin1 appears to form
a preferential track for ErbB4-expressing LCNs as they
migrate from the striatum to the cortex (Flames et al, 2004).
Neuregulin-ErbB4 signaling also functions to attract mi-
grating LCNs into the cortex. In the cortex, SDF (Cxcl12)
signaling via the Cxrc4 receptor on migratory LCNs results
in a preference for their migration to track above and below
the developing cortical plate (Stumm et al, 2003; Tiveron
et al, 2006). Netrin signaling also contributes as attraction to
cortical migratory streams, particularly the one that courses
in layer 1, just below the pial surface (Sanchez-Alcaniz et al,
2011). The migratory drive to move in a generally lateral to
medial direction across the cortex is not clear, but may
involve LCN chemorepulsion of each other. This effect may
be mediated by GABA (Cuzon et al, 2006), such that LCNs
would tend to migrate down their own density gradient.

Cortical Plate Invasion and Migration Stoppage

Downregulation of SDF-CxCr4 signaling permits LCN
invasion of the cortical plate from their migratory streams,
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both below the pial surface and in the cortical intermediate
zone (Sanchez-Alcaniz et al, 2011; Wang et al, 2011). How
the LCNs determine their final position is not known, but it
is clear that at least the MGE-derived LCNs are following
cues generated by the cortical pyramidal neurons (Hevner
et al, 2004; Lodato et al, 2011a; Pla et al, 2006). Finally,
GABA signaling may form an important stop signal for the
LCNs, as upregulation of the Kcc2, which results in a shift of
GABA-A receptor effects from depolarizing to hyperpolar-
izing, is associated with the termination of MGE-derived
LCN migration (Bortone and Polleux, 2009). Genetically
introduced hyperpolarization also can result in stoppage of
CGE-derived LCN migration (De Marco Garcia et al, 2011).
However, the extent to which this effect is due to altered
intrinsic signaling, for example by changing mitochondrial
dynamics, vs altered ability to respond to extrinsic
depolarizing signals, remains to be determined.

Postmigratory Maturation

The final stage of LCN maturation involves terminal, post-
migratory differentiation within the cortical plate, and can be
divided into two stages. In the first stage, LCN attains their
mature fates, defined by their distinctive connectivities,
neurochemistries, and firing properties, which culminate in
their attaining distinct functions within juvenile cortical cir-
cuits (Ascoli et al, 2008). A detailed discussion of this process
is beyond the scope of this review, but interacting influences
of transcription factors (Close et al, 2012; Cobos et al, 2005),
neurotransmitters (Eggan et al, 2012), neurotrophins (Huang
et al, 1999), cell adhesion molecules (Pillai-Nair et al, 2005),
and their activities are clearly in play (Bartolini et al, 2013;
Batista-Brito and Fishell, 2009). The second stage of LCN
maturation occurs in concert with cortical circuitry matura-
tion, a process that begins in the early postnatal time period
but is not finally achieved in all cortical regions until adole-
scence or young adulthood. For example, PV expression by
chandelier LCN axon terminals reaches a peak in monkey
prefrontal cortex just prior to the initiation of excitatory axon
pruning, raising the possibility that interneuron maturation
may be directing the refinement of cortical circuitry (Anderson
et al, 1995). Indeed, studies in GABA-deficient transgenic mice
clearly demonstrate a role of LCN function in the alterations of
excitatory connectivity that accompany critical period plasticity
(Hensch, 2005). As we shall discuss below, recent evidence
links a specific system, neurogulin-Erbb4 signaling, in regulat-
ing both PV-LCN synaptogenesis and cortical excitatory
neuron pruning in a manner that may shed light on an
etiology of schizophrenia (Del Pino et al, 2013).

NEURODEVELOPMENTAL DISORDERS
ARISING FROM DYSFUNCTIONAL CORTICAL
INTERNEURONS

As reviews of the associations between disruption of LCN
function and neuropsychiatric disorders have been pub-
lished recently (Inan et al, 2013; Lewis et al, 2012; Marin,

2012), this section will focus on a few LCN–mental illness
links to schizophrenia that are bolstered by data from
mouse models and that also relate to developmental points
discussed above (Figure 1).

22q11.2 Deletion Syndrome (22qDS)

One of the best-established genetic factors underlying the
risk of developing schizophrenia is the microdeletion in
chromosomal region 22q11.2 (Bassett et al, 2010). 22qDS
(DiGeorge syndrome, velocardiofacial syndrome) occurs in
roughly 1 in 3000 births (Shprintzen et al, 2005). Patients
display impairments in a variety of cognitive tasks
(Karayiorgou et al, 2010) and roughly 30% will receive the
diagnosis of schizophrenia (Murphy et al, 1999; Pulver et al,
1994). In fact, this mutation constitutes B1–2% of the
sporadic cases of schizophrenia (Bassett et al, 2008; Xu et al,
2008).

Using a mouse model of 22q11.2 deletion syndrome,
Meechan et al. showed that the distribution of PVþ cortical
LCNs is altered in the 22qD mouse cortex, although the total
number of PVþ neurons is not changed (Meechan et al,
2009). The presence of this pathology in mouse prefrontal

NCx

Migration
Sdf-Cxcr4 - (2, 3) 
Disc1- (4) 

Integration 
synaptogenesis

Ngr1-Erbb4 - (5, 6, 7)
Cntnap4 - (8) 

Dact1- (9)

Human PCW12 Brain

MGE

Specification
proliferation
Shh - (1)

Figure 1. Development of cortical LCNs in humans in relation to
proposed LCN-related disruptions that contribute to neuropsychiatric
disorders. This schema shows a human coronal-plane hemisection at
roughly 12 weeks of gestation. Basic stages of cortical LCN development
are highlighted, including proliferation and fate determination, nonradial
migration, and then initial integration into cortical circuitry. References link
these stages with studies, mainly in rodents, that examine the functions
disease-related genes in relation to these developmental stages. (1)—
Maynard et al, 2013; (2)—Toritsuka et al, 2013; (3)—Meechan et al,
2012a; (4)—Steinecke et al, 2012; (5)—Del Pino et al, 2013; (6)—Yang
et al, 2013; (7) —Tai et al, 2014; (8)—Karayannis et al, 2014; (9)—Arguello
et al, 2013. Ncx, neocortex; MGE, medial ganglionic eminence.
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cortex, along with multiple behaviorial deficits associated,
like schizophrenia, with PFC dysfunction, also supports the
validity of this model (Meechan et al, 2013). Both Shh and
Cxcr4 signaling are also altered in these mice, raising the
possibility that altered LCN subtype fate determination
along with migrational abnormalities may contribute to the
schizophrenia-related phenotypes in both mice and people
with 22qDS (Marin, 2012; Maynard et al, 2013; Meechan
et al, 2012b).

Neuregulin-ErbB4 Signaling in Schizophrenia

Numerous studies identified ErbB4 as a candidate suscept-
ibility gene for schizophrenia (for reviews, see Buonanno,
2011; Rico and Marin, 2011). ErbB4 protein is a receptor
tyrosine kinase preferentially expressed by PV- and SST-
expressing cortical LCNs (Neddens et al, 2011). The Nrg1-
ErbB4 interaction has a prominent role in many aspects of
neuronal development, including neuronal migration, axon
guidance and synapse formation, and plasticity (Mei and
Xiong, 2008; Rico and Marı́n, 2011). ErbB4 mutant mice
display hyperactivity, impaired working memory, and
decreased PPI (Barros et al, 2009; Golub et al, 2004;
Stefansson et al, 2002). Early disruption of ErbB4 using
GFAP-Cre (all neural cells) or Dlx5/6-Cre (all forebrain
GABAergic cells) mice decreased excitatory synapses, spine
density, chandelier axon synapses, synaptic transmission
between cortical LCNs and projection neurons, and also
impaired prepulse inhibition (PPI) (Barros et al, 2009;
Fazzari et al, 2010). Elimination of ErbB4 with PV-Cre
decreased GABAergic transmission, induced locomotor
hyperactivity, and caused impairments in PPI, working
memory and fear conditioning (Chen et al, 2010; Wen et al,
2010). Importantly, targeting the ErbB4-signaling pathway
with a small-molecule inhibitor of the PI3 kinase improved
behavioral phenotypes in two mouse models of schizo-
phrenia-related behavioral deficits, suggesting that ErbB4
signaling could be a medication target for a subset of
patients with schizophrenia (Law et al, 2012).

A recent paper used Lhx6-Cre to eliminate ErbB4
expression selectively from MGE-derived LCNs shortly after
cell cycle exit (Del Pino et al, 2013). Although the SST-
expressing subgroup was not affected, PV-expressing LCNs
had a significant reduction of excitatory inputs. In addition
to behavioral deficits that phenocopy some aspects of
schizophrenia-related cognitive deficits, these mice, with an
interneuron-selective loss of ErbB4 function, also showed a
marked reduction of dendritic spines on prefrontal cortical
pyramidal neurons. As this reduction also phenocopies a
frequently reported finding in schizophrenia and related
mouse models (Faludi and Mirnics, 2011), this study
supports the possibility that interneuron alterations may
be causative, rather than downstream (Lewis et al, 2012), of
an etiology of schizophrenia. That said, given the hetero-
geneity of this disorder, etiologies are very likely to occur
where LCN dysfunction is downstream of the causative
process.

Ventral Hippocampal Hyperactivity

Given the role of GABAergic LCNs, particularly the PV-
expressing subgroup, in PFC functions that are frequently
found to be disrupted in patients with schizophrenia, it is
understandable that most studies on an LCN-related
pathophysiology of schizophrenia have focused on the
PFC (Lewis et al, 2012). However, a connection between
LCN dysfunction and hippocampal abnormalities in schizo-
phrenia bears mention. Psychosis has long been associated
with enhanced dopamine signaling in the striatum (Abi-
Dargham, 2004; Kellendonk et al, 2009). Multiple lines of
evidence indicate that ventral hippocampal activity, via a
circuit that includes the nucleus accumbens and ventral
tegmentum, enhances striatal release of DA (Lisman et al,
2008). Multiple studies have also documented a remarkable
correlation between patients’ report of psychosis and their
level of hyperactivation of the ventral hippocampus
(Schobel et al, 2013, 2009; Small et al, 2011). These studies
raise the possibility that a disease state-producing ventral
hippocampal hyperactivation would also produce psycho-
sis. In fact, in contrast to most post-mortem findings in
PFC, where PV, GAD67, and other LCN-related measures
are reduced but not in a manner consistent with actual cell
loss, an excellent study of LCN numbers in hippocampus
does report reduced numbers of cortical LCNs (Konradi
et al, 2011). Remarkably, in a rodent model that produces,
among other abnormalities, a reduction of hippocampal
LCNs and enhanced striatal DA release, transplantation of
LCN precursors into the adult hippocampus corrected the
striatal phenotype and the correlating behavioral abnorm-
ality (Perez and Lodge, 2013). This finding has been
replicated and extended using a transgenic mouse model,
in which there is a developmental loss of PV-expressing
LCNs in the hippocampus (Gilani et al, 2014). Hippocampal
transplants into adults of LCN precursors enriched for those
committed to PV-expressing fates corrected multiple
psychosis-related alterations in this model. Some of these
corrections include the increased hippocampal blood flow,
the increased ventral tegmental DA neuron firing, and the
increased locomotor response to amphetamine. These
studies suggest that medication development targeting the
enhancement of hippocampal LCN function, if not actual
transplants in cases of severe treatment resistance with
fMRI confirmation of hippocampal hyperactivity, warrants
serious consideration (Gill and Grace, 2013).

Summary and Conclusions

Cortical LCN development involves stages of proliferation,
nonradial migration, and cortical integration, and disrup-
tions at each of these stages has been associated with
neuropsychiatric disorders. At the same time, improved
understanding of how embryonic or neonatal insults can
result in later manifestations of cortical dysfunction pro-
vides the opportunity to devise novel therapies. Although
correcting the initial problem as it happens may not be
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realistic, improved understanding of how these problems
relate to later cortical dysfunctions, which may themselves
shift throughout the maturation process, can allow us to
identify windows of opportunity for interventions intended
to balance or normalize the downstream pathological
sequelae of earlier insults.
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