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Vanessa F Gonçalves1,2, Clement C Zai1,2, Arun K Tiwari2, Eva J Brandl1,2, Andriy Derkach3,
Herbert Y Meltzer4, Jeffrey A Lieberman5, Daniel J Müller*,1,2, Lei Sun*,3,6 and James L Kennedy*,1,2

1Department of Psychiatry, University of Toronto, Toronto, ON, Canada; 2Neuroscience Section, Centre for Addiction and Mental Health, Toronto,

ON, Canada; 3Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada; 4Department of Psychiatry and Behavioral

Sciences, Northwestern University, Chicago, IL, USA; 5Department of Psychiatry, College of Physicians and Surgeons, Columbia University and the

New York State Psychiatric Institute, New York City, NY, USA; 6Biostatistics Division, Dalla Lana School of Public Health, University of Toronto,

Toronto, ON, Canada

Mitochondria are the main source of energy for neurons and have a role in many vital neuronal functions. Mitochondrial dysfunction has

been described in schizophrenia, and antipsychotics such as clozapine and olanzapine have been associated with differences in gene

expression in mitochondria. We investigated the hypothesis that nuclear-encoded mitochondrial genes, particularly those involved in

oxidative phosphorylation or involved in oxidative stress, mitochondrial biogenesis, inflammation, and apoptosis, would be associated

with antipsychotic-induced weight gain (AIWG). In total, we selected 28 genes and analyzed 60 SNPs (50 are functional), in 283

schizophrenia subjects, treated with atypical medications for up to 14 weeks. Association between AIWG (as measured by the % of

weight gain from baseline) and SNP genotypes were tested using linear regression with treatment duration, baseline body weight, and

medication type as covariates. We observed a significant association between rs6435326 in the NDUFS1 gene and AIWG in the subset of

European patients (N¼ 150, Pcorrected¼ 0.02). The haplotype carrying the risk alleles of rs6435326 and two other SNPs (rs1053517 and

rs1801318) in NDUFS1 was also nominally associated with percentage of weight gain (T-C-G vs A-T-A, P¼ 0.005). In addition, stepwise

linear regression was performed to select important variables predictive of the outcome, and a gene–gene interaction analysis was carried

out. We observed a significant interaction between the TT risk genotype of rs6435326 in NDUFS1 and AG genotype of rs3762883 in

COX18 (Pcorrected¼ 0.001). A permutation-based test of all 60 SNPs jointly showed significant association with weight gain (P¼ 0.02).

Finally, our replication study of rs6435326, rs1053517 and rs1801318 in NDUFS1 using samples from the Clinical Antipsychotic Trials of

Intervention Effectiveness (CATIE) showed that rs1801318 was significantly associated with AIWG (N¼ 200, Pcorrected¼ 0.04), and the

three SNPs were collectively associated with AIWG (P¼ 0.04). In conclusion, our findings suggest an association between NDUFS1 and

AIWG in schizophrenia subjects. To the best of our knowledge, this is the first study to explore genetic variation in the mitochondrial

genes in the context of AIWG.
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INTRODUCTION

Antipsychotics are the main treatment for ameliorating the
symptoms of schizophrenia, although there is substantial

inter-individual variability regarding dose, response and
side effects. Antipsychotic-induced weight gain (AIWG) is a
common side-effect of many antipsychotics and is particu-
larly pronounced with clozapine and olanzapine contribut-
ing to a main reason for non-compliance (Lieberman et al,
2005). Twin and family studies have suggested that the
heritability of AIWG is between 60% and 80% (Gebhardt
et al, 2010), indicating that genetic factors have a significant
role in its development. Indeed, several genetic and
biological systems appear to influence AIWG (reviewed by
Muller and Kennedy (2006) and Lett et al (2012)). However,
the mitochondrial system has been underexplored despite
its importance for body energy homeostasis and neuronal
functions. Mitochondria are the main source of energy, and
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neurons, with their high level of differentiation and elevated
metabolic rate, are very dependent on mitochondrial
oxidative phosphorylation (OXPHOS) (Kann and Kovacs,
2007). This process of energy production occurs in the
mitochondrial inner membrane through the respiratory
chain, which contains five protein complexes. Besides ATP,
reactive oxygen species (ROS) are also products of OXPHOS
and are involved in intracellular signaling cascades,
synaptic transmission and communication between neurons
and glia (Kann and Kovacs, 2007).
Antipsychotic medications have been associated with

differences in gene expression in mitochondria, although
the molecular mechanisms (including a possible genetic
predisposition) by which each drug alters mitochondrial
function are poorly understood. Studies have suggested that
antipsychotics such as haloperidol (first-generation anti-
psychotic FGA) may inhibit complex I activity of OXPHOS
(Balijepalli et al, 2001). SGAs, such as clozapine and
risperidone, also inhibit complex I activity but at a lower
level than haloperidol (Balijepalli et al, 2001). Studies
involving clozapine suggest that the mechanism by which
the drug alters mitochondrial activity appears to involve
oxidation of proteins and induction of oxidative stress in
both human neuroblastoma cells and lymphoblastoid cell
lines from schizophrenia subjects (Walss-Bass et al, 2008);
(Baig et al, 2010). These studies suggest that oxidative stress
may be one of the mechanisms by which clozapine increases
risk for metabolic syndrome and diabetes (Baig et al, 2010).
Olanzapine is not known to induce oxidative stress (Reinke
et al, 2004) but has been associated with decreased fatty acid
oxidation, which may predispose subjects to weight gain
(Graham et al, 2005). Olanzapine has also been associated
with increased levels of citrate synthase in pre-frontal
cortex, hippocampus, and striatum in rats (Agostinho et al,
2011). This enzyme is critical for the Krebs cycle, as it
catalyzes the first reaction of the pathway, condensing acyl
groups from acetyl-CoA with oxalacetate to yield citrate.
Finally, Choi et al (2009) compared the gene expression
profiles of postmortem liver tissue between FGA and SGA
groups of schizophrenia patients. The authors reported that
14 mitochondrial genes were differentially expressed
between the two groups with 11 genes downregulated and
3 upregulated.
Given the above, we hypothesized that polymorphisms in

genes involved in mitochondrial function may predispose
individuals for weight gain after exposure to SGAs.
Specifically, we selected 12 nuclear-encoded mitochondrial
genes according to their involvement with OXPHOS.
Furthermore, we also included 16 genes involved in
oxidative stress, mitochondrial biogenesis, inflammation,
and apoptosis that we propose may also be part of the
mechanism by which SGAs lead to weight gain (Prabakaran
et al, 2004; Konradi et al, 2004; Sun et al, 2006; Ben-Shachar
and Karry, 2008; Gigante et al, 2011; Da Pozzo et al, 2012;
Scola et al, 2013). Compared with the traditional genome-
wide association study (GWAS) design that requires very
large sample sizes to achieve sufficient power, this
hypothesis-driven (HD) approach allowed us to perform
an association study with increased statistical power for
prioritized genes (Sun et al, 2012). Nevertheless, power for
any variants at the genome-wide level is limited by the small
sample size even with the prioritization. Therefore, instead

of using the original GWAS-HD approach proposed by Sun
et al (2012), we used HD as a general principle focusing on
the set of HD-selected 28 genes only.

MATERIALS AND METHODS

Subjects

Patients 18–60 years old with schizophrenia or schizoaffec-
tive disorder were diagnosed according to DSM-III-R or
DSM-IV criteria and recruited from four different investi-
gators (total sample N¼ 283): DJM-1 (Berlin, Germany,
N¼ 87); HYM (Cleveland, USA, N¼ 61); JAL (New York
and North Caroline, USA, N¼ 74); DJM-2 (Toronto, Canada,
N¼ 61). A complete description of the study was provided
to the participants and written informed consent was
obtained in line with each institution’s ethics review board
guidelines. In the case of DJM-1, patients were prescribed
SGAs and assessed for up to 6 weeks. For samples HYM and
JAL, patients did not have any prior exposure to SGAs and
were treated for 6 weeks, or up to 14 weeks, respectively. For
sample DJM-2, patients were prescribed antipsychotic
medication and followed up for a minimum of 6 weeks.
Demographic and clinical characteristics of the sample
stratified by the four sub-samples are provided in Table 1.

Genotyping

Single-nucleotide polymorphism selection. Genomic
DNA was extracted from blood samples using the high-
salt method (Lahiri and Nurnberger, 1991). For this study,
we genotyped only individuals with European ancestry
(N¼ 183). For the 28 nuclear-encoded mitochondrial genes
selected based on our hypothesis, gene boundaries included
5 kb in 50and 2 kb in 30UTR regions. For each gene, tagging
SNPs were selected using HapMap database, phase2þ
phase3, release #28, CEU population, Build36 (www.
hapmap.org) and Tagger in Haploview (Barrett et al,
2005). The threshold for the minor allele frequency (MAF)
was set at 0.05. In total, 64 SNPs were selected according to
MAF40.05 and for tag SNPs, linkage disequilibrium (LD,
r2X0.8).

Most of the SNPs selected (50 out of 60 SNPs) in this
study were classified as functional according to Haploreg
(Ward and Kellis, 2012) and SNPinfo (Xu and Taylor, 2009).
Each of the 28 genes has at least one functional SNP. For 8
out of these 28 genes, we also included non-functional SNPs
due to two main reasons: 1) The gene had only one
functional SNP tagged by our approach and, thus, we
decided to include non-functional SNPs for better coverage
of these genes. 2) The gene has shown differential gene
expression in schizophrenia patients and we decided to take
all tag SNPs for them (including both functional and non-
functional). Details about the SNP selected are provided in
Supplementary Table 1.

Genotyping and quality control (QC). Genotyping was
performed on the TaqMan Openarray AccuFill System (Life
Technologies, NY, USA) using 64 SNP per array. Briefly,
2.5 ml of DNA (50 ng/ml) was mixed with 2.5 ml of the
TaqMan OpenArray Master Mix (40� ) onto the Open-
Arrays 384-well sample plate. The OpenArray plate was
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loaded into OpenArray case filled with immersion fluid,
sealed with glue and, submitted to PCR. The cycling
conditions were: initial denaturing at 93 1C 10min, follow-
ing by 50 cycles at 95 1C for 45 s, 94 1C for 13 s and 53 1C for
2min 14 s, and a final extension at 25 1C for 2min. After
PCR, the OpenArray plate was submitted for image at
OpenArray Real-Time PCR Instrument (Biotrove).

Data quality control (QC) excluded four SNPs with poor
clustering in allelic discrimination plots. Using PLINK
(Purcell et al, 2007), none of the remaining SNPs had call
rateso95% or violated Hardy–Weinberg equilibrium
(Po0.01). Duplicate samples (15%) were used to check
genotyping accuracy, and 100% concordance was observed.
QC for individuals excluded 19 samples with 45% missing
genotype rate or high/lower heterozygosity (±3 SD from
the sample mean). In total, 60 SNPs and 164 individuals
passed the QC criteria and were kept for further analyses.
The exact number of individuals used in each of the
statistical analyses varied depending on the missing data
rate of the covariates involved in that analysis.

Statistical Analyses

For detecting heterogeneity between study samples, catego-
rical variables were compared using Pearson w2 test, and
continuous variables were analyzed using Student t-test or
analysis of variance (SPSS 15.0, SPSS, Chicago, IL, USA).
Linear regression was used to test the association, where
percentage of weight gain from baseline was the dependent
variable, and genotypes, baseline weight, study duration and
medication type were predictors. The genotypes were coded
additively as 0, 1 and 2, representing the number of copies
of the minor allele. The ‘medication type’ variable included
clozapine and olanzapine as highest risk for weight gain (1)

and the other drugs as low risk (0, the reference category)
(Tiwari et al, 2013). The outliers for weight gain were
winsorized at the 99% level for better normal approxima-
tion of the data (Supplementary Figure 1). UNPHASED
version 3.1.5 (Dudbridge, 2003) was used for haplotype
comparisons, and all haplotypes with frequency X5% were
included in the analyses. Haploview was used to display
pair-wise LD between SNPs. Corrections for multiple tests
were performed using Single-Nucleotide Polymorphism
Spectral Decomposition (SNPSpD) (Nyholt, 2004). Power
calculation was performed using Quanto 1.2.4 (Gauderman
and Morrison, 2006). Stepwise linear regression was carried
out using SPSS to identify predictive variables that influence
the outcome (percentage of weight gain from baseline). Gene–
gene interaction between rs6435326 and SNPs identified from
stepwise linear regression was performed using the mbmdr
software and significance was calculated using permutation
test with 10 000 simulated replicates (Calle et al, 2010).

Statistical evaluation of our biological hypothesis. Our
hypothesis was that nuclear-encoded mitochondrial genes,
particularly those involved in OXPHOS, oxidative stress,
mitochondrial biogenesis, inflammation and apoptosis, are
more likely to be associated with AIWG in schizophrenia
subjects. To evaluate the statistical significance of this
hypothesis (ie, does the association evidence of this set of
prioritized genes, collectively, exceed what is expected
under the null of no association), we performed a
permutation-based test as in Sun et al (2012). Briefly, the
weight gain (%) phenotype and all covariates but the
genotype were permuted jointly within the site and
independently 1000 times (R; Team RC (2012)). For each
permuted sample, corresponding association analysis was

Table 1 Demographic and Clinical Characteristics of the Samples of the Study

DJM-1 HYM JAL DJM-2 Total sample P-value

Number of individuals 87 61 74 61 283

Weight gain (%) 4.0±4.6 4.8±6.3 5.9±7.9 4.8± 10.6 4.84±7.22 0.50a

Baseline weight (kg) 81.1±15.8 76.5±13.9 82.4±17.5 82.8±18.8 80.5±16.72 0.28a

Age (years) 35.2±12.5 33.4±8.9 39.31±8.1 36.9±12.2 36.1±10.7 o0.008

Study duration (weeks) 5.1±1.59 6.00 10.4±4.2 3.7±1.7 6.4±3.45 o0.001a

Sex o0.001

Male 55 (63.2%) 42 (68.9%) 56 (75.7%) 42 (68.9%) 195 (68.9%)

Female 32 (36.8%) 19 (31.1%) 18 (24.3%) 19 (31.1%) 88 (31.1%)

Race

European 85 (98%) 42 (68.9%) 26 (35.1%) 30 (49.2%) 183 (64.7%) o0.001

Others 2 (2%) 19 (31.1%) 48 (64.9%) 31 (50.8%) 100 (35.3%)

Medication

Clozapine 10 (11.5%) 61 (100.0%) 27 (36.5%) 41 (67.2%) 139 (49.1%)

Olanzapine 15 (17.2%) 22 (29.7%) 8 (13.1%) 45 (15.9%)

Others 62 (71.3%) 25 (33.8%) 12 (19.7%) 99 (35.0%)

Individuals genotypedb 80 38 17 29 164 (89.6%)

aKruskal–Wallis test.
bOnly Europeans were included in the study.
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performed and a sum of the Wald association statistic
(QUOTE distributed) of the 60 SNPs was obtained. The
empirical P-value was calculated as the proportion of the
permutation samples whose sum of statistic was larger than
that in the observed sample.

Replication of the findings. To replicate our findings (ie,
rs6435326, rs1053517, and rs1801318 in NDUFS1), we used
samples from the Clinical Antipsychotic Trials of Interven-
tion Effectiveness (CATIE) study (Lieberman et al, 2005).
This sample consisted of 741 chronic schizophrenia patients
(18–65 years of age) diagnosed with schizophrenia accord-
ing to Structured Clinical Interview for DSM-IV (SCID). For
our replication study, we selected 200 individuals who
satisfied the following criterion: subjects of European
ancestry (based on population stratification analysis);
subjects with BMIo40 at baseline; subjects not previously
treated with olanzapine or clozapine for more than 30 days
before the CATIE study trial.

The three SNPs of interest (rs6435326, rs1053517, and
rs1801318) were not genotyped in the CATIE GWAS sample.
Thus, we imputed the genotypes using IMPUTE v2.2 (Howie
et al, 2012) with the 1000 Genomes Project Phase 1 (March
2012) as the reference panel. While rs1053517 and rs1801318
had good imputation accuracy (IMPUTE INFO40.9),
rs6435326 had a call-rate o95%, and we used TaqMan
SNP Genotyping assays (Applied Biosystems, Foster City,
CA) to obtain reliable genotype data for this SNP.

The association analysis was then conducted using a
similar method as in the discovery study. Briefly, the
phenotype was defined as the percentage of change in BMI
from baseline, genotype was defined as number of copies of
the minor allele weighted by the genotype imputation
posterior probabilities (ie, genotype ‘dosage’), and covari-
ates consisted of treatment duration (in days) and medica-
tion type (olanzapine as higher risk, and risperidone and
quetiapine as lower risk). The multi-SNP joint analysis of all
three SNPs was performed using the exact permutation
method as described above.

RESULTS

Comparison among the four samples showed statistical
differences in several demographic variables, however, we
did not observe significant differences in the amount of
weight gain across the samples, even after adjustment for
duration (DJM-1 4.0±4.6 SD, HYM 4.8±6.3 SD, JAL
5.9±7.9 SD, DJM-2 4.8±10.6 SD, P¼ 0.20). Thus, we
decided to pool the samples for the analysis. In terms of
power, assuming MAF¼ 0.15 and sample size of N¼ 150
(only individuals with European ancestry and with complete
covariates information), we had more than 80% power to
detect a mean difference of 2.6% weight gain between
carriers and non-carriers of the risk genotype in the
additive model at the type 1 error rate of 0.05.
We observed a significant association between weight

gain (%) and rs6435326 (N¼ 150, b¼ � 2.19, P¼ 0.0003).
TT homozygotes gained significantly less weight (1.1±4.5%
SD; N¼ 36) than heterozygotes (3.1±4.5% SD; N¼ 63) and
AA homozygotes (5.1±5.1% SD; N¼ 51) (Figure 1). This
SNP is located in an intronic region of the NDUSF1 gene

(NADH dehydrogenase (ubiquinone) Fe-S protein 1,
75 KDa) which is part of the complex I of OXPHOS. To
correct for multiple comparisons, we calculated the effective
number of independent tests using SNPSpD (Nyholt test;
Nyholt (2004)). The number of independent tests was 53
and association between rs6435326 and weight gain (%)
remained significant after correction (Pcorrected¼ 0.02),
consistent with the permutation-based adjusted P-value of
0.02. To dissect the association evidence observed for
rs6435326, sample-specific association analysis was per-
formed, separately, for samples DJM-1, HYM, and DJM-2
(Supplementary Table 2). The size of sample JAL was too
small for meaningful statistical analysis. The frequencies of
minor allele (T) were similar across all three samples and
the protective effect of rs6435326 was observed in all three
as well (Supplementary Table 2 and Supplementary
Figure 2).
Two SNPs, rs1053517 and rs1801318, were moderately

correlated with rs6435326 (r2¼ 0.5, D0 ¼ 0.95 and r2¼ 0.3,
D0 ¼ 1, respectively) (Figure 2). Haplotype analyses revealed
that the block carrying the risk alleles of rs6435326,
rs1053517, and rs1801318 was also significantly protective
against weight gain (%) (T-C-G vs A-T-A, P¼ 0.005). The
stepwise linear regression analysis selected rs6435326 in
NDUFS1 and rs3762883 in COX18. The gene–gene interac-
tion analysis identified a significant interaction between
rs6435326 and rs3762883 (10 000 permutations, P¼ 0.001).
TT homozygotes at rs6435326 and heterozygotes at
rs3762883 were classified as low risk (least weight gain)
(b¼ � 5.39, P¼ 0.0006).
Given the small sample size and anticipated modest effect

of individual genetic variants associated with this complex
trait, it was not surprising that no other SNP, beyond
rs6435326 in NDUSF1, was significantly associated with
weight gain (%). However, alternative analysis that evalu-
ates the cumulative evidence of multiple SNPs can reveal
association that might not be detectable at the individual-
SNP level. Indeed, our permutation-based test of all 60 SNPs

Figure 1 Box-plot graph showing the percentage of weight gain for
genotype groups of the SNP rs6435326 in the NDUFS1 gene. The boxes
drawn are the median values for percentage of weight change, and the
whiskers drawn correspond to minimum and maximum values observed.
The outliers were defined as points more than 1.5 times of upper or lower
quartiles.
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jointly showed that the 28 nuclear-encoded mitochondrial
genes selected based on our hypothesis, collectively, were
associated with weight gain (P¼ 0.02, Figure 3).

In the replication sample, the directions of effect for all
top three SNPs in NDUFS1 (rs6435326, rs1053517, and
rs1801318), were consistent with the discovery sample

Figure 2 NDUFS1 gene structure location of polymorphisms (a) and LD graph (b) for the SNPs genotyped. In panel a, the black boxes represent the
exons and the width correspond to their sizes. In panel B, the values in the LD plot are D0 values.

Figure 3 Mitochondria hypothesis testing. (a) QQ plot of the mitochondrial SNPs association evidence in the sample. Red curve correspond to the
observed P-values. Gray curves correspond to the P-values obtained from the 1000 permutation replicates as described in the text. (b) Statistical significance
of the mitochondria hypothesis. The statistical significance (permutation P¼ 0.02) was calculated by comparing the observed sum association statistic (red
vertical line) aggregated over all 60 SNPs with the sum statistics calculated from the 1000 permutation replicates (shown as the histogram).

Table 2 Replication of the Top Three SNPs

Marker Gene MAF LDa Discovery sample (n¼164) Replication sample (n¼200)

b P b P INFOb

rs6435326 NDUFS1 0.47 — � 2.19 0.0003 � 1.34 0.18 NA

rs1053517 NDUFS1 0.43 0.8 � 1.45 0.018 � 1.98 0.04 0.94

rs1801318 NDUFS1 0.30 0.4 � 1.47 0.033 � 2.29 0.02 0.94

aMeasured by r2 between the SNP and rs6435326.
bGenotype of rs6435326 was obtained using the TaqMan SNP genotyping assays, and INFO was imputation accuracy measure provided by IMPUTE v2.2 (Howie et al,
2012).
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(Table 2). Two of the three SNPs had replication P-values
less than 0.05, rs1053517 (P¼ 0.04) and rs1801318
(P¼ 0.02), but only one survived adjustment of multiple
hypothesis testing (o0.05/2¼ 0.025, where 2 is the number
of independent tests among the 3 tests performed).
However, the multi-SNP analysis of all three SNPs
simultaneously in the CATIE replication sample provided
convincing evidence that NDUFS1 is associated with AIWG
(Ppermutation¼ 0.04, Figure 4).

DISCUSSION

In this study, we analyzed 60 SNPs in 28 nuclear genes
involved in mitochondrial function, for association with
AIWG, using the HD approach described by Sun et al
(2012). Our HD analysis is technically different from what
was originally proposed in Sun et al (2012), but the
principle is the same. Here, instead of performing a
genome-wide study, we decided to use the HD principle
to select a small set of variants for a more focused study,
providing sufficient power for these HD-selected variants
given the small sample size.
Our hypothesis was that nuclear-encoded mitochondrial

genes, particularly those from the OXPHOS pathway or
those involved in oxidative stress, mitochondrial biogenesis,
inflammation and apoptosis, are more likely to be
associated with AIWG in schizophrenia subjects. To the
best of our knowledge, this is the first study to explore
genetic variation in the mitochondrial genes in the context
of AIWG. In the single-SNP analysis, we observed signi-
ficant association between rs6435326 and weight gain (%),
even after correction for multiple testing. The haplotype
containing the T allele of rs6435326, C allele of rs1053517,
and G allele of rs1801318 was also significantly protective
against weight gain. These SNPs are located in NDUFS1,
which is part of the complex I of OXPHOS. NDUFS1 encodes
the largest and one of the core subunits of this complex

and the protein is located in the iron-sulfur fragment of
the enzyme (Smeitink et al, 1998). NDUFS1 is part of the
hydrophilic arm of the complex, which is responsible for the
transfer of electrons (Finel, 1998; Scola et al, 2013).
Mutations in this gene have been associated with isolated
complex I deficiency (Hoefs et al, 2010); and it was
proposed that dysfunction in the cellular oxidative meta-
bolism leads to increased mitochondrial ROS (mROS)
production (Iuso et al, 2006).
The effect of variants on mROS production may be of

special importance, as it may influence the energy home-
ostasis in the hypothalamus. Recently, compelling evidence
has shown the role of mROS for ‘fuel sensing’ in the
melanocortin system in the hypothalamus (Leloup et al,
2006). Briefly, it was proposed that mROS is an important
signaling pathway for stimulation of both the main types of
neurons of the arcuate nucleus: 1) those that express
anorectic pro-opiomelanocortin (POMC), and 2) orexigenic
neurons that contain neuropeptide Y (NPY) and the agouti-
gene-related transcript (AgRP). In POMC neurons, leptin
starts the process of depolarizing the neuronal membrane
via opening of non-specific cation channels and activating
the STAT3/JAK2 signaling pathway that leads to increased
POMC gene expression. Also, during elevated blood glucose
levels, glycolysis is active and OXPHOS produces mROS and
ATP. It is proposed that the increase in mROS levels is
sensitive to the closure of KATP channels, a crucial step in
keeping POMC neurons active. The cleavage of POMC
triggers a chain of downstream events that will decrease
food intake and increase energy expenditure in humans
(reviewed by Horvath et al (2009) and Jordan et al (2010)).
In NPY/AgRP neurons, ghrelin activates the AMPK signal-
ing pathway, leading to inhibition of the acetyl-CoA
carboxylase enzyme (ACC). As a consequence, the levels
of malonyl-CoA decrease and activate the carnitine_palmi-
toyl_transferase I (CPT1) enzyme, which is responsible for
transport of long-chain fatty acids into the mitochondrial
matrix. Lower levels of glucose and high levels of fatty acid
in the blood stream stimulate b-oxidation in mitochondria,
increasing mROS production that leads to the expression of
uncoupling protein 2 (UCP2). This protein acts by buffering
mROS to keep gene expression active, allowing NPY to
stimulate food intake and reduce energy expenditure. The
AgRP acts as an antagonist of melanocortin 3 receptor and
melanocortin 4 receptor blocking their anorectic effects
(reviewed by Horvath et al (2009)).
Our current study also reports the significant interaction

between the TT genotype of rs6435326 (NDUFS1) and AG
genotype of rs3762883 (COX18). The variant, rs3762883, is
predicted to be functional (DNAse hypersensitive, Haploreg
v2) and COX18 is involved in the mitochondrial biogenesis
and in the assembly of the complex IV of OXPHOS in the
inner membrane (Gaisne and Bonnefoy, 2006). Complex IV
is responsible for the final transfer of electrons to oxygen.
Reduction in activity for both complex I and IV was identi-
fied in postmortem brain of schizophrenia subjects (Maurer
et al, 2001). Thus, it is possible that variants in genes that
form complex I and IV may predispose individuals for the
side-effect of weight gain after SGA exposure.
In support to our hypothesis, we observed significant asso-

ciation evidence from a multi-SNP model that jointly analyzed
all 60 variants in these 28 mitochondrial genes (permutation

Figure 4 Replication of the association between NDUFS1 and AIWG.
The statistical significance (Ppermutation¼ 0.04) was calculated by comparing
the observed sum association statistic (red vertical line) aggregated over
the three SNPs within NDUFS1 with the sum statistics calculated from the
1000 phenotype permutation replicates (shown as the histogram).
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P¼ 0.02). The result suggests the involvement of multiple
associated variants, each with small effect. A similar
situation may exist regarding the polygenetic inheritance
reported for schizophrenia (Gottesman and Shields, 1967).
Our study had greater than 80% power to detect the mean

differences observed for rs6435326 at the type 1 error level
of 0.05. Among the three top SNPs (rs6435326, rs1053517,
and rs1801318 in NDUFS1), rs6435326 was not statistically
significant (P¼ 0.18) in the CATIE replication sample.
However, direction of effect is consistent with the discovery
sample. Furthermore, the gene-based replication study
(joint analysis of all three SNPs) replicated (P¼ 0.04) the
finding that NDUFS1 is associated with AIWG.
In conclusion, our finding suggests the role of NDUFS1 on

AIWG in schizophrenia subjects. Moreover, this study
provides evidence implicating the mitochondria as a system
involved in the regulation of energy homeostasis and body
weight in schizophrenia subjects under SGA treatment.
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