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Hypoglutamatergic function may contribute to cognitive impairment in schizophrenia (CIS). Subchronic treatment with the N-methyl-

D-aspartate receptor antagonist, phencyclidine (PCP), induces enduring deficits in novel object recognition (NOR) in rodents. Acute

treatment with atypical antipsychotic drugs (APDs), which are serotonin (5-HT)2A/dopamine D2 antagonists, but not typical APDs, eg,

haloperidol, reverses the PCP-induced NOR deficit in rats. We have tested the ability of lurasidone, an atypical APD with potent 5-HT1A
partial agonist properties, tandospirone, a selective 5-HT1A partial agonist, haloperidol, a D2 antagonist, and pimavanserin, a 5-HT2A
inverse agonist, to prevent the development of the PCP-induced NOR deficit. Rats were administered lurasidone (0.1 or 1mg/kg),

tandospirone (5mg/kg), pimavanserin (3mg/kg), or haloperidol (1mg/kg) b.i.d. 30min before PCP (2mg/kg, b.i.d.) for 7 days (day1–7),

followed by a 7-day washout (day8–14). Subchronic treatment with PCP induced an enduring NOR deficit. Lurasidone (1mg/kg) but not

0.1mg/kg, which is effective to acutely reverse the deficit due to subchronic PCP, or tandospirone, but not pimavanserin or haloperidol,

significantly prevented the PCP-induced NOR deficit on day 15. The ability of lurasidone co-treatment to prevent the PCP-induced NOR

deficit was enduring and still present at day 22. The preventive effect of lurasidone was blocked by WAY100635, a selective 5-HT1A
antagonists, further evidence for the importance of 5-HT1A receptor stimulation in the NOR deficit produced by subchronic PCP.

Further study is needed to determine whether these results concerning mechanism and dosage can be the basis for prevention of the

development of CIS in at risk populations.
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INTRODUCTION

Intervening pharmacologically and in other manners during
the prodromal stage of schizophrenia, primarily to prevent
the onset of persistent psychosis and enduring cognitive
impairment is a major goal of current strategies for
reducing the disability associated with schizophrenia
(Bilder et al, 1992; Klosterkötter et al, 2001). Intervention
during this stage is intended to arrest or attenuate the
progression of the underlying pathology (McGlashan and
Fenton, 1993; Larson et al, 2010). Treatment of individuals

in the prodromal period with atypical antipsychotic drugs
(APDs) has been reported to reduce the rate of progression
to first-episode psychosis in some high-risk indiviudals (Lee
et al, 2005; Lieberman and Fenton, 2000; McGlashan et al,
2006; McGorry et al, 2008; Phillips et al, 2009; Ruhrmann
et al, 2005; Salokangas and McGlashan, 2008). However,
there are major concerns about this strategy, which include
stigmatization, false positives, and metabolic and other side
effects of the atypical APDs and stigmatization (Kaur and
Cadenhead, 2010).
Even at the time of first diagnosis, deficits in multiple

domains of cognition, including visual learning and
declarative memory, are present in most patients with
schizophrenia and are known to be a key factor leading to
impaired work and social function (Saykin et al, 1991;
Meltzer and McGurk, 1999). There is evidence that some
of the atypical APDs, which are more potent serotonin
(5-HT)2A than dopamine (DA) D2 antagonists, including the
novel atypical APD, lurasidone, are more effective than
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typical APDs to attenuate some of these deficits (Hagger
et al, 1993; Meltzer and McGurk, 1999; Woodward et al,
2005; Harvey et al, 2011), although not all studies are in
accord (Keefe et al, 2007). The development of novel
adjunctive or stand alone treatments that can improve some
domains of cognition in schizophrenia, accompanied by
functional improvement, is currently a major goal of
pharmacologic research (Buchanan et al, 2010).
Hypoglutamatergic activity has been postulated to be a

major cause of the cognitive impairment in schizophrenia
(CIS; Goldman-Rakic and Selemon, 1997; Coyle, 2006).
Important evidence that a deficit in glutamatergic function
may be the basis for this component of schizophrenia is that
the noncompetitive N-methyl-D-aspartate (NMDA) receptor
antagonists, such as phencyclidine (PCP), dizocilpine (MK-
801), and ketamine, induce schizophrenia-like cognitive
impairment in healthy subjects (Javitt and Zukin, 1991;
Krystal et al, 1999). The effects of NMDA receptor
antagonists on cognitive function in rodents and monkeys
have been intensively studied as an animal model of CIS
(Gunduz-Bruce, 2009). Acute or subchronic administration
of PCP, MK-801, or ketamine to rodents produces cognitive
impairments that model CIS, eg, novel object recognition
(NOR; Neill et al, 2010, Meltzer et al, 2011). Acute
administration of atypical APDs (eg, clozapine), but not
the typical APD, haloperidol, has been reported to reverse
cognitive deficits induced by subchronic PCP treatment in
rat NOR (Grayson et al, 2007; Snigdha et al, 2010; Horiguchi
et al, 2011a). We recently reported that selective 5-HT2A

inverse agonists (eg, pimavanserin) can potentiate the
ability of sub-effective doses of several atypical APDs,
including lurasidone, to ameliorate the PCP-induced NOR
deficit (Snigdha et al, 2010). However, there are no reports
that show a preventive effect of typical or atypical APDs.
Lurasidone is an atypical APD that has D2, 5-HT2A, and

5-HT7 receptor antagonist properties, as well as being a
potent 5-HT1A partial agonist (Meyer et al, 2009; Ishibashi
et al, 2010). We have recently reported that acute treatment
with lurasidone ameliorates the subchronic PCP-induced
NOR deficits in a 5-HT1A- and 5-HT7-dependent manner
(Horiguchi et al, 2011b; Horiguchi and Meltzer, 2012).
Stimulation of 5-HT1A receptors has been identified as a

target for improving CIS, possibly by enhancing the release
of cortical DA (Ichikawa et al, 2001, 2002). We have
reported that the addition of tandospirone, a 5-HT1A partial
agonist (Hamik et al, 1990), to the ongoing treatment
with typical APDs of patients with schizophrenia,
improved executive function, verbal learning, and memory
(Sumiyoshi et al, 2000, 2001a, b). We have also recently
reported that acute administration of tandospirone or
F15599, another 5-HT1A agonist, improved the NOR deficit
induced by subchronic PCP and WAY100635, a 5-HT1A

antagonist, blocked the acute attenuating effect of lurasi-
done (Horiguchi and Meltzer, 2012). These results indicate
that acute stimulation of 5-HT1A receptors is adequate to
ameliorate the PCP-induced impairment in NOR.
The aim of the current study was to test the preventive

effect of lurasidone, tandospirone, haloperidol, a typical
APD, and pimavanserin, a 5-HT2A inverse agonist, on the
subchronic PCP-induced NOR deficit in rats. We also tested
whether WAY100635, a 5-HT1A antagonist, blocks the
preventive effect of lurasidone.

MATERIALS AND METHODS

Animals

Thirty-four female Long-Evans (LE) rats (8 or 9 weeks old;
Harlan Sprague Dawley, Indianapolis, IN, USA) were used as
subjects for experiments 1–2 (rat group 1). Forty-three rats
(rat group 2) were used for experiment 3. Twenty-six rats (rat
group 3) were used for experiment 4. LE rats were housed in
groups of three or four on a 12h light/dark cycle. Food and
water were available ad libitum. All experiments were
conducted during the light phase in accordance with the
Vanderbilt Animal Committee Regulations.

Drugs

Lurasidone and tandospirone were provided by Dainippon
Sumitomo Pharma (Osaka, Japan). Pimavanserin was
provided by Acadia Pharmaceuticals (Torrence, CA, USA).
Haloperidol was obtained from Sigma-Aldrich (St Louis,
MO, USA). WAY100635 was a gift from Wyeth Laboratories
(Philadelphia, PA). PCP was supplied as a generous gift
from the National Institute of Drug Abuse (Bethesda, MD,
USA).
Lurasidone was dissolved in 0.5% methylcellulose, 0.2%

Tween80. The other drugs were dissolved in distilled water.
All drugs or vehicle were administered intraperitoneally
(i.p.) in a volume of 1ml/kg body.

Drug Treatment

LE rats (rat group 1) were randomly assigned to four
groups. For each of these groups, the first injection (A) was
given 30min before the second injection (B) twice daily
for 7 days (day1–7). Group 1 (control group), A; vehicle
(saline), B; vehicle (saline). Group 2 (subchronic PCP
group), A; vehicle, B; PCP (2mg/kg). Group 3 (lurasidone
0.1mg/kg +PCP group), A; lurasidone (0.1mg/kg), B; PCP
(2mg/kg). Group 4 (lurasidone 1mg/kg +PCP group), A;
lurasidone (1mg/kg), B; PCP (2mg/kg).
Rat group 2 were randomly assigned to five groups. For

each of these groups, the first injection (A) was given 30min
before second injection (B) twice daily for 7 days (day1–7).
Group 1 (control group), A; vehicle, B; vehicle. Group 2
(subchronic PCP group), A; vehicle, B; PCP (2mg/kg).
Group 3 (tandospirone 5mg/kg +PCP group), A; tandos-
pirone (5mg/kg), B; PCP (2mg/kg). Group 4 (haloperidol
1mg/kg +PCP group), A; haloperidol (1mg/kg), B; PCP
(2mg/kg). Group 5 (pimavanserin 3mg/kg +PCP group), A;
pimavanserin (3mg/kg), B; PCP (2mg/kg).
Rat group 3 were randomly assigned to three groups. For

each of these groups, the first injection (A) and second
injection (B) were given 45min or 30min, respectively,
before the third injection (C) twice daily for 7 days (day1–
7). Group 1 (control group), A; vehicle, B; vehicle, C;
vehicle. Group 2 (subchronic PCP group), A; vehicle, B;
vehicle, C; PCP (2mg/kg). Group 3 (lurasidone 1mg/kg +
WAY100635 0.6mg/kg +PCP group), A; WAY100635
(0.6mg/kg), B; lurasidone (1mg/kg), C; PCP (2mg/kg).
Subsequently, animals were given a 7-day washout period

(days 8–14) before NOR testing.
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NOR Test

Testing was carried out according to a previously validated
method (Snigdha et al, 2010). Briefly, all rats were
habituated for 1 h to the NOR arena for three consecutive
days (days 12–14) before the first NOR test. Rats were given
a further 3-min habituation on the day of testing (days 15 or
21). After the 3-min habituation, the rats were given two
3-min trials (an acquisition trial and a retention trial)
separated by a 1-min intertrial return to their home cage.
During the acquisition trial, the animals were allowed to
explore two identical objects (A1 and A2). During the
retention trial, the animals explored a familiar object (A)
from the acquisition trial and a novel object (B).
Behavior was recorded on video for blind scoring of

object exploration. Object exploration is defined as an
animal licking, sniffing, or touching the object with the
forepaws while sniffing. The exploration time (s) of each
object in each trial was recorded manually by the use of two
stopwatches. The discrimination index (DI) [(time spent
exploring the novel object�time spent exploring the
familiar object)/total exploration time] was then calculated
for retention trials.
If the exploration time in the aquisition or retention trials

to either of two objects was o5 s, the data were excluded
from analysis. This rarely occurred and did not affect the
ability to complete the analysis using the data from the
remaining animals of that group. All experimental groups
consisted of six to nine rats.

Data Analysis

All data are expressed as the mean±SEM (n¼ 6–9 per
group). Exploration data were analyzed by a two-way
ANOVA followed by the pairwise comparison when a
significant effect was detected by the ANOVA. This analysis
was used to detect the interaction of drug treatment and
object exploration as well as main effects. When a sig-
nificant effect was found, further analysis by a post hoc
Student’s t-test was performed to compare the time spent
exploring the novel and familiar object. DI data were
analyzed using one-way ANOVA followed by the Bonferroni
test when a significant effect was detected by the ANOVA.

RESULTS

Effect of Co-Administration of Lurasidone on
Subchronic PCP-Induced NOR Deficit on Day 15
(Experiment 1)

In the aquisition trial, no significant differences in time
spent exploring the two identical objects were observed in
any group (F7,54¼ 0.9, p40.05, Figure 1a). There were no
significant effects of drugs on exploratory activity during
the acquisition trial period (F5,42¼ 0.64, p40.05 for
Supplementary Figure 1, F9,66¼ 0.6, p40.05 for Supple-
mentary Figure 2, F5,44¼ 0.48, p40.05 for Supplementary
Figure 3) in any of the experiments (Supplementary Figures
1–3). In the retention phase, the time spent exploring the
novel vs familiar objects was significantly different among
the groups (F7,54¼ 3.8, po0.005, Figure 1b). Using post-hoc
analysis, vehicle-treated animals explored the novel object
significantly longer than the familiar object (po0.05,
Figure 1b). The ability to discriminate novel and familiar
objects was abolished by subchronic PCP treatment.
Lurasidone (0.1mg/kg) failed to prevent this deficit
(Figure 1b). However, lurasidone (1mg/kg) significantly
attenuated the NOR deficit (po0.005, Figure 1b). The model
examining the group effect on DI was statistically significant
(F3,27¼ 5.7, po0.005, Figure 1c). In the post-hoc analysis,
the DI was significantly reduced following subchronic PCP-
treatment (po0.01). Co-administration of 1mg/kg lurasi-
done significantly prevented the PCP-induced reduction in
DI (po0.01), but 0.1mg/kg lurasidone did not (Figure 1c).

Effect of Co-Administration of Lurasidone on
Subchronic PCP-Induced NOR Deficit on Day 22
(Experiment 2)

In the retention trial, the time spent exploring the novel vs
familiar objects was significantly different among the
groups (F5,42¼ 7.8, po0.005, Figure 2a). The post-hoc
analysis revealed that vehicle-treated animals showed
preference for the novel object (po0.005, Figure 2a). PCP-
treated rats did not show preference for the novel object
(Figure 2a). Co-treatment with lurasidone (1mg/kg) sig-
nificantly attenuated the PCP-induced deficit (po0.005,
Figure 2a) demonstrating an enduring preventive effect on
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Figure 1 Effect of co-treatment with lurasidone (LUR, 0.1, 1mg/kg) on PCP-induced cognitive impairment in NOR test on day 15. (a) Effect of LUR (0.1,
1mg/kg, i.p.) on exploration of two identical objects in the aquisition trial in NOR test on day 15. Data are shown as mean±SEM (n¼ 6–9 per group).
(b) Effect of LUR (0.1, 1mg/kg, i.p.) on exploration of a novel and a familiar object in the retention trial in NOR test on day 15. Data are shown as
mean±SEM (n¼ 6–9 per group). ***po0.001, *po0.05, significant difference in time spent exploring the novel compared with the familiar object.
(c) Effect of LUR (0.1, 1mg/kg, i.p.) on the DI on day 15. Data are shown as mean±SEM (n¼ 6–9 per group). **po0.01, significant decrease in DI
compared with the vehicle. ##po0.01, significant reversal in DI compared with PCP group.
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the PCP-induced NOR deficit. Statistical analysis showed
the model examing the group effect on DI was significant
(F2,21¼ 14.8, po0.005, Figure 2b). Examing the post-hoc
test, it was revealed that subchronic PCP-treatment
significantly reduced the DI (po0.005, Figure 2b). Co-
administration of lurasidone (1mg/kg) prevented the
reduction of DI (po0.005, Figure 2b).

Effect of Co-Administration of Tandospirone,
Haloperidol, or Pimavanserin on Subchronic
PCP-Induced NOR Deficit on Day 15 (Experiment 3)

In the retention trial, the time spent exploring the novel vs
familiar objects was significantly different among the
groups (F9,66¼ 3.8, po0.005, Figure 3a). Using post-hoc
analysis, it was found vehicle-treated rats showed explora-
tory preference for the novel object (po0.005, Figure 3a). In
PCP-treated rats, there was no significant difference
between the time spent exploring the novel and the familiar
object (Figure 3a). Tandospirone (5mg/kg) significantly
prevented the PCP-induced NOR deficit (po0.04;
Figure 3a). Neither haloperidol 1mg/kg nor pimavanserin
3mg/kg prevented this deficit (Figure 3a). The model

examining the group effect on DI was statistically significant
(F4,33¼ 4.5, po0.01, Figure 3b). In the post-hoc analysis, the
DI was significantly reduced following subchronic PCP-
treatment (po0.005). Co-treatment with 5mg/kg tandos-
pirone (po0.05), but not 1mg/kg haloperidol or 3mg/kg
pimavanserin, significantly improved the DI reduction
(Figure 3b).

Effect of Co-Administration of WAY100635 Plus
Lurasidone on Subchronic PCP-Induced NOR Deficit on
Day 15 (Experiment 4)

In the retention trial, the time spent exploring the novel vs
familiar objects was significantly different among the
groups (F5,44¼ 3.0, po0.02, Figure 4a). Using post-hoc
analysis, it was found that the vehicle-treated rats showed
preference for the novel object (po0.005); this preference
was abolished by subchronic PCP-treatment (Figure 4a).
WAY100635 (0.6mg/kg) plus lurasidone (1mg/kg) did not
prevent this deficit (Figure 4a). The model examing the
group effect on DI was statistically significant (F2,22¼ 4.4,
po0.05, Figure 4b). In the post-hoc analysis, the DI was
significantly reduced following subchronic PCP-treatment
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(po0.05). Treatment with 0.6mg/kg WAY100635 and 1mg/kg
lurasidone did not improve the reduction in the DI
(Figure 4b).

DISCUSSION

NOR is a possible analog of declarative memory in humans
(Winters et al, 2010) and a frequently studied model of CIS.
In this study, we again confirmed that subchronic admin-
istration of PCP produces a severe deficit in NOR and that
the co-treatment with lurasidone, an atypical APD with
5-HT1A partial agonism, or with tandospirone, a selective
5-HT1A agonist, prevented the NOR deficit induced by
subchronic PCP. On the other hand, haloperidol, a typical
antipsychotic with selective D2 antagonist properties, or
pimavanserin, a selective 5-HT2A inverse agonist, did not
prevent the PCP-induced deficit in NOR.
This is the first demonstration of the preventive effect of

an atypical APD (lurasidone), or a 5-HT1A partial agonist
(tandospirone) on subchronic PCP-induced disruption in
NOR in rats. We also found that the preventive effect of
lurasidone lasted at least 14 days after the final PCP
injection (on day 22). It has been reported that lurasidone
has cognitive benefits in some animal models of CIS, in
which other APDs were ineffective or even worsened the
impairment in cognition (Ishiyama et al, 2007; Enomoto
et al, 2008). Lurasidone was reported to be somewhat more
effective than ziprasidone to improve general cognitive
function in patients with schizophrenia in a double-blind
study of 21 days duration (Harvey et al, 2011). In the
present experiment, co-administration of lurasidone,
0.1mg/kg, did not show the preventive effect, although
acute treatment with this dose of lurasidone can reverse the
subchronic PCP-induced NOR deficit (Horiguchi et al,
2011a, b). Acute treatment with lurasidone, 0.1mg/kg, is
sufficient to temporarily reverse the subchronic PCP-
induced NOR deficit 30min after administration, but when
co-administration with subchronic PCP, this dose is
insufficient to prevent the cognitive impairment in NOR
induced by the subchronic PCP regimen. These results are
inconsistent with several other preclinical reports using

risperidone, suggest that lower doses of risperidone might be
effective in some animal models of psychosis (Piontkewitz
et al, 2011; Richtand et al, 2006). Thus, risperidone, at a dose
of 0.045mg/kg per day attenuated the abnormally elevated
locomotor response to amphetamine following hippocampal
lesions and behavioral abnormalities in the offsprings of poly
I:C mother mice (Piontkewitz et al, 2011; Richtand et al,
2006). Our results suggest that for lurasidone or other atypical
APDs higher doses than those needed to prevent recurrence
of psychosis might be needed to impact CIS.
The results in this study are consistent with the acute

reversal studies in which atypical APDs, including lurasi-
done and the 5-HT1A agonist, tandospirone, but not
pimavanserin or haloperidol, are effective reversing PCP-
induced cognitive deficits (Grayson et al, 2007; Snigdha
et al, 2010; Horiguchi et al, 2011a, b; Horiguchi and Meltzer,
2012). It is of interest to compare these results from acute
reversal studies with studies in mice that showed a
subchronic PCP (10mg/kg)-induced NOR deficit in mice
and examined the ability of subsequent subchronic admin-
istration of APDs to reverse the impairment (Hashimoto
et al, 2005; Hagiwara et al, 2008; Nagai et al, 2009;
Tanibuchi et al, 2009). This deficit was recovered by
subsequent subchronic (14 days) administration of cloza-
pine (5mg/kg, i.p.), but not haloperidol (0.1mg/kg, i.p.;
Hashimoto et al, 2005). This deficit was also subsequently
improved by subchronic treatment with perospirone or
aripiprazole both of which are 5-HT1A partial agonists
(Hagiwara et al, 2008; Nagai et al, 2009). Tanibuchi et al
(2009) reported that subsequent treatment with quetiapine,
another atypical APD with 5-HT1A partial agonism, also
reversed the subchronic PCP-induced deficit in mice. On
the other hand, in rat NOR, McKibben et al (2010) reported
that treatment with risperidone (0.5mg/kg, i.p.) twice daily
for 10 days, beginning 3 days before the start of PCP
administration (2mg/kg, i.p., b.i.d. for 7 days), did not show
a protective effect against the NOR deficit induced by
subchronic PCP. More studies with other atypical APDs are
needed to better understand the role of atypical APDs on
cognitive impairments in NOR induced by subchronic PCP.
These results suggest that at least some atypical APDs (eg,
lurasidone) may be effective to prevent the development of
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cognitive impairmant in individuals who at high risk for
schizophrenia.
Stimulation of 5-HT1A receptors has been identified as a

target for improving CIS (Meltzer, 1999). In this study, not
only lurasidone but also the 5-HT1A agonist, tandospirone,
showed the preventive effect on subchronic PCP-induced
NOR deficit. Moreover, WAY100635, a selective 5-HT1A
antagonist, blocked the preventive effect of lurasidone,
thereby demonstrating the involvement of 5-HT1A agonism
in the effect of lurasidone. As mentioned above, these results
are consistent with the acute studies with 5-HT1A agonists in
this model (Horiguchi and Meltzer, 2012). These data suggest
that tandospirone by itself or as an add on treatment with an
atypical APD might have value to prevent the development of
CIS. The 5-HT1A agonists, eg, tandospirone, have a lower side
effect burden than most atypical APDs, especially of the
metabolic variety (Feighner and Boyer, 1989). It is noteworthy
that lurasidone shares important structural similarities with
tandospirone, and that lurasidone is also a 5-HT1A partial
agonist (Meltzer et al, 2011).
Postmortem studies have reported that the density of

5-HT1A receptors is increased in frontal and temporal
cortices in schizophrenia (Burnet et al, 1996, 1997; Gurevich
and Joyce, 1997; Hashimoto et al, 1991; Simpson et al, 1996;
Sumiyoshi et al, 1996). Positron emission tomography
studies confirm an increase in cortical 5-HT1A receptor
binding in schizophrenia (Kasper et al, 2002; Tauscher et al,
2002). Subchronic treatment with PCP has been reported to
increase 5-HT1A receptor binding in the medial- and
dorsolateral-frontal cortex (Choi et al, 2009). Microdialysis
studies report that acute administration of PCP increases
cortical 5-HT release (Etou et al, 1998; Martin et al, 1998;
Millan et al, 1999; Adams and Moghaddam, 2001; Amargós-
Bosch et al, 2006). This effect is blocked by clozapine and
olanzapine but not haloperidol (Amargós-Bosch et al,
2006). It is possible that lurasidone and tandospirone,
through their 5-HT1A agonist properties, suppress cortical
5-HT release, thereby blocking effects of PCP related to
5-HT release that lead to interference with NOR.
Haloperidol and pimavanserin did not show a preventive

effect in this model. As mentioned above, these results are
in agreement with the lack of effectiveness of these drugs to
acutely reverse the effects of subchronic PCP on NOR
(Grayson et al, 2007; Snigdha et al, 2010). Subchronic
treatment with haloperidol also did not reverse the NOR
deficit induced by subchronic PCP in mice (Hashimoto
et al, 2005; Nagai et al, 2009). Haloperidol (1mg/kg) has
been reported to reverse PCP-induced morphologic deficits
in the auditory system, but not to reverse PCP-induced
decreases in prefrontal cortical GABAergic interneurons
in rats (Cochran et al, 2003). Pimavanserin (3mg/kg) has
been shown to achieve essentially 100% 5-HT2A receptor
occupancy (Vanover et al, 2006) and potentiated the ability
of sub-effective doses of atypical APDs to reverse the NOR
deficit induced by subchronic PCP (Snigdha et al, 2010). It
is noteworthy that haloperidol and pimavanserin effectively
block acute NMDA receptor antagonist (eg, PCP, MK-801)-
induced hyperlocomotion, considered a model of psychosis
(Maurel-Remy et al, 1995; Vanover et al, 2006; Gardell et al,
2007). Ritanserin, another 5-HT2A inverse agonist, was
able to block the ability of PCP to increase cortical 5-HT
efflux (Amargós-Bosch et al, 2006). Co-administration of

haloperidol or pimavanserin with PCP was ineffective in
restoring performance in the NOR test in subchronic PCP-
treated rats, indicating that D2 or 5-HT2A receptor blockade
alone is insufficient to reverse cognitive impairment
induced by subchronic PCP treatment, unlike the blockade
of the effect of acute PCP or MK-801 on locomotor activity.
It has been reported that subchronic PCP induces a

reduction in the density of paravalbumin-containing
GABAergic interneurons in the hippocampus in both male
and female rats (Abdul-Monim et al, 2007; Jenkins et al,
2008). A number of groups have conducted studies
investigating the neuroprotective effects of atypical APDs.
Chronic PCP treatment decreases parvalbumin mRNA
expression and chronic administration of clozapine, but
not haloperidol, reversed the PCP-induced decreases in
parvalbumin mRNA expression in prefrontal cortical
GABAergic interneurons (Cochran et al, 2003). Chronic
treatment with olanzapine, but not haloperidol, has been
reported to slow volume loss in the prefrontal cortex in a
prefrontal cortical dopamine denervation model of schizo-
phrenia (Wang and Deutch, 2008). Some clinical reports
also suggest some atypical APDs may have a neuroprotec-
tive effect. A study of patients with first-episode schizo-
phrenia reported that basal ganglia volume is increased in
patients treated with risperidone (Massana et al, 2005).
Treatment with risperidone increased the volume of gray
matter in neuroleptic-naive patients (Molina et al, 2005).
Further studies with lurasidone and tandospirone on the
subchronic PCP-induced GABAergic interneuron deficit
could provide valuable insight into the mechanism of
subchronic PCP to induce cognitive impairment in rat NOR.
Female rats were used in this study primarily because

they have been found to perform significantly better than
male rats in the NOR task (Sutcliffe et al, 2007). Further, no
effect of estrous cycle on performance in the NOR task has
been found (Sutcliffe et al, 2007). Finally, female rats have
been shown to differ in pharmacokinetics of PCP metabo-
lism rendering them more sensitive to PCP than males,
because of slower metabolism and higher PCP tissue levels
(Nabeshima et al, 1984).
In conclusion, these results indicate that lurasidone or

tandospirone, but not haloperidol, a typical APD, nor
pimavanserin, may prevent the development of cognitive
impairment in individuals who are at the risk for
schizophrenia or related disorders with cognitive impair-
ment, eg, bipolar disorder.
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