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Prior structural imaging studies of post-traumatic stress disorder (PTSD) have observed smaller volumes of the hippocampus and

cingulate cortex, yet little is known about the integrity of white matter connections between these structures in PTSD samples. The

few published studies using diffusion tensor imaging (DTI) to measure white matter integrity in PTSD have described individuals with

focal trauma rather than chronically stressed individuals, which limits generalization of findings to this population; in addition, these

studies have lacked traumatized comparison groups without PTSD. The present DTI study examined microstructural integrity of

white matter tracts in a sample of highly traumatized African-American women with (n¼ 25) and without (n¼ 26) PTSD using a

tract-based spatial statistical approach, with threshold-free cluster enhancement. Our findings indicated that, relative to comparably

traumatized controls, decreased integrity (measured by fractional anisotropy) of the posterior cingulum was observed in participants

with PTSD (po0.05). These findings indicate that reduced microarchitectural integrity of the cingulum, a white matter fiber that connects the

entorhinal and cingulate cortices, appears to be associated with PTSD symptomatology. The role of this pathway in problems that characterize

PTSD, such as inadequate extinction of learned fear, as well as attention and explicit memory functions, are discussed.
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INTRODUCTION

Post-traumatic stress disorder (PTSD) is a debilitating
condition that can develop in response to a traumatic
stressor. In the past two decades, a burgeoning number of
neuroimaging studies have found distinct differences in brain
morphology between individuals with and without PTSD. A
majority of this research has revealed structural differences
in gray matter, with smaller cortical volumes frequently
associated with a PTSD diagnosis (Karl et al, 2006; Tavanti
et al, 2012). Volumetric differences between PTSD and
psychopathology-free controls (measured through MRI) have
been largely observed in specific structures, such as the
anterior cingulate cortex (ACC) and orbitofrontal cortex
(Thomaes et al, 2010); however, between-group differences
have been particularly apparent for the hippocampus,
a brain region that is especially sensitive to the effects of
chronic stress (for a review, see Woon et al, 2010). Not
surprisingly, hippocampal abnormalities have been linked to

cognitive and affective disruptions that characterize PTSD
(Bremner, 2006).
Considerably fewer studies have investigated PTSD-

specific abnormalities in the white matter tracts that
connect frontal and limbic structures. White matter fibers,
which occupy 440% of total brain volume (Morell and
Norton, 1980), represent the main routes of communication
for cortical and sub-cortical structures. Consequently, insult
to these structures, attributable to neurodegenerative
disease (Drago et al, 2011), physical trauma (Johnson
et al, 2012), or acute stress (Chen et al, 2011), can
significantly disrupt behavior and cognition. The relatively
recent advent of diffusion tensor imaging (DTI) has
permitted investigations of microstructural integrity of
white matter fibers, allowing measurement of the magnitude
and direction of water diffusion within myelinated tracts.
DTI quantifies subtle white matter differences in normal-
appearing white matter on traditional MRI scans. Fractional
anisotropy (FA), an index obtained through DTI, represents
the degree of anisotropy, or strength of diffusion direction,
of water molecules within these tracts, providing a reliable
assessment of microstructural integrity of white matter
fibers (Fox et al, 2012).
The extant research on white matter tract integrity in adults

with PTSD is limited, and the findings have been variable
with regard to the location and extent of between-groupReceived 23 April 2012; revised 3 July 2012; accepted 3 July 2012
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differences in FA. The majority of this research has targeted
populations with acute and/or focal trauma, (Abe et al, 2006;
Kim et al, 2005, 2006; Zhang et al, 2011), which may
limit relevance to highly traumatized populations. In
addition, given that only two DTI studies of PTSD
samples included traumatized controls (TCs) (Abe et al,
2006; Schuff et al, 2011), most studies were not equipped
to differentiate trauma vs PTSD-specific effects on white
matter architecture.
Three studies found that PTSD was associated with lower

FA values in various white matter tracts, predominantly
tracts that are proximal to the cingulate gyrus (Kim et al,
2005, 2006; Schuff et al, 2011). One study of subway fire
survivors found that, compared with non-TCs, participants
with PTSD demonstrated decreased FA in white matter
tracts near the cingulate gyrus (particularly, anterior
aspects) and midbrain (Kim et al, 2005) in a brain-wide
analysis. Lower FA in the left rostral, subgenual, and dorsal
aspects of the cingulum bundle was observed in survivors,
compared with controls, in a separate ROI analysis (Kim
et al, 2006). A study of combat veterans observed that
participants with PTSD had lower FA values in white matter
tracts proximal to the ACC, prefrontal gyrus, precentral
gyrus, and posterior angular gyrus (Schuff et al, 2011);
however, these findings were complicated by the inclusion
of blast-exposed/head-injured veterans, some of whom were
taking psychotropic medications.
In contrast, two studies reported that higher FA values of

the cingulum and superior frontal gyrus were associated
with PTSD. Abe et al (2006) observed increased FA in
anterior aspects of the cingulum bundle in individuals with
PTSD involved in a sarin attack. Zhang et al (2011) found
that participants with PTSD associated with a coal mine
accident demonstrated higher FA in white matter tracts by
the superior frontal gyrus, as compared with non-psychia-
tric controls.
To summarize, structural differences in gray matter have

been frequently noted in the hippocampus and cingulate
cortex in PTSD samples, but little is known about how a PTSD
diagnosis may be associated with integrity of white matter
connections between these structures. The few existing studies
of white matter integrity in PTSD have yielded variable
associations between PTSD and FA values, particularly within
the cingulum, a tract that provides a connection between the
cingulate cortex and entorhinal cortex. These studies have
been either limited to populations of individuals with focal
trauma exposure, or did not include traumatized non-PTSD
control groups, which does not permit differentiation of PTSD
vs trauma-specific effects. In addition, the findings of one
study were complicated by the inclusion of individuals with
significant head injury, some of whom were taking psycho-
tropic medications (Schuff et al, 2011). Furthermore, a
majority of these studies used cluster-based statistical
methods, which make arbitrary assumptions about signal
thresholds. Threshold-free cluster enhancement (TFCE)
methods are more sensitive to the specific shapes and sizes
of signal within the data set, reducing the need for spatial
smoothing; this method offers a more robust way to measure
group differences in FA. Thus, the goal of this study was to
investigate the relationship between PTSD and white matter
integrity in a population of highly traumatized African-
American adults with and without PTSD, using DTI. We used

tract-based spatial statistics (TBSSs) with a TFCE whole brain
approach (Smith and Nichols, 2009) to test our hypothesis
that individuals with PTSD would demonstrate significant
differences in FA in white matter tracts connecting the
hippocampus and cingulate cortex, compared with trauma-
tized individuals without PTSD. In addition, we hypothesized
that this difference in FA would not be better accounted for by
trauma exposure or current depressive symptoms.

PARTICIPANTS AND METHODS

Participants

Study procedures were approved by the institutional review
board of Emory University. A total of 51 African-American
women aged 20–62 years were recruited through an ongoing
study of risk factors for PTSD; they were approached in
general medical clinics of a publicly funded hospital that
serves low-income individuals in inner-city Atlanta. Patients
seeking treatment at this hospital have been found to exhibit
high rates of interpersonal trauma and post-traumatic
symptoms that vary considerably in severity, as evidenced
by previous studies sampling this population (Bradley et al,
2008; Gillespie et al, 2009; Schwartz et al, 2005).
Patients were deemed eligible for participation if they

were able and willing to give informed consent and
understand English, as determined by a study researcher.
Participants were initially screened to assess for the
presence of these exclusion criteria: current psychotropic
medication use, current alcohol or substance abuse or
dependence, medical or physical conditions that preclude
MRI scanning (eg, metal implants), a history of schizo-
phrenia or other psychotic disorder, medical conditions
that contribute significantly to psychiatric symptoms (such
as dementia), history of head injury or loss of consciousness
for longer than 5min (including concussion), or a history of
neurological illness. Participants were also asked about past
history of substance or alcohol abuse. They were given
clinical assessments during a separate appointment. One
day before scanning, participants were given a pregnancy
test to confirm that they were not pregnant. Table 1 details
sample demographics and clinical characteristics.

Trauma and Symptom Assessment

The traumatic events inventory (TEI) was administered to
detail frequency and type of trauma(s) experienced;
consistent with prior research (Binder et al, 2008; Gillespie
et al, 2009), total level of trauma exposure was measured by
a sum score reflecting the total number of different types
of trauma (eg, car accident, sexual assault, and natural
disaster) to which a participant had been exposed over
the course of their life (TEI total score). The TEI also was
used to measure trauma exposure in adulthood. The
childhood trauma questionnaire (CTQ) was used to
measure trauma exposure during childhood, specifically,
maltreatment. The CTQ is a 28-item self-report measure
that yields a total childhood trauma index used for the
purposes of this study. The PTSD symptom scale (PSS;
Falsetti et al, 1993), is an 18-item self-report questionnaire
that provides a measure of re-experiencing, avoidance, and
arousal symptoms that have occurred in the 2 weeks before
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test administration; it was administered to determine
presence and severity of PTSD. Participants were classified
as either TCs or participants with PTSD (PTSD+ ) based on
DSM-IV criteria, consistent with earlier studies (Fani et al,
2012a, b; Jovanovic et al, 2010). Participants were classified
as PTSD+ if they endorsed the presence of one or more
symptom in the re-experiencing cluster (items 1–4); three
or more symptoms in the avoidance and numbing symptom
cluster (items 5–11); two or more symptoms in the
hyperarousal cluster (items 12–17); and symptom duration
of 3 months or longer (as measured by question 18), in
keeping with DSM-IV criterion for PTSD. The Beck depres-
sion inventory (BDI-II; Beck et al, 1996) was administered
to measure current depression symptoms.

MRI Acquisition, Image Processing, and Statistical
Analyses

Scanning took place on a research-dedicated Siemens 3-Tesla
TIM-Trio scanner at Emory University Hospital. Diffusion-
weighted images were acquired with maximum gradient
strength of 40mTm�1 with the following parameters:
39� 2.5mm thick axial slices, matrix¼ 128� 128, field of

view¼ 220� 220mm, voxel size¼ 1.72� 1.72� 2.5mm. The
diffusion weighting was isotropically distributed along 60
directions using a b-value of 1000 s/mm2. Four normalization
images, with no diffusion encoding (b¼ 0), were acquired and
averaged for each direction using linear rigid body registration
(FLIRT; Jenkinson and Smith, 2001). All image processing
and analysis was conducted using FMRIB Software Library
(FSL version 4.1; www.fmrib.ax.ac.uk/fsl; Smith et al, 2004).
Correction for head motion and eddy current distortion

was performed for data from each individual participant
using an automated affine registration algorithm. Normal-
ization images were skull-stripped using the FSL brain
extraction tool (Smith, 2002). FA maps were generated
using the DTIfit in the FMRIB Diffusion Toolbox, and
voxel-wise differences in DTI scalar indices were assessed
using TBSS (version 1.2), an approach that increases the
sensitivity and interpretability of the results compared with
typical voxel-based approaches because it uses non-linear
registration (Smith et al, 2006). All participants’ FA maps
were co-registered using the non-linear registration to the
most ‘typical’ participant’s FA, then affine transformed into
1� 1� 1mm MNI space. All transformed FA images were
averaged to create a mean FA image, then thresholded by
FA 40.2 to ensure that gray matter regions would be
excluded from these analyses. Voxel values of each subject’s
FA map were projected onto the skeleton by searching the
local maxima along the perpendicular direction from the
skeleton. Voxel-wise t-tests were conducted on FA values
across the overall skeleton to compare WM integrity
between PTSD+ and control groups. A permutation
algorithm (randomize, within FSL) was used for inference
testing, and a total of 5000 permutations were conducted.
Both uncorrected and family-wise error (FWE)-corrected p-
value images were generated using a TFCE approach (Smith
and Nichols, 2009). This method avoids arbitrary cluster
thresholding and assumptions about signal extent, and is
more sensitive to the specific shapes and sizes of signal
within the data set, which reduces the need for spatial
smoothing; thus, no smoothing was conducted. Statistically
significant between-group differences in FA (po0.05) were
defined anatomically using the probabilistic Johns Hopkins
University White Matter Atlas (Hua et al, 2008) provided
by FSL. FA values were extracted from these regions using
FSLmaths to examine potential associations with trauma
exposure and current depressive symptoms.

RESULTS

Group Characteristics

A total of 26 participants were classified as TCs and 25 were
classified as PTSD+ . No statistically significant between-
group differences (PTSD+ vs TC) were observed for age,
education, or monthly income. Results from the TEI
indicated that trauma rates were comparably high between
PTSD and control groups (see Table 1); on average,
participants had witnessed, experienced, or been confronted
with four traumatic incidents of various types (eg,
witnessing gun violence, being sexually assaulted). There
were no significant between-group differences in trauma
exposure (p40.05), measured across the lifespan (TEI total
score) or for adulthood (TEI adult trauma) or childhood

Table 1 Demographic and Clinical Characteristics

Trauma control PTSD F

(n¼26) (n¼25)

Mean (SD) Mean (SD)

Age 38 (12.8) 34 (12.5) 1.2

PSS re-experiencing 1.3 (1.7) 5.1 (2.6) 39.3**

PSS avoidance and numbing 2.3 (3.1) 10.4 (4.9) 48.7**

PSS hyperarousal 2.1 (2.7) 7.8 (3.7) 38.8**

PSS total 5.7 (6.6) 23.3 (8.8) 65.0**

BDI total 7.6 (6.8) 16.8 (8.9) 16.1**

TEI total 4.2 (2.6) 4.8 (2.0) 0.73

TEI adult trauma 3.6 (2.3) 3.8 (1.8) 0.17

CTQ total score 37.2 (16.8) 41.6 (15.4) 0.92

% % w2

Education 7.8

o12th grade 15.4 16

12th grade/high school graduate 30.8 32

GED 3.8 0

Some college/technical school 26.9 36

College/technical school graduate 23.1 16

Monthly income 2.56

$0–249 4 8

$250–499 12 20

$500–999 44 24

$1000–1999 32 36

$2000+ 8 12

Abbreviations: BDI, Beck Depression Inventory; CTQ, Childhood Trauma
Questionnaire; PSS, PTSD Symptom Scale; TEI, Traumatic Events Inventory.
**po0.01.
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(CTQ total score). As expected, there were significant
between-group differences in total PTSD symptoms, re-
experiencing, avoidance/numbing, and hyperarousal symp-
toms (all po0.05), as well as depressive symptoms (BDI
total score). There were no significant differences between
PTSD and TC groups in self-reported history of substance
and/or alcohol abuse (Pearson w2¼ 0.27; p40.05); only two
TCs and one PTSD+ participant reported having a
significant drug or alcohol abuse history. Results below
did not change appreciably when these participants were
removed from analyses; thus, these participants were
included in all analyses.

Tract-Based Spatial Statistics

Voxel-wide t-test results indicated two large ‘clusters’ of
significantly lower FA in posterior regions of the cingulum,
adjacent to the right and left hippocampi, in participants
with PTSD, compared with TCs (cluster size 410mm3;
po0.05uncorrected; see Table 2 and Figure 1a); medium-to-
large effect sizes were observed for FA differences in the left
cingulum (Cohen’s d¼ 0.63) and right cingulum (Cohen’s
d¼ 0.85). A small (11mm3) cluster indicating significant
between-group differences in FA was also observed in the
left superior longitudinal fasciculus (po0.05uncorrected; see
Table 2). For this brain-wide analysis, no other significant

between-group differences in FA were observed. However,
these differences were not statistically significant after
applying FWE correction. Mean FA values were extracted
from a mask of statistically significant clusters for this
analysis. Distribution of extracted FA values met assump-
tions of normality, according to the Shapiro–Wilk statistic
(p40.05). There was no significant correlation between
mean FA and depression symptoms (BDI total score;
r(49)¼�0.1, p40.05) or trauma exposure, either for total
exposure throughout the lifetime (TEI total; r(49)¼ 1.12,
p40.05) or for adult (TEI adult; r(49)¼�0.14, p40.05), or
childhood trauma exposure (CTQ total score; r(49)¼ 0.04,
p40.05). FA values also were extracted from probabilistic
masks of the left (illustrated in Figure 1b) and right
posterior cingulum, provided by the Johns Hopkins
University White Matter Tractography Atlas (Hua et al,
2008); the distribution of FA values for each group is
illustrated in Figure 2. The findings from two univariate
ANOVAs revealed between-group differences in FA for the
left (F1,49¼ 5.52; po0.05) and right posterior cingulum
(F1,49¼ 4.07; po0.05). However, correlations between pos-
terior cingulum FA (for either the left or right hemisphere)
and PTSD symptoms did not reach statistical significance
within either of the two diagnostic groups (p40.05).
PTSD+ participants, compared with controls, demon-

strated greater FA in one small (13mm3) voxel cluster in the
right lateral occipital gyrus (po0.05uncorrected; see Table 2).
These between-group differences were not statistically
significant after applying FWE correction, and evidenced a
medium effect size (Cohen’s d¼ 0.61).

DISCUSSION

The findings from this study revealed that participants with
PTSD demonstrated significantly lower white matter
integrity in posterior regions of the cingulum bundle
(proximal to bilateral hippocampi), relative to traumatized
participants without PTSD. A PTSD diagnosis corresponded
with lower FA within these regions, whereas no significant
associations were observed between current depressive
symptoms and cingulum FA. Notably, both groups had
comparably high levels of trauma exposure, and trauma
exposure in childhood or adulthood did not significantly
correspond with variability in white matter integrity.
These results suggest specific associations between PTSD
symptomatology and altered microstructural integrity of a

Table 2 Anatomical Locations of Between-Group Differences
(po0.05uncorrected) in FA between PTSD+ and Trauma Control
Participants

Anatomical
location

Cluster size
(mm3)

Z
maxa

Z max
xb

Z max
yb

Z max
zb

Controls4PTSD

L. cingulum 163 0.98 �24 �9 �32

R. cingulum 63 0.98 25 �27 �19

L. superior
longitudinal
fasciculus

11 0.96 �58 �29 �10

PTSD4controls

R. lateral occipital
cortex

13 0.96 29 �87 16

aZ max¼maximum Z-value.

bLocation of maximum Z-value (Z max) in MNI standard space.

Figure 1 (a) Voxel-wise t-test results indicating (in red) lower FA in the left and right posterior cingulum in PTSD+ participants compared with TC
participants (po0.05uncorrected). Results overlaid on MNI standard brain, displayed in radiological convention. Green voxels depict mean FA skeleton for the
entire sample. Left panel, sagittal section highlights (in red) lower FA of the left cingulum in participants with PTSD vs TCs. (b) Probabilistic mask of the left
posterior cingulum (as identified in the Johns Hopkins University White Matter Atlas; Hua et al, 2008), highlighted in blue.
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posterior region of the cingulum in a well-matched,
traumatized group of African-American women.
Prior morphometric studies have documented associa-

tions between traumatic stress and white matter fiber
volumes. For example, some findings indicated that, relative
to non-maltreated peers, maltreated children demonstrated
lower corpus callosum volumes (De Bellis et al, 2002;
Jackowski et al, 2008; Teicher et al, 2004). Stress-related
changes in white matter integrity have also been apparent in
a few studies of adults; acute stress and/or focal trauma has
been previously associated with lower FA in white matter
tracts adjacent to the hippocampus in earthquake survivors
without PTSD (Chen et al, 2011), and in the anterior
cingulate in individuals with PTSD (Abe et al, 2006; Kim
et al, 2005, 2006). However, it is plausible that the findings
from these studies reflect white matter integrity differences
related to stress or trauma exposure rather than PTSD
symptomatology/diagnosis, given that these studies lacked a
well-matched TC group. To our knowledge, this study is the
first to observe PTSD-specific differences in white matter in
adults with relatively high rates of trauma exposure, without
concomitant head injury.
Consistent with our hypotheses, our findings indicated

that a PTSD diagnosis was specifically associated
with reduced FA in an association fiber that connects the
cingulate gyrus to the entorhinal cortex: the cingulum
bundle. Compromised cingulum integrity directly affects
the quality of communication between the ACC and the

hippocampus, two constituent regions that have frequently
shown altered function in PTSD (for reviews, see Liberzon
and Martis, 2006; Shin et al, 2006). The hippocampus
actively participates in context-dependent learning, and is
responsible for encoding and retrieval of trauma-related
memories (Goosens, 2011). A functional hippocampus is
also required for normal extinction of conditioned fear
(Heldt et al, 2007; Ji and Maren, 2007; Radulovic and
Tronson, 2010), a critical inhibitory process that appears to
be disrupted in PTSD (Jovanovic and Ressler, 2010; Milad
et al, 2009; Norrholm et al, 2011; Shin and Handwerger,
2009). The ventral ACC, a region known to be involved with
response inhibition, is thought to interact with the
hippocampus to extinguish a previously learned fear
response (for a review, see Hartley and Phelps, 2010).
Degraded communication between the hippocampus and
ACC is likely to interfere with effective and appropriate
extinction of fear response, and thus, may serve to create or
maintain post-traumatic psychopathology.
These abnormalities may also give rise to impairments in

selective attention and explicit memory, phenomena that
characterize this disorder. Studies of older adults have
consistently observed that FA reductions in posterior
cingulum/parahippocampal regions are present in mildly
cognitively impaired individuals (including those in the
prodromal phase of Alzheimer’s disease), compared with
non-impaired, similar-aged peers (reviewed in Drago et al,
2011). Similarly, in healthy adults, lower FA in the posterior
cingulum has corresponded with poorer performance on
memory, attention, and executive function tasks (Kantarci
et al, 2011). Thus, the lower FA we observed in the posterior
cingulum in PTSD+ individuals may represent a mechan-
ism through which attention and memory disruptions, as
well as extinction deficiencies, may develop.
One potential explanation for the between-group differ-

ences we observed in cingulum white matter integrity relates
to premorbid vulnerability. Although the cross-sectional
nature of this study prohibits confirmation of this possibi-
lity, these FA abnormalities might have been present before
trauma exposure. Architectural deficits in the cingulum
could represent a diathesis for the development of
psychopathology that may, in part, be mediated by genetic
makeup. Consistent with this hypothesis, earlier studies of
psychiatrically healthy youths with variable family histories
of depression (Huang et al, 2011) and major depressive
disorder (Keedwell et al, 2012), have revealed significantly
lower cingulum FA in at-risk groups. Given the growing
evidence indicating that white matter development is under
the influence of genetic control (Chiang et al, 2009;
Kochunov et al, 2010), it is possible that the lower cingulum
FA observed in our sample of individuals with PTSD
represents a biological marker of genetic risk for this
disorder. Future prospective studies investigating genetic
factors, white matter integrity, and psychopathology are
warranted to confirm this possibility.
Although we included well-matched groups of traumatized

African-American female adults, an under-represented
group in the PTSD literature, some study limitations should
be noted. First, given that we did not measure onset of PTSD
symptoms, it was not possible to examine associations
between tract integrity and disease onset and chronicity.
Similarly, we did not use structured clinical interviews to

Figure 2 Distribution of FA values extracted from probabilistic masks of the
left and right posterior cingulum (as identified in the Johns Hopkins University
White Matter Atlas; Hua et al, 2008) within TC and PTSD+ groups.
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confirm a diagnosis of PTSD, potentially introducing error
variance related to response bias or demand characteristics.
In addition, a non-traumatized comparison group would be
ideal to further differentiate the potential effects of chronic
trauma from PTSD in this sample. However, the primary
concern across past studies of PTSD, and from our
perspective a critical limitation in the extant literature, was
the lack of a matched TC group. Our study was explicitly
designed to differentiate those with and without PTSD given
an equivalent level of lifetime trauma exposure. Although
our findings are consistent with our a priori hypotheses and
the existing literature, and moderate-to-large effect sizes
were observed, these findings did not survive conservative
FWE correction. Further, within-group correlations between
left or right posterior cingulum FA and PTSD symptoms did
not reach statistical significance. The two groups were
distinct in terms of PTSD symptoms, with little variability in
symptoms in the TC group (many of these participants’ total
PSS scores were at or near 0); this restricted range of values
is likely to contribute to nonsignificant correlational
findings. Another possibility for the lack of within-group
correlational findings is insufficient statistical power. There-
fore, it will be important for future research to replicate our
findings in an independent sample of traumatized indivi-
duals with and without PTSD.
Notably, our findings of between-group differences in FA

were not unique to one hemisphere. One possibility is that
PTSD-specific abnormalities of the cingulum may tend to be
bilateral, rather than unilateral, in nature. It is also
noteworthy that we did not observe between-group differ-
ences in FA for the largest white matter connection between
frontal and temporal regions, the uncinate fasciculus.
Microstructural abnormalities of the uncinate fasciculus have
been observed in social anxiety (Baur et al, 2011; Phan et al,
2009) and psychotic disorders, such as schizophrenia (Mandl
et al, 2012; Price et al, 2008). One putative explanation for
our lack of findings in this region is type I error; however,
given that no prior DTI studies have implicated this region in
PTSD, it is possible that architectural abnormalities of the
posterior cingulum are more unique to this disorder.

Conclusions

In conclusion, structural MRI studies sampling PTSD
populations have observed gray matter differences in ACC
(Thomaes et al, 2010) and hippocampal volumes (Woon
et al, 2010). Our study extends these observations to include
the PTSD-specific abnormalities in the cingulum, the white
matter fiber that connects the ACC and hippocampus.
Lower posterior cingulum white matter integrity may
represent a biological marker of PTSD, and is a worthy
target for investigation in individuals at risk for developing
this disorder, including individuals who hold genetic risk.
Further studies are warranted to explore the relationships
between cingulum integrity and genetic profiles, extinction/
inhibition of fear response, selective attention, and explicit
memory ability in PTSD populations.
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