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Chronic ethanol exposure leads to dysregulation of the hypothalamic-pituitary-adrenal axis, leading to changes in glucocorticoid release

and function that have been proposed to maintain pathological alcohol consumption and increase vulnerability to relapse during

abstinence. The objective of this study was to determine whether mifepristone, a glucocorticoid receptor antagonist, plays a role in

ethanol self-administration and reinstatement. Male, Long–Evans rats were trained to self-administer either ethanol or sucrose in daily

30min operant self-administration sessions using a fixed ratio 3 schedule of reinforcement. Following establishment of stable baseline

responding, we examined the effects of mifepristone on maintained responding and yohimbine-induced increases in responding for

ethanol and sucrose. Lever responding was extinguished in separate groups of rats and animals were tested for yohimbine-induced

reinstatement and corticosterone release. We also investigated the effects of local mifepristone infusions into the central amygdala (CeA)

on yohimbine-induced reinstatement of ethanol- and sucrose-seeking. In addition, we infused mifepristone into the basolateral amygdala

(BLA) in ethanol-seeking animals as an anatomical control. We show that both systemic and intra-CeA (but not BLA) mifepristone

administration suppressed yohimbine-induced reinstatement of ethanol-seeking, while only systemic injections attenuated sucrose-

seeking. In contrast, baseline consumption, yohimbine-induced increases in responding, and circulating CORT levels were unaffected.

The data indicate that the CeA plays an important role in the effects of mifepristone on yohimbine-induced reinstatement of ethanol-

seeking. Mifepristone may be a valuable pharmacotherapeutic strategy for preventing relapse to alcohol use disorders and, as it is FDA

approved, may be a candidate for clinical trials in the near future.
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INTRODUCTION

The link between stress and chronic relapsing alcohol-use
disorders (AUDs) has long been established in the alcohol
research field (Brown et al, 1995; Cooper et al, 1992; Koob
and Le Moal, 1997; Russell and Mehrabian, 1975; Sinha,
2001). Stress and re-exposure to cues or to the context
previously associated with drug availability are common
reasons for relapse to drug-seeking in humans and induce
reinstatement of drug-seeking in rodents (Brown et al, 1995;
Liu and Weiss, 2003; Shaham et al, 2000; Zironi et al, 2006).
Response to stress begins with the activation of the
hypothalamic-pituitary-adrenal (HPA) axis, leading to

increases in glucocorticoid (GC) release. GCs, which bind
to GC receptors (GRs), mediate adaptation to stress and
regulate termination of the stress response through negative
feedback at the level of the HPA axis (De Kloet and Reul,
1987; Diorio et al, 1993; Magarinos et al, 1987). Chronic
stress and impaired GR feedback have been proposed to
lead to the dysregulation of HPA axis activity. The feedback
response in the extrinsic HPA structures such as the
amygdala, hippocampus, and prefrontal cortex is regulated
by the GR, which, in the absence of hormone, resides in
the cytoplasmic compartment (Adzic et al, 2009). Upon
ligand binding, GR translocates to the nucleus, and
regulates neuronal target gene expression (Beato and
Sanchez-Pacheco, 1996), including downregulation of the
GR itself. However, under chronic stress this feedback
becomes deregulated, leading to the variety of maladaptive
syndromes such as anxiety and various forms of depressive
disorders (Sapolsky, 2000) and addiction, including alcohol
dependence (Koob, 2008). Indeed, chronic ethanol intake
leads to alterations in the homeostatic functioning of GCs
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(cortisol in humans, corticosterone (CORT) in rodents),
which can lead to neuroadaptations that increase suscept-
ibility to AUDs (Koob, 2008; Shaham and Hope, 2005).

Mifepristone, also known as RU486, is a derivative of the
19-norprogestin norethindrone and potently competes with
type II GRs and progesterone receptors (PRs). Antagonism
of GRs has been shown to modulate several physiological
systems, including the central nervous system, immune
response, metabolism, digestive, renal, and reproductive
systems (Lu et al, 2006). The combination of mifepristone
(Mifeprex) with misoprostol (Cytotec), a prostaglandin
analog, is currently FDA approved for the termination of
early pregnancy (Lu et al, 2006; Mahajan and London,
1997). The anti-GC activity of mifepristone has made it a
potential treatment for Cushing’s syndrome (Johanssen
and Allolio, 2007) and neurological and psychological
disorders (DeBattista and Belanoff, 2006; Gallagher and
Young, 2006; Gallagher et al, 2005, 2008; Wulsin et al, 2010;
Young, 2006). The drug has also been examined in the
self-administration of amphetamine (De Vries et al, 1996),
cocaine (Deroche-Gamonet et al, 2003; Fiancette et al,
2010), morphine (Mesripour et al, 2008), and ethanol, where
it has been shown to have either no effect or decrease
baseline ethanol consumption (Fahlke et al, 1995; Jacquot
et al, 2008; Koenig and Olive, 2004; Lowery et al, 2010;
O’Callaghan et al, 2005; Roberts et al, 1995; Yang et al,
2008). However, the role of mifepristone in stress-induced
reinstatement of ethanol-seeking is not known.

Intermittent footshock is often used to study stress-
induced reinstatement in rodents and effectively reinstates
heroin (Shaham et al, 1997), cocaine (Erb et al, 1998),
nicotine (Buczek et al, 1998), and ethanol-seeking (Le et al,
1998). Recently, the pharmacological stressor yohimbine
has been shown to be an alternative, not only in its ability
to reinstate drug-seeking, but also in its effects on corti-
cotrophin-releasing factor (CRF) production and activation
of the same circuitry as footshock (Funk et al, 2006).
Yohimbine is an alkaloid that acts as an a-2 adrenoceptor
antagonist, leading to the release of noradrenaline, which
stimulates the sympathetic nervous system and CORT
release. Yohimbine induces reinstatement of methamphet-
amine (Shepard et al, 2004), cocaine (Lee et al, 2004), heroin
(Banna et al, 2010), palatable food (Ghitza et al, 2006),
and ethanol-seeking (Le et al, 2005; Simms et al, 2011).
Furthermore, in humans recovering from AUDs, yohimbine
stress increases anxiety and cortisol levels and the cortisol
response is elevated in subjects with AUDs compared
with controls (Krystal et al, 1994, 1996). The main aim of
this study was to determine the role of the GR antagonist,
mifepristone, in yohimbine-induced reinstatement of etha-
nol-seeking. We present evidence which suggests that GRs
(and potentially PRs) in the central nucleus of the amygdala
(CeA) play a role in yohimbine-induced reinstatement of
ethanol-seeking.

MATERIALS AND METHODS

Subjects

Male, Long–Evans rats weighing 150–180 g upon arrival
(Harlan Indianapolis, IN) were individually housed in venti-
lated Plexiglas cages. Rats were housed in a climate-

controlled room on a 12 h light–dark cycle (lights on at
0700 h). Food and water were available ad libitum, except
for short periods during initial training, as outlined below.
All procedures were pre-approved by the Gallo Center
Institutional Animal Care and Use Committee and were in
accordance with NIH guidelines for the Humane Care and
Use of Laboratory Animals.

Drugs

Yohimbine (Sigma-Aldrich, St Louis, MO) was dissolved in
distilled water and administered at a dose of 2 mg/kg in a
volume of 0.5 ml/kg intraperitoneally (i.p.). Mifepristone
(Sigma-Aldrich) was suspended in 1% Tween-80 and 25%
b-cyclodextrin in saline and stirred for 2 h before systemic
injections (i.p.). For intra-amygdala infusions, mifepristone
was dissolved in 100% DMSO. Owing to the small size of the
central amygdala (CeA) and basolateral amygdala (BLA) and
to limit diffusion, the drug was infused in a volume of 0.3ml
over 2 min, after which the injectors were left in position for
an additional minute. To examine brain tissue for signs of
cell death following drug or vehicle delivery, a group of rats
was cannulated in the CeA (n¼ 3) and administered six
infusions of either vehicle (100% DMSO), mifepristone
(10mg) dissolved in DMSO, or phosphate-buffered saline
(PBS). For analysis, the tissue was then stained with Hoechst
33342 for labeling viable nuclei and quantified using the
Imaris Neuroscience software pack (v.7.1.1; Andor Technol-
ogy, Belfast, UK) (for details, see Supplementary materials
and Lin et al (2006)). Sucrose solutions, 5 or 10% (w/v)
(Fisher Scientific, Fairlawn, NJ), were prepared using filtered
water. The 10 and 20% ethanol (v/v) solutions were prepared
using 95% ethyl alcohol and filtered water. In the sucrose-
fade experiments, 10, 5, 3, and 1.5% sucrose, respectively,
were dissolved in 10% ethanol (w/v).

Self-Administration Apparatus and Training

Self-administration testing was conducted in standard
operant conditioning chambers (Coulbourn Instruments,
Allentown, PA). Details regarding this apparatus have been
described elsewhere (Richards et al, 2008). Long–Evans rats
(n¼ 12–14 per group) were trained to self-administer 10%
ethanol using a modified sucrose-fading procedure, as
described previously (Simms et al, 2010). Separate groups
of Long–Evans rats (n¼ 12–15 per group) were trained to
self-administer 5% sucrose, using a protocol similar to that
used for 10% ethanol, except for the substitution of 5%
sucrose as the reinforcer throughout the experiment. Two
additional groups of Long–Evans rats (n¼ 7–11 per group)
were trained to self-administer 20% ethanol without the use
of a sucrose-fading procedure, as described previously
(Simms et al, 2010). All animals were trained to self-
administer their respective solution in daily 30-min fixed
ratio 3 (FR3) sessions (0.1 ml per reinforcer) for a minimum
of 20 sessions. For ethanol-trained groups, animals not
reaching 0.25 g/kg intake per session were excluded from
further study. For sucrose-trained groups, animals not
reaching 40 active lever presses per session were excluded
from further study (for detailed methods, see Supplemen-
tary materials).
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Extinction

To extinguish lever pressing, rats continued with daily
operant sessions under FR3 conditions; however, active
lever pressing did not result in reinforcer delivery despite
light and tone cues being presented. Extinction training
continued until the rats responded with o10% of their
baseline pressing on the active lever for two consecutive
sessions. After this time, yohimbine-induced reinstatement
tests were performed with regular extinction sessions on
non-reinstatement days.

Effect of Mifepristone on Yohimbine-Induced
Reinstatement of 10% Ethanol- and 5% Sucrose-Seeking

Animals trained to self-administer 10% ethanol (n¼ 26) and
5% sucrose (n¼ 12) were extinguished as described above
and assigned to groups matched for their previous operant
self-administration and extinction responding. We used
the between-subjects factor of mifepristone dose (0, 5, or
30 mg/kg, i.p.) and the within-subjects factor of yohimbine
dose (0 and 2 mg/kg, i.p.) to assess the effect of mifepristone
on yohimbine-induced reinstatement of ethanol-seeking.
Animals received two injections on test days. The rats were
first injected with either mifepristone or its vehicle and
30 min later with either yohimbine or vehicle. Rats were
placed into the operant self-administration chambers
30 min after the second injection. Reinstatement sessions
were conducted under the same conditions as the extinction
sessions; successful FR3 responses at the previously active
lever resulted in light and tone cue presentation with
no reinforcer delivery. Inactive lever responding had no
programmed consequences as a measure of nonspecific
behavioral activation. Yohimbine and vehicle were admi-
nistered over two test sessions, 7 days apart for animals
trained to self-administer 10% ethanol with regular extinc-
tion sessions on the days between tests. Ethanol-trained rats
were tested for reinstatement only following the first
yohimbine exposure as we have recently shown that this
behavior decays with subsequent yohimbine challenges in
animals trained with a sucrose-fading procedure (Simms
et al, 2011). Animals trained to self-administer 5% sucrose
were tested as described above for 10% ethanol, with the
exception being that mifepristone was administered in
a Latin-square design (ie, each animal was assigned to one
mifepristone dose per week, with a vehicle challenge on
Wednesday and a yohimbine challenge on Friday). Each
sucrose animal received all the doses of mifepristone across
a 3-week test period.

CORT Measurements following Mifepristone and
Yohimbine Administration

To examine the effects of mifepristone and yohimbine on
circulating CORT levels, blood was collected from extin-
guished rats trained to respond for 10% ethanol (n¼ 12).
Tests were conducted across 2 weeks. Each animal received
either a mifepristone (30 mg/kg, i.p.) or vehicle injection,
followed 30 min later by a vehicle injection in week 1 and a
yohimbine (2 mg/kg) injection in week 2. At 30 min after the
yohimbine or vehicle treatment, the animals were anesthe-
tized with isoflurane and blood was collected from the

lateral tail vein. Samples were centrifuged at 4 1C for 13 min
at 8000 r.p.m., and then stored at �80 1C. Serum CORT
concentrations were determined by ELISA (Assay Designs,
Ann Arbor, MI).

Effect of Microinfusions of Mifepristone into the
Amygdala on Yohimbine-Induced Reinstatement
of 20% Ethanol- and 5% Sucrose-Seeking

We have recently shown that yohimbine-induced reinstate-
ment of 20% ethanol-seeking is stable across multiple
yohimbine test sessions, thereby making within-subject
experimental designs possible (Simms et al, 2011). There-
fore, we utilized this model to determine the role of the
amygdala in mifepristone’s effect on yohimbine-induced
reinstatement. Animals trained to self-administer 20%
ethanol were bilaterally implanted with guide cannulae
(C315G, 26 G; Plastics One) aimed dorsal to the CeA (n¼ 18;
AP �2.1, ML ±4.1, DV �6.0) and the BLA (n¼ 10; AP
�2.12, ML ±5.0, DV �6.5) according to Paxinos and
Watson (1997). In addition, one group of animals trained to
self-administer 5% sucrose (n¼ 12) was cannulated in the
CeA as a control for the ethanol experiments. For detailed
methods on the surgical and histological procedures, see
Supplementary materials. Following surgery, the animals
were given two additional weeks of reinforced self-admin-
istration to insure that the surgery did not disrupt respond-
ing. Lever responding was then extinguished over 12–18
sessions. The first week of reinstatement testing was carried
out without any mifepristone manipulation to deter-
mine baseline reinstatement levels. Yohimbine vehicle was
administered on Wednesday and yohimbine (2 mg/kg) was
administered on Friday with regular extinction sessions
run on non-test days. The rats were then assigned to groups
matched for their previous operant self-administration,
extinction, and week 1 reinstatement responding. Starting
with the second reinstatement week, we used the within-
subjects factors of mifepristone dose (0, 5, or 10 mg per
side for CeA animals; 0 or 10 mg per side and PBS for
BLA animals) and yohimbine dose (0 or 2 mg/kg, i.p.) to
assess the effect of mifepristone in the CeA and BLA on
yohimbine-induced reinstatement. Animals received an
intra-amygdala infusion and an i.p. injection on test days.
The rats were first infused with either mifepristone or its
vehicle and 10 min later they were injected with either
yohimbine or yohimbine vehicle. Rats were placed into the
operant self-administration chambers 30 min after the
yohimbine or vehicle injection for the reinstatement test
session. Each animal received all the doses of mifepristone
across a 3-week test period. Reinstatement sessions were
conducted under the same conditions as described above.

Effect of Mifepristone on 10% Ethanol and 5% Sucrose
Self-Administration and Yohimbine-Induced Increases
in 10% Ethanol and 5% Sucrose Self-Administration

The effects of mifepristone were also assessed on main-
tained responding for 10% ethanol (n¼ 12) and 5% sucrose
(n¼ 15), and yohimbine-induced increases in responding
for 10% ethanol (n¼ 11) and 5% sucrose (n¼ 14), following
a minimum of 20 FR3 operant sessions. For detailed
methods, see Supplementary material.
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Data Analysis

Statistical analyses were performed using SigmaStat version
3.5 (Systat Software, San Jose, CA). Lever presses for the
yohimbine reinstatement groups were analyzed by one- and
two-way analysis of variance (ANOVA) and paired t-test for
baseline reinstatement in the amygdala groups. CORT was
analyzed using a repeated-measures two-way ANOVA. Data
for the mifepristone self-administration studies in the
maintenance phase were analyzed by repeated-measures
one-way ANOVA. All ANOVA tests were followed by
Newman–Keuls post hoc test, where statistical significance
was po0.05. All data are presented as mean±SEM.

RESULTS

Effect of Mifepristone on Yohimbine-Induced
Reinstatement of 10% Ethanol-Seeking

Pretreatment with mifepristone significantly attenuated
yohimbine-induced reinstatement of 10% ethanol-seeking.
Statistical analysis of active lever pressing using a two-way
ANOVA revealed an overall effect of pretreatment dose of
mifepristone (0, 5, or 30 mg/kg) (F(2,47)¼ 3.67, po0.05)
and yohimbine dose (0 or 2 mg/kg) (F(1,47)¼ 24.40,
po0.001), but no interaction between mifepristone dose�
yohimbine dose (although there was a trend, p¼ 0.09). To
further explore the effect of mifepristone on yohimbine-
induced reinstatement, we performed a one-way ANOVA
focusing just on the effect of mifepristone following
yohimbine treatment. This analysis revealed a significant
effect of mifepristone (0, 5, or 30 mg/kg) (F(2,23)¼ 3.85,
po0.05), and post hoc analysis revealed that there was a
significant difference between active lever presses for
the vehicle and the 30 mg/kg doses (po0.05; Figure 1a).
Mifepristone pretreatment had no effect on responding on
the active lever following yohimbine vehicle delivery.
Statistical analysis of inactive lever pressing using a two-
way ANOVA revealed an overall effect of yohimbine dose
(0 or 2 mg/kg) (F(1,47)¼ 9.06, po0.01; Table 1), but no

effect of pretreatment dose of mifepristone or interaction
between mifepristone dose� yohimbine dose. Yohimbine-
induced increases in inactive lever presses have been
reported in the literature (Le et al, 2011; Marinelli et al,
2007); however, these effects are inconsistent as our group
and others have failed to find such an effect (Le et al, 2005;
Nielsen et al, 2011; Richards et al, 2008). More evidence of
this inconsistency is offered in this study, where we show
that inactive lever responding is increased only in the
animals trained to respond for 10% ethanol, and not 20%
ethanol or 5% sucrose. Two ethanol-trained animals were
excluded from statistical analysis: one failed to extinguish
and the other failed to consume 0.25 g/kg per session in the
maintenance phase.

Effect of Mifepristone on Yohimbine-Induced
Reinstatement of 5% Sucrose-Seeking

Pretreatment with mifepristone attenuated yohimbine-
induced reinstatement of sucrose-seeking. Statistical analy-
sis of active lever pressing using repeated-measures
two-way ANOVA revealed an overall effect of yohimbine
dose (0 or 2 mg/kg) (F(1,53)¼ 14.18, po0.01), but no effect
of mifepristone pretreatment and no interaction between
mifepristone dose� yohimbine dose (although there was a
strong trend, p¼ 0.07). To further explore the effect of
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Figure 1 Systemic administration of the glucocorticoid receptor (GR) antagonist mifepristone significantly attenuates yohimbine-induced reinstatement of
ethanol- and sucrose-seeking, but does not affect sera corticosterone (CORT) levels. Animals were pretreated with mifepristone (0, 5, or 30mg/kg) to
examine its effects on yohimbine- (2mg/kg, intraperitoneally (i.p.)) induced reinstatement of ethanol- and sucrose-seeking. (a) Yohimbine significantly
reinstates active lever responding in ethanol-trained rats, an effect that is attenuated by mifepristone (#po0.05 comparing yohimbine reinstatement
following mifepristone vehicle pretreatment to reinstatement following 30mg/kg mifepristone pretreatment). (b) Yohimbine significantly reinstates active
lever responding in sucrose-trained rats, an effect that is attenuated by mifepristone (#po0.05 comparing yohimbine reinstatement following mifepristone
vehicle and 5mg/kg pretreatment to reinstatement following 30mg/kg mifepristone pretreatment). (c) Mifepristone pretreatment (30mg/kg) has no effect
on yohimbine-induced increases in CORT. Data are presented as mean±SEM (n¼ 24 for ethanol reinstatement study, n¼ 9 for sucrose reinstatement
study, and n¼ 12 for CORT study). Statistical analysis was performed by analysis of variance (ANOVA) with Newman–Keuls post hoc testing.

Table 1 Inactive Lever Presses in Groups of Ethanol-Extinguished
Rats given Mifepristone prior to Yohimbine (or Vehicle)

Mifepristone
(mg/kg)

Inactive lever presses

Vehicle group Yohimbine group

Vehicle 0.63±0.28 2.13±0.68

5 0.38±0.28 1.25±0.44

30 0.25±0.17 0.63±0.28
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mifepristone on yohimbine-induced reinstatement, we
performed a repeated-measures one-way ANOVA focusing
just on the effect of mifepristone following yohimbine
treatment. This analysis revealed a significant effect of
mifepristone (0, 5, or 30 mg/kg) (F(2,26)¼ 4.14, po0.05),
and post hoc analysis revealed that there were significant
differences between active lever presses for both vehicle and
the 5 mg/kg doses compared to the 30 mg/kg dose (po0.05;
Figure 1b). Mifepristone pretreatment had no effect on
responding on the active lever following yohimbine vehicle
delivery. Statistical analysis of inactive lever pressing using
a repeated-measures two-way ANOVA for the sucrose-
trained rats revealed no overall effect of yohimbine or
mifepristone treatment (data not shown). Five sucrose-
trained animals were excluded from statistical analysis:
three failed to reinstate in any of the test weeks and two
others failed to meet the acquisition criteria (o40 presses)
in the maintenance phase.

The Effect of Mifepristone on Blood CORT Levels

Mifepristone had no effect on yohimbine-induced increases
in CORT. Statistical analysis of sera CORT, using a repeated-

measures two-way ANOVA, revealed an overall effect of
yohimbine treatment (F(1,23)¼ 14.22, po0.01), but no
overall effect of mifepristone pretreatment or yohimbine�
mifepristone interaction (Figure 1c).

Effect of Microinfusions of Mifepristone into the
Amygdala on Yohimbine-Induced Reinstatement
of 20% Ethanol- and 5% Sucrose-Seeking

Microinfusions of mifepristone into the CeA significantly
attenuated yohimbine-induced reinstatement of 20% etha-
nol-seeking. A paired t-test comparing the baseline vehicle
and baseline yohimbine reinstatement levels revealed that
yohimbine treatment significantly increased responding
on the active lever (po0.01; Figure 2a). Statistical ana-
lysis using a repeated-measures two-way ANOVA of active
lever pressing for the ethanol-trained animals pretreated
with mifepristone revealed an overall effect of pretreat-
ment dose of mifepristone (0, 5, or 10 mg) (F(2,65)¼ 4.09,
po0.05), yohimbine dose (0 or 2 mg/kg) (F(1,65)¼ 10.50,
po0.01), and a significant interaction between mifepristone
dose� yohimbine dose (F(2,65)¼ 4.02, po0.05). Post hoc
analysis revealed that yohimbine significantly reinstated
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Figure 2 Intra-central amygdala (CeA), but not basolateral amygdala (BLA), administration of mifepristone significantly attenuates yohimbine-induced
reinstatement of ethanol-seeking. Animals were pretreated with mifepristone (0, 5, or 10 mg) into the CeA and BLA to examine its effects on yohimbine-
(2mg/kg, intraperitoneally (i.p.)) induced reinstatement of ethanol-seeking. (a) Yohimbine significantly reinstates active lever responding (N, po0.01
comparing baseline vehicle to baseline yohimbine: ***po0.001; **po0.01 compared with yohimbine vehicle treatment for animals pretreated with
mifepristone vehicle and 5mg, respectively), an effect that is dose-dependently attenuated by mifepristone (###po0.001 and ##po0.01 comparing
yohimbine reinstatement following mifepristone vehicle and 5 mg pretreatment, respectively, to reinstatement following 10 mg mifepristone pretreatment).
(b) Schematic representations adapted from Paxinos and Watson of the injection cannulae placements in coronal sections of the CeA of rats included in the
data analysis. (c) Intra-BLA mifepristone has no effect on yohimbine-induced reinstatement of active lever responding (po0.01 comparing baseline vehicle to
baseline yohimbine; *po0.05 comparing phosphate-buffered saline (PBS) vehicle to PBS yohimbine). (d) Schematic representations adapted from Paxinos
and Watson of the injection cannulae placements in coronal sections of the BLA of rats included in the data analysis. Data are presented as mean active lever
presses±SEM (n¼ 11 for CeA and n¼ 8 for BLA). Statistical analysis was performed by paired t-test for baseline and PBS data and repeated-measures two-
way analysis of variance (ANOVA) with Newman–Keuls post hoc testing for animals pretreated with mifepristone.
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ethanol-seeking in the groups that were pretreated with 0
and 5mg of mifepristone (po0.001 and o0.01, respectively;
Figure 2a), but not in those that received 10 mg. Post hoc
analysis also revealed there was a significant difference in
the active lever pressing following yohimbine challenge
between the groups pretreated with mifepristone vehicle
and mifepristone (10 mg, po0.001; Figure 2a). Mifepristone
pretreatment had no effect on responding on the active
lever following yohimbine vehicle administration. Statistical
analysis of inactive lever pressing using repeated-measures
two-way ANOVA revealed no significant differences (data
not shown). Histological placements are shown in Figure 2b.
Seven animals were excluded from the CeA studies: one
failed to consume 0.25 g/kg per session in the maintenance
phase, one failed to extinguish, one failed to reinstate in any
of the test weeks, and four others were excluded owing to
cannula placements outside the CeA.

Microinfusions of mifepristone into the BLA had no effect
on yohimbine-induced reinstatement of 20% ethanol-
seeking. A paired t-test comparing the baseline vehicle
and baseline yohimbine reinstatement levels revealed that
yohimbine treatment significantly increased responding on
the active lever (po0.01; Figure 2c). Statistical analysis
using a repeated-measures two-way ANOVA of active lever
pressing for the ethanol-trained animals pretreated with
mifepristone revealed an overall effect of yohimbine dose
(0 or 2 mg/kg) (F(1,31)¼ 19.04, po0.01; Figure 2c), but no
effect of pretreatment dose of mifepristone (0 or 10 mg) or
interaction between mifepristone dose� yohimbine dose.

Mifepristone pretreatment had no effect on responding on
the active lever following yohimbine vehicle administration.
Mifepristone and vehicle infusions into the BLA caused a
dramatic decrease in reinstatement when compared with the
baseline reinstatement level. Therefore, to verify that the
drop in responding was not caused by the DMSO vehicle, in
the third week of reinstatement testing, PBS was infused
before yohimbine vehicle and yohimbine administration.
A paired t-test of the active lever responding revealed that
yohimbine-induced a significant reinstatement (po0.05;
Figure 2c) following the PBS infusion. The reinstatement
was similar in magnitude to the reinstatement following
DMSO or mifepristone pretreatment, suggesting that the
infusion of any solution into the BLA can decrease the
magnitude of the reinstatement. Statistical analysis of
inactive lever pressing using repeated-measures two-way
ANOVA revealed no significant differences (data not
shown). Histological placements are shown in Figure 2d.
Two animals were excluded from the BLA studies owing to
failure to complete the dose–response due to health issues
perhaps caused by BLA infusions.

Six microinfusions of 100% DMSO and mifepristone
(10 mg) into the CeA did not result in increased cell death
when compared with PBS controls. Statistical analysis using
a one-way ANOVA of viable nuclei in the three treatment
groups revealed no significant effects (Figure 3e). This
extends previous findings in which a 50% DMSO solution
infused into the amygdala failed to produce signs of cell
death (Lin et al, 2006).
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Figure 3 Intra-central amygdala (CeA) infusions of dimethylsulfoxide (DMSO) or mifepristone do not cause cell death in the amygdala. (a) Representative
slide for amygdala slices with cannula and CeA highlighted. Morphological studies were conducted in CeA sections of rats pretreated with six microinfusions
of (b) phosphate-buffered saline (PBS), (c) 100% DMSO, and (d) mifepristone dissolved in 100% DMSO using Hoechst 33342 staining 24 h after the last
infusion. (e) Quantification of viable cells was performed by the Imaris Neuroscience software pack. Data are presented as mean±SEM, (n¼ 3). Statistical
analysis was performed by one-way analysis of variance (ANOVA).
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Microinfusions of mifepristone into the CeA had no effect
on yohimbine-induced reinstatement of 5% sucrose-seek-
ing. A paired t-test comparing the baseline vehicle and
baseline yohimbine reinstatement levels revealed that
yohimbine treatment significantly increased responding
on the active lever (po0.01; Figure 4). Statistical analysis
of active lever pressing for the sucrose-trained animals
pretreated with mifepristone using a repeated-measures
two-way ANOVA revealed an overall effect of yohimbine
dose (0 or 2 mg/kg) (F(1,59)¼ 10.60, po0.05; Figure 4),
but no effect of mifepristone pretreatment or interaction
between mifepristone dose� yohimbine dose. Mifepristone
pretreatment had no effect on responding on the active
lever following yohimbine vehicle administration. Statistical
analysis of inactive lever pressing using repeated-measures
two-way ANOVA revealed no significant differences (data
not shown). Two animals were excluded from the sucrose
CeA studies: one failed to complete the dose–response due
to problems with cannula patency and one failed to rein-
state in any of the test weeks.

Effect of Mifepristone on 10% Ethanol and 5% Sucrose
Self-Administration

To examine the effects of mifepristone on maintained
responding for both ethanol and sucrose, we administered
mifepristone (5, 10, or 30 mg/kg, i.p.) or vehicle 30 min
before the onset of regular, reinforced self-administration
sessions. We found that mifepristone had no effect on the
responding for either solution. Repeated-measures one-way
ANOVA for ethanol-trained animals revealed no significant
effects of treatment on active lever presses (Figure 5a),
inactive lever presses (data not shown), or ethanol intake
(g/kg) (Figure 5b). Repeated measures one-way ANOVA for
sucrose-responding animals revealed no significant effects

of treatment on active lever presses (Figure 5c), inactive
lever presses (data not shown), or sucrose intake (g/kg)
(Figure 5d). One animal was excluded from the ethanol
group owing to failure to consume 0.25 g/kg per session.

Effect of Mifepristone on Yohimbine-Induced Increases
in 10% Ethanol and 5% Sucrose Intake

To examine the effects of mifepristone on yohimbine-
induced increases in responding for ethanol and sucrose,
mifepristone (5 or 30 mg/kg, i.p.) or vehicle was adminis-
tered 30 min before yohimbine administration, which was
delivered 30 min before the onset of regular, reinforced self-
administration sessions. We found that mifepristone had no
effect on the increases in responding following yohimbine
challenge for either solution. Repeated-measures one-
way ANOVA for the ethanol-trained animals revealed a
significant effect of yohimbine treatment on active lever
responding (F(3,39)¼ 9.12, po0.001) and ethanol intake
(g/kg) (F(3,39)¼ 13.59, po0.001), but no effect on inactive
lever responding (data not shown). Post hoc analysis
revealed that animals responded on the active lever and
consumed significantly more ethanol following the yohim-
bine challenge when compared with baseline, regardless
of mifepristone pretreatment dose (Figure 6a and b).
Repeated-measures one-way ANOVA for the sucrose-
trained animals revealed a significant effect of yohimbine
treatment on active lever responding (F(3,43)¼ 9.58, po0.001)
and sucrose intake (g/kg) (F(3,43)¼ 11.58, po0.001), but no
effect on inactive lever responding (data not shown). Post hoc
analysis revealed that animals responded on the active lever
and consumed significantly more sucrose following the
yohimbine challenge when compared with baseline, regardless
of mifepristone pretreatment dose (Figure 6c and d). One
animal was excluded from each group owing to failure to meet
the acquisition criteria.

DISCUSSION

The major finding of this study is that mifepristone,
delivered both systemically and directly into the CeA, but
not into the BLA, attenuates yohimbine-induced reinstate-
ment of ethanol-seeking, while failing to decrease circulat-
ing CORT levels. We also found that the high dose of
mifepristone can block yohimbine-induced reinstatement of
sucrose-seeking when delivered systemically, but not into
the CeA. It has previously been shown that yohimbine-
induced reinstatement of ethanol-seeking can be modulated
by many receptors, including: CRF (Marinelli et al, 2007),
orexin (Richards et al, 2008), serotonin (Le et al, 2009),
neuropeptide Y (Cippitelli et al, 2010), peroxisome pro-
liferator-activated receptor-g (Stopponi et al, 2011), adre-
noreceptors (Le et al, 2011), and delta-opioid receptors
(Nielsen et al, 2011). This study is the first, to our
knowledge, to indicate that GRs play a role in the
reinstatement behavior elicited by yohimbine. Mifepristone
is a potent antagonist at both GR and PR, with binding
affinity far greater than the endogenous steroids, CORT and
progesterone (Sitruk-Ware and Spitz, 2003). It seems likely
that the effects of mifepristone on yohimbine-induced
reinstatement of ethanol- and sucrose-seeking are mediated
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Figure 4 Intra-central amygdala (CeA) administration of mifepristone
has no effect on yohimbine-induced reinstatement of sucrose-seeking.
Animals were pretreated with mifepristone (0, 5, or 10 mg) into the CeA to
examine its effects on yohimbine- (2mg/kg, intraperitoneally (i.p.)) induced
reinstatement of sucrose-seeking. Mifepristone had no effect on yohimbine-
induced reinstatement of active lever responding (N, po0.01 comparing
baseline vehicle to baseline yohimbine). Data are presented as mean active
lever presses±SEM (n¼ 10). Statistical analysis was performed by paired
t-test for baseline data and repeated-measures two-way analysis of variance
(ANOVA) for animals pretreated with mifepristone.
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by antagonism of the stress hormone, CORT, and less likely
by progesterone. To date, the role of progesterone in
drug-seeking behaviors has been mixed. Progesterone has
been shown to be negatively correlated with drug-seeking
behavior in cocaine-trained, female rats (Anker et al, 2007;
Feltenstein et al, 2009; Larson et al, 2007). However, it has
been shown that the progesterone metabolite, allopregna-
nolone, can have both a stimulatory or inhibitory effect
on ethanol intake depending on the dose administered and
the drinking paradigm used (Ford et al, 2005; Janak et al,
1998; Morrow et al, 2001). Our group (Simms et al, 2011)
and others (Marinelli et al, 2007) have previously shown
that yohimbine produces significant increases in circula-
ting CORT levels and, in the present study, we show that
yohimbine administration in ethanol-extinguished rats
causes a nonsignificant increase in progesterone levels
(Supplementary Figure 1). However, the levels in the male
rats described here remain very low and are quite close
to basal levels reported in the literature (Andersen et al,
2004, 2005; Auger et al, 2006). Additional experiments
with more selective ligands for GR and PR are necessary
to fully determine the mechanism of action for mifepris-
tone’s effect on yohimbine-induced reinstatement of
ethanol-seeking.

The two stressors known to elicit reinstatement of
ethanol-seeking behavior, intermittent footshock and
yohimbine, have been shown to activate the BLA, CeA,
and nucleus accumbens (NAc), and also induce CRF mRNA
in the dorsal region of the bed nucleus of the stria terminalis
(BNST), as well as in the CeA (Funk et al, 2006). Of these
sites, it has been demonstrated that mifepristone decreases
neuronal activity in the CeA (but not the BLA), where it
acts to suppress the stress response elicited by the forced
swim test (Wulsin et al, 2010). Importantly, Wulsin and
co-workers also found no effect of mifepristone on the
stress-induced response in the paraventricular nucleus of
the hypothalamus, which points to extrahypothalamic site
of action for its anti-stress and anti-depressant effects.
CORT binding has been shown to negatively regulate HPA
axis function in the hypothalamus, while it has stimulatory
effects in extrahypothalamic regions, including the CeA
(Makino et al, 1994; Pastor et al, 2008). Furthermore,
inactivation of the CeA, but not the BLA, has been shown to
block footshock-induced reinstatement of cocaine-seeking
(McFarland et al, 2004). In agreement with this literature,
the data presented here demonstrates that mifepristone
infused directly into the CeA, but not the BLA, abolishes
yohimbine-induced reinstatement of ethanol-seeking. Large
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Figure 5 Mifepristone has no effect on baseline operant responding for ethanol or sucrose. Mifepristone (0, 5, 10, and 30mg/kg) treatment has no effect
on (a) active lever pressing and (b) consumption (g/kg per 30min) in animals trained to respond for 10% ethanol. Similarly, mifepristone treatment has no
effect on (c) active lever pressing and (d) consumption (g/kg per 30min) in animals trained to respond for 5% sucrose. Data are presented as mean±SEM
(n¼ 11 for ethanol-trained rats and n¼ 15 for sucrose-trained rats). Statistical analysis was performed by repeated-measures one-way analysis of variance
(ANOVA).
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numbers of GRs are expressed in the CeA (Reul and de
Kloet, 1985; Sapolsky et al, 1983) and these receptors
have been shown to directly mediate anxiety-like behaviors
in rodents (Myers and Greenwood-Van Meerveld, 2007,
2010). The current explanation is that the effects of GRs in
the CeA are mediated by CRF, as intracerebral ventricular
administration of a selective CRF-R1 antagonist blocks the
long-term anxiogenic effects of CORT exposure in the CeA
(Myers and Greenwood-Van Meerveld, 2010). Although GRs
are primarily described as nuclear receptors, which require
time to translocate from the cytoplasmic compartment to
the nucleus to alter gene expression (Beato and Sanchez-
Pacheco, 1996), there are several recent studies which
indicate that there may be fast-acting non-genomic effects
of GRs, as well as for mineralocorticoid receptors (MRs)
(for a review, see Groeneweg et al (2011)). Evidence for
the existence of GR and MR near the membrane has been
verified using synaptosome extracts (Komatsuzaki et al,
2005; Qiu et al, 2010; Wang and Wang, 2009) and using
electron microscopy of the neuronal membrane (Johnson

et al, 2005; Prager et al, 2010). The presence of GRs near the
membrane may account for the rapid behavioral effects seen
following both the systemic and intra-CeA administration
(30 and 10 min pretreatment, respectively) of mifepristone
in this study. We hypothesize that membrane-associated
GRs, on CRF-R1-containing neurons of the CeA, modulate
yohimbine-induced reinstatement of ethanol-seeking. In
addition, future studies exploring the effects of the MR in
models of stress-induced ethanol-seeking could potentially
yield interesting data.

Chronic exposure to high levels of GCs in the brain,
similar to that caused by long-term ethanol exposure,
has been shown to upregulate CRF expression in the amyg-
dala (Koob, 2008; Makino et al, 1994, 2002; Shepard et al,
2000; Swanson and Simmons, 1989). Blocking GRs in the
amygdala prevents the excitation of CRF-containing neu-
rons (Gray and Bingaman, 1996), which may decrease the
CRF activation necessary for reinstatement. Drugs of abuse
(including alcohol) and stress have been shown to enhance
excitatory synaptic strength, long-term potentiation (LTP),
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Figure 6 Mifepristone does not attenuate yohimbine-induced increases in ethanol and sucrose responding. Yohimbine (2mg/kg) significantly increases
operant responding for and consumption (g/kg per 30min) of (a, b) ethanol and (c, d) sucrose (***po0.001 compared with baseline responding), while
mifepristone pretreatment has no effect on yohimbine-induced increases in ethanol and sucrose responding or consumption. Data are presented as
mean±SEM (n¼ 10 for ethanol-trained rats and n¼ 11 for sucrose-trained rats). Statistical analysis was performed by repeated-measures one-way analysis
of variance (ANOVA).
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at ventral tegmental area (VTA) dopamine neurons (Saal
et al, 2003) while inhibiting LTP in inhibitory g-aminobu-
tyric acid cells in the same brain region (Niehaus et al,
2010). Taken together, these studies demonstrate how a
state of increased excitation and decreased inhibition can
lead to a hyperactivation of dopamine neurons that may
facilitate later drug self-administration and reinstatement.
Interestingly, both Saal and Niehaus showed that the VTA
LTP effects of stress are blocked by mifepristone treatment
before stress exposure. In this study, a similar phenomenon
could be occurring in the CeA, as mifepristone blocks the
neuronal activation elicited by yohimbine in ethanol-
trained animals and prevents further activation of the
HPA axis, although further studies are needed to establish
this effect. Although it has been shown that CRF, but not
CORT, modulates footshock-induced reinstatement of
ethanol-seeking (Le et al, 2000), the effects of mifepristone
on footshock-induced reinstatement have yet to be exam-
ined. However, it is possible that GR blockade may also
decrease or abolish footshock-induced reinstatement by
decreasing activation in the amygdala. Work from several
other laboratories has shown that reinstatement of drug-
seeking is dependent on the extended amygdala. The
extended amygdala consists of the BNST, CeA, and shell
of the NAc (Alheid et al, 1998). This system is important
in several stress-related components of drug with-
drawal (Smith and Aston-Jones, 2008), and inactivation of
CeA, BNST, shell of the NAc, or VTA has been shown to
block footshock-induced reinstatement of cocaine-seeking
(McFarland et al, 2004).

An unexpected finding in this study is that while systemic
administration of mifepristone attenuated yohimbine-in-
duced reinstatement of sucrose-seeking, microinfusions
directly into the CeA had no effect. These data indicate
that while GRs are important for the expression of this
behavior in both ethanol- and sucrose-trained animals,
different mechanisms and brain pathways govern the rein-
statement behavior in the two groups. We have previously
shown that animals trained to self-administer both 10
and 20% ethanol have an exaggerated CORT response to
yohimbine when compared with sucrose controls (Simms
et al, 2011). We have also shown that yohimbine treatment
alters receptor signaling in the pooled midbrain (including
the amygdala) of ethanol-experienced animals: changes
that are not present in ethanol-naı̈ve animals (Nielsen et al,
2011). Moreover, clinical evidence suggests that the cortisol
response to yohimbine challenge in patients with a history
of ethanol dependence is elevated compared with controls
(Krystal et al, 1994, 1996). Funk et al (2006) have elegantly
demonstrated the brain activation patterns of intermittent
footshock and yohimbine administration in ethanol-naı̈ve
animals. Perhaps, an extension of these studies examining
the brain activation patterns in animals trained to self-
administer ethanol and sucrose would provide additional
information about the differential effects observed here.

Although systemic mifepristone was effective in decreas-
ing yohimbine-induced reinstatement, it had no effect on
the self-administration of ethanol or sucrose, even when
yohimbine was administered to increase ethanol consump-
tion. The literature is somewhat mixed when examining the
effects of mifepristone on ethanol consumption as some
authors have reported decreases in consumption following

drug treatment (Koenig and Olive, 2004; O’Callaghan et al,
2005), while others have reported no change (Fahlke et al,
1994, 1995, 1996; Lowery et al, 2010; Yang et al, 2008).
Koenig and Olive (2004) demonstrated significant decreases
in consumption using a limited-access, two-bottle-choice
paradigm; however, it is important to note that the animals
were fluid restricted for 23 h a day (O’Callaghan et al, 2005).
Water restriction has been shown to activate the HPA axis
and elevate CORT in rats (Aguilera et al, 1993; Kiss et al,
1994). Therefore, the decreases in consumption may have
been due to artificially elevated GR function in this chronic
stress state. In agreement with this analysis, it has been
shown that while mifepristone has no effect on baseline
drinking in mice, it blocks stress-induced increases in
drinking caused by daily vehicle injections (O’Callaghan
et al, 2005). In conditions where stress is limited, mifepri-
stone has no effect on ethanol intake (Fahlke et al, 1994,
1995, 1996; Lowery et al, 2010; Yang et al, 2008).

Somewhat surprisingly, mifepristone had no effect on
yohimbine-induced increases in consumption. It has been
previously shown that these increases are modulated by
extrahypothalamic mechanisms, specifically CRF (Marinelli
et al, 2007) and serotonin systems (Le et al, 2009). These
investigators have demonstrated that serotonin and CRF
systems interact within the MRN to modulate reinstate-
ment to ethanol-seeking (Le et al, 2002). Interestingly,
yohimbine has actions as a serotonin, 5-hydroxytryptamine
1A (5-HT1A), receptor agonist where it decreases cell firing
and release in a manner similar to intra-MRN infusions of
CRF and the selective 5-HT1A receptor agonist 8-OH-
DPAT, which also reinstate ethanol-seeking (Le et al, 2002).
Finally, yohimbine-induced increases in drinking and rein-
statement have been shown to be attenuated with the
5-HT1A antagonist WAY 100635 (Le et al, 2009). We have
demonstrated that mifepristone attenuates yohimbine-
induced reinstatement without affecting yohimbine-induced
increases in responding, which indicates that the drug
may be modulating ethanol reinstatement without effecting
serotonin systems.

It is essential that pharmacotherapies be developed for
AUDs with the primary aim of reducing relapse rates. Anti-
GC agents, such as mifepristone, may have value in the
treatment of AUDs because they may have the potential
to reset a dysregulated HPA axis following treatment.
Animal and human studies have shown that brief treatment
with mifepristone upregulates GR function and restores
normal HPA feedback (Belanoff et al, 2001; Young, 2006),
decreases depression-like behavior as measured by the
forced swim test (Wulsin et al, 2010), and attenuates the
cognitive deficits caused by ethanol withdrawal (Jacquot
et al, 2008). Mifepristone may be a strong candidate for
clinical trials because it is FDA approved and has exhibited
a limited toxicity profile following brief treatment (Sitruk-
Ware and Spitz, 2003).
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