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The estrogen hypothesis of schizophrenia suggests that estrogen is a natural neuroprotector in women and that exogenous estrogen may

have antipsychotic potential, but results of clinical studies have been inconsistent. We have recently shown using the latent inhibition (LI)

model of schizophrenia that 17b-estradiol exerts antipsychotic activity in ovariectomized (OVX) rats. The present study sought to

extend the characterization of the antipsychotic action of 17b-estradiol (10, 50 and 150 mg/kg) by testing its capacity to reverse

amphetamine- and MK-801-induced LI aberrations in gonadally intact female and male rats. No-drug controls of both sexes showed LI, ie,

reduced efficacy of a previously non-reinforced stimulus to gain behavioral control when paired with reinforcement, if conditioned with

two but not five tone-shock pairings. In both sexes, amphetamine (1mg/kg) and MK-801 (50 mg/kg) produced disruption (under weak

conditioning) and persistence (under strong conditioning) of LI, modeling positive and negative/cognitive symptoms, respectively. 17b-
estradiol at 50 and 150mg/kg potentiated LI under strong conditioning and reversed amphetamine-induced LI disruption in both males

and females, mimicking the action of typical and atypical antipsychotic drugs (APDs) in the LI model. 17b-estradiol also reversed MK-

induced persistent LI, an effect mimicking atypical APDs and NMDA receptor enhancers, but this effect was observed in males and OVX

females but not in intact females. These findings indicate that in the LI model, 17b-estradiol exerts a clear-cut antipsychotic activity in both
sexes and, remarkably, is more efficacious in males and OVX females where it also exerts activity considered predictive of

anti-negative/cognitive symptoms.
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INTRODUCTION

Epidemiological and life cycle studies have indicated that
women with schizophrenia have a more favorable illness
course than men during reproductive years, characterized
by later onset of symptoms, lower symptom severity and
better response to antipsychotic drugs (APDs); however, the
menopausal period is associated with increased symptom
severity and reduced sensitivity to treatment (Hafner, 2003;
Hafner et al, 1989; Kulkarni, 2009; Kulkarni et al, 1996,
2008b; Riecher-Rossler and de Geyter, 2007; Seeman and
Lang, 1990). This has led to the suggestion that exogenous
estrogen may have therapeutic potential in women with
schizophrenia, but results of clinical studies have been
inconclusive (Akhondzadeh et al, 2003; Korhonen et al,
1995; Kulkarni et al, 2008a; Kulkarni et al, 1996; Kulkarni

et al, 2008b; Kulkarni et al, 2001; Mortimer, 2007; Riecher-
Rossler, 2002; Riecher-Rossler and de Geyter, 2007; Riecher-
Rossler and Hafner, 1993; Riecher-Rossler et al, 1994).
Interestingly, estradiol improved psychotic symptoms also
in schizophrenic men (Kulkarni, 2009).
Support for the antipsychotic action of estrogen can be

derived from animal studies showing that 17b-estradiol
blocks/reduces the behavioral response to the pro-psychotic
dopaminergic drugs, amphetamine and cocaine, (Becker
and Beer, 1986; Becker and Rudick, 1999; Bedard et al, 1983;
Bedard et al, 1978; Gordon and Diamond, 1981; Hafner
et al, 1991; Naik et al, 1978; Segarra et al, 2009) and
potentiates APD-induced catalepsy (Bedard et al, 1982;
Chiodo et al, 1979; De Ryck et al, 1982; Di Paolo et al, 1979;
Nicoletti et al, 1983; Palermo-Neto and Dorce, 1990). 17b-
estradiol has been also shown to improve cognitive
performance in humans and rodents of both sexes (Barnes
et al, 2006; Daniel and Bohacek, 2010; Frick, 2009; Gogos
et al, 2006; Kitamura et al, 2009; Packard et al, 1996;
Sherwin et al, 2009; Soderstrom et al, 2009). Such action
would be beneficial in schizophrenia which is characterized
by profound cognitive deficits (Barch and Carter, 2008).Received 10 March 2010; revised 25 May 2010; accepted 27 May 2010
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To date, the study of the antipsychotic capacity of estrogen
in formal animal models of schizophrenia has been limited
(Chavez et al, 2009; Gogos et al, 2010; Hafner et al, 1991;
Sutcliffe et al, 2008; Van den Buuse and Eikelis, 2001).
We have recently provided evidence for antipsychotic

properties of estrogen using the latent inhibition (LI) model
of schizophrenia (Arad and Weiner 2008, 2009, 2010). LI is
one of the best-documented cross-species manifestations of
attentional selectivity in associative learning (Lubow, 1989;
Mackintosh, 1975), whereby repeated non-reinforced pre-
exposure to the to-be-conditioned stimulus interferes with
its subsequent efficacy to generate conditioned response.
Amphetamine-induced disruption of LI is considered to
model the inability to ignore irrelevant stimuli associated
with positive symptoms of schizophrenia (Weiner, 2003).
Conversely, rodents treated with NMDA receptor antago-
nists such as MK-801 or PCP that produce and exacerbate
negative symptoms and cognitive deficits (Javitt and Zukin,
1991; Krystal et al, 2003), persist in expressing LI under
conditions that prevent/reduce LI expression in untreated
rats (Gaisler-Salomon et al, 2008; Gaisler-Salomon and
Weiner, 2003; Lipina et al, 2005; Palsson et al, 2005). Thus,
persistent LI induced by MK-801 has been suggested to
model attentional perseveration associated with negative/
cognitive symptoms of schizophrenia (Gaisler-Salomon
et al, 2008; Weiner and Arad 2009). Both typical and
atypical APDs restore LI in amphetamine-treated rats, and
this is paralleled by their capacity to restore LI in naive
animals under conditions that do not yield robust LI in
no-drug controls (Weiner and Arad 2009). MK-801-induced
persistent LI is reversed by atypical but not typical APDs,
as well as by glycinergic NMDA enhancers, consistent
with the differential efficacy of these treatments in
improving negative/cognitive symptoms (Harvey et al,
2005; Heresco-Levy et al, 2005).
In support of the antipsychotic action of 17b-estradiol, we

(Arad and Weiner 2008, 2009, 2010) showed that (a)
disruption and restoration of LI are associated with low and
high levels of endogenous estrogen; (b) behaviorally
inactive dose of 17b-estradiol restores the capacity of
ineffective APD doses to block amphetamine-induced LI
disruption; and (c) 17b-estradiol given on its own reverses
amphetamine-induced LI disruption in ovariectomized
(OVX) as well as in sham-operated female rats. Our aim
here was to extend the characterization of the antipsychotic
action of 17b-estradiol by testing its capacity to reverse
amphetamine-induced LI disruption and MK-801-induced
LI persistence in gonadally intact female and male rats. In
addition, we tested whether 17b-estradiol on its own
potentiates LI.

MATERIALS AND METHODS

Animals

Female and male Wistar rats, 3-month old, bred in our
laboratory were housed by sex, four per cage under reversed
cycle lighting (lights on: 07 : 00–19 : 00 h) with ad lib access
to food and water except for the duration of the LI
experiments. All experimental protocols conformed to the
guidelines of the Institutional Animal Care and Use
Committee of Tel-Aviv University, Israel, and to the

guidelines of the NIH (animal welfare assurance number
A5010–01, expires on 30 September 2011). All efforts were
made to minimize the number of animals used and their
suffering.

Ovariectomy (OVX)

Female rats were bilaterally ovariectomized under isoflur-
ane (Nichols Piramal, UK) anesthesia. After shaving the
abdominal area, a midline incision was made through the
skin and muscle layer. Fallopian tubes were ligated by a
nylon thread, after which the ovaries were carefully
removed. Sutures of muscle layer and skin were removed
10 days later. Rats were allowed additional 3 weeks of
recovery after removal of the sutures before the beginning
of water restriction (see below). Within the 3-week recovery
period, about a week after removal of sutures, vaginal smears
were collected daily in the morning for 8 days in sham and
OVX rats, to confirm presence or discontinuation estrous
cycle, respectively. Phases of the estrous cycle were deter-
mined by the morphology of cells in the vaginal smear under
a light microscope (Marcondes et al, 2002). Sham-operated
female and male controls (in experiment 4) underwent an
identical surgical procedure without ovaries’ removal. Sham
females with two regular 4-day cycles in succession and OVX
rats without estrous cycle were used for behavioral testing.

Apparatus and Procedure

LI was measured in a thirst-motivated conditioned emo-
tional response procedure in Campden Instruments rodent
test chambers with a retractable bottle, each enclosed in a
ventilated sound-attenuating chest. When the bottle was not
present, the hole was covered with a metal lid. The pre-
exposed (PE) to-be-conditioned stimulus was a 10 s, 80 dB,
2.8 kHz tone produced by a Sonalert module. Shock was
supplied through the floor by a Campden Instruments
shock generator and shock scrambler set at 0.5mA intensity
and 1 s duration. Licks were detected by a Campden
Instruments drinkometer. Equipment programming and
data recording were controlled by the computer.
At 10 days before the beginning of the LI procedure, rats

were put on a 23 h water restriction schedule and handled
for about 2min daily for 5 days. On the next 5 days,
rats were trained to drink in the experimental chamber for
15–20min/day. Water in the test apparatus was given in
addition to the daily ration of 1 h given in the home
cages. The LI procedure was conducted on days 11–14 and
consisted of four stages given 24 h apart:

Pre-exposure. With the bottle removed, the PE rats received
40 tone presentations with an inter-stimulus interval of 40 s.
The non-pre-exposed (NPE) rats were confined to the chamber
for an identical period of time without receiving the tone.

Conditioning. With the bottle removed, rats received two
(weak conditioning) or five (strong conditioning) tone-shock
pairings given 5min apart. Shock immediately followed tone
termination. Weak conditioning produces LI in non-treated
controls and thus allows the demonstration of treatment-
induced LI disruption. This level of conditioning was
therefore used with amphetamine (experiments 5 and 6).
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Conversely, strong conditioning prevents LI in non-treated
controls and thus allows the demonstration of treatment-
induced abnormally persistent LI. This level of conditioning
was used with MK-801 (experiments 7, 8, and 9). Both levels
were used with 17b-estradiol administration on its own
(experiments 1, 2, 3, and 4) to determine if 17b-estradiol
disrupts and/or potentiates LI.

Rebaseline. Rats were given a 15min drinking session as in
initial training.

Test. Each rat was placed in the chamber and allowed to
drink from the bottle. When the rat completed 75 licks the
tone was presented for 5min. The following times were
recorded: Time to first lick, time to complete 1–50 licks,
time to complete 51–75 licks (before the tone onset), and
time to complete 76–100 licks (after the tone onset). Times
to complete 76–100 licks were submitted to logarithmic
transformation to allow parametric ANOVA. Longer log
times indicate stronger suppression of drinking. LI is
defined as significantly shorter log times to complete
76–100 licks of the PE compared with NPE rats.

Drug and Hormone Administration

Amphetamine, MK-801, and 17b-estradiol were adminis-
tered in a volume of 1ml/kg. Amphetamine (Sigma,
Switzerland) was dissolved in saline and administered i.p.
at a dose of 1mg/kg. MK-801 (dizocilpine; Merck Research
Laboratories, USA) was dissolved in saline and adminis-
tered i.p. at a dose of 50 mg/kg. These doses are routinely
used in our LI studies (Arad and Weiner 2010; Barak et al,
2009; Black et al, 2008). 17b-estradiol (Sigma, Israel) was
dissolved in corn oil and administered s.c. at doses of 10, 50,
and 150 mg/kg. These doses were used in our previous
studies; they mimic low hormonal levels in female rats as
seen during metestrus–diestrus, high levels as seen during
proestrus–estrus, and very high levels as seen during the
last trimester of pregnancy (Arad and Weiner, 2009, 2010;
Galea et al, 2001; Gibbs et al, 1998; Nofrey et al, 2008;
Van den Buuse and Eikelis, 2001; Walf and Frye, 2009). All
compounds were administered before pre-exposure and
conditioning sessions at 30min interval for amphetamine
and MK-801, and 120min for 17b-estradiol. No-drug
controls received the corresponding vehicles. In all experi-
ments, rebaseline and test sessions were conducted in a
drug-free state.

Experimental Design

Experiments 1 and 2. Tested the effects of 17b-estradiol on
LI under weak conditioning (forty pre-exposures and
two conditioning trials) in gonadally intact female and
male rats. The experiments included 40 females (exp 1;
n/group¼ 5) and 40 males (exp 2; n/group¼ 5) divided into
eight experimental groups in a 2� 4 design with main
factors of pre-exposure (0, 40) and hormonal treatment
(0, 10, 50, and 150 mg/kg 17b-estradiol).

Experiments 3 and 4. Tested the effects of 17b-estradiol on
LI under strong conditioning (forty pre-exposures and five
conditioning trials) in gonadally intact female and male

rats. The experiments included 49 females (exp 3;
n/group¼ 6–7) and 62 males (exp 4; n/group¼ 7–8) divided
into eight experimental groups in a 2� 4 design with main
factors of pre-exposure (0, 40) and hormonal treatment
(0, 10, 50, and 150 mg/kg 17b-estradiol).

Experiments 5 and 6. Tested the capacity of 17b-estradiol
to reverse amphetamine-induced LI disruption (under weak
conditioning) in gonadally intact female and male rats. The
experiments included 92 females (exp 5; n/group¼ 7–8) and
94 males (exp 6; n/group¼ 7–8) divided into twelve
experimental groups in a 2� 2� 3 design with main factors
of pre-exposure (0, 40), pro-psychotic treatment (0 and
1mg/kg amphetamine), and hormonal treatment (0, 50, and
150 mg/kg 17b-estradiol).

Experiments 7, 8, and 9. Tested the capacity of 17b-
estradiol to reverse MK-801-induced LI persistence (under
strong conditioning) in gonadally intact female and male
rats as well as in OVX female rats. The experiments
included 73 intact females (exp 7; n/group¼ 6–7), 85 intact
males (exp 8; n/group¼ 7–8), and 73 OVX females (exp 9;
n/group¼ 6–7) divided into twelve experimental groups in
a 2� 2� 3 design with main factors of pre-exposure (0, 40),
pro-schizophrenia treatment (0 and 50 mg/kg MK-801), and
hormonal treatment (0, 50, and 150 mg/kg 17b-estradiol).

Statistical Analysis

Time to complete 51–75 licks (before tone onset) and
mean log times to complete 76–100 licks (after tone
onset) were analyzed using two-way ANOVAs with main
factors of pre-exposure and hormonal treatment (experi-
ments 1, 2, 3, and 4) and three-way ANOVAs with main
factors of pre-exposure, treatment, and hormonal treatment
(experiments 5, 6, 7, 8, and 9). In cases of significant
interactions involving the factor of pre-exposure, LSD post-
hoc comparisons were used to assess the difference between
the PE and NPE groups within each treatment condition.
It is important to mention that in all experiments, females

and males were run in different systems to avoid potential
interference. Thus, we could not analyze their data in the
same ANOVA. However, given that we had four main aims
in this study, we introduced the results as well as the figures
under each aim as different parts of the same experiment
to allow a visual comparison between the females’ and
males’ data.

RESULTS

There were no differences between the experimental groups in
the time required to complete 51–75 licks (A period; all
p’s40.05) in any of the experiments (overall mean A periods
were 6.65, 7.54, 10.25, 9.57, 7.13, 6.92, 7.02, 6.31, and 9.44 for
experiments 1, 2, 3, 4, 5, 6, 7, 8, and 9, respectively).

Experiments 1 and 2: Effects of 17b-Estradiol on LI
Under Weak Conditioning (40 Pre-Exposures and Two
Conditioning Trials) in Female and Male Rats

The two parts of Figure 1, a (exp 1) and b (exp 2), present
the mean log times to complete 76–100 licks (after tone
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onset) of the PE and NPE female (Figure 1a) and male
(Figure 1b) rats treated with oil, 10, 50, or 150 mg/kg
17b-estradiol. As can be seen in both parts of Figure 1,
oil-treated female and male rats showed LI, whereas rats
treated with 10 mg/kg of 17b-estradiol did not show LI. The
higher doses of 17b-estradiol (50 and 150 mg/kg) spared LI.
ANOVAs yielded significant main effects of pre-exposure
(females: F(1, 32)¼ 55.9, po0.0001; males: F(1, 32)¼ 45.4,
po0.0001) and hormonal treatment (females: F(3, 32)¼ 3.0,
po0.05; males: F(3, 32)¼ 3.5, po0.05), as well as a significant
pre-exposure� hormonal treatment interaction (females:
F(3, 32)¼ 8.5, po0.0005; males: F(3, 32)¼ 8.6, po0.0005).
Post-hoc comparisons for each of the analyses confirmed
the presence of LI in female and male rats given oil, 50, or
150 mg/kg 17b-estradiol (p’so0.01), but not after 10 mg/kg
17b-estradiol.

Experiments 3 and 4: Effects of 17b-Estradiol on LI
under strong Conditioning (40 Pre-Exposures and five
Conditioning Trials) in Female and Male Rats

The two parts of Figure 2, a (exp 3) and b (exp 4), present
the mean log times to complete 76–100 licks (after tone
onset) of the PE and NPE female (Figure 2a) and male
(Figure 2b) rats treated with oil, 10, 50, and 150 mg/kg
17b-estradiol. As can be seen, oil-treated female and male
rats did not show LI as expected under strong conditioning.
10 mg/kg of 17b-estradiol had no effect on LI, whereas
female and male rats treated with 50 and 150 mg/kg
of 17b-estradiol persisted in showing LI. ANOVAs yielded
a significant main effect of pre-exposure (females:
F(1, 41)¼ 8.1, po0.01; males: F(1, 54)¼ 18.7, po0.0001), as
well as a significant pre-exposure� hormonal treatment
interaction (females: F(3, 41)¼ 5.7, po0.005; males:
F(3, 54)¼ 4.2, po0.01). Post-hoc comparisons for each of
the analyses confirmed the presence of LI in female and
male rats given 50 or 150 mg/kg 17b-estradiol (p’so0.01),
but not in other conditions.

Experiments 5 and 6: Effects of 17b-Estradiol on
Amphetamine-Induced LI Disruption Under Weak
Conditioning (40 Pre-Exposures and two Conditioning
Trials) in Female and Male Rats

The two parts of Figure 3, a (exp 5) and b (exp 6), present
the mean log times to complete 76–100 licks (after tone
onset) of the PE and NPE female (Figure 3a) and male
(Figure 3b) rats treated with saline or amphetamine (1mg/
kg), and pre-treated with oil, 50, or 150 mg/kg 17b-estradiol.
As can be seen, under weak conditioning, vehicle-injected
female and male rats exhibited LI, whereas amphetamine-
injected female and male rats did not exhibit LI. Both doses
of 17b-estradiol reversed amphetamine-induced LI disrup-
tion in females and males. On their own, both doses of
17b-estradiol spared LI in females and males. ANOVA for
females yielded significant main effects of pre-exposure
(F(1, 80)¼ 98.9, po0.0001) and treatment (F(1, 80)¼ 7.2,
po0.01), as well as a significant pre-exposure�
treatment� hormonal treatment interaction (F(2, 80)¼ 3.2,
po0.05). ANOVA for males yielded a significant main effect
of pre-exposure (F(1, 82)¼ 55.9, po0.0001), as well as a
significant pre-exposure� treatment� hormonal treatment
interaction (F(2, 82)¼ 7.4, po0.005). Post-hoc comparisons
for each of the analyses confirmed the presence of LI in
saline-injected female and male rats pre-treated with
0, 50, or 150 mg/kg 17b-estradiol and in amphetamine-
injected female and male rats pre-treated with 50 or
150 mg/kg 17b-estradiol (p’so0.01), but not in the other
conditions.

Experiments 7, 8, and 9: Effects of 17b-Estradiol on MK-
801-induced LI Persistence Under Strong Conditioning
(40 Pre-Exposures and five Conditioning Trials) in
Female, Male, and OVX Female Rats

The three parts of Figure 4, a (exp 7), b (exp 8), and c
(exp 9), present the mean log times to complete 76–100 licks
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Figure 1 Effects of 17b-estradiol on LI under weak conditioning (forty pre-exposures and two conditioning trials) in female and male rats. Mean (±SEM)
log time to complete 76–100 licks (after the tone onset) of the PE and the NPE female (a) and male (b) rats administered with 0, 10, 50, or 150 mg/kg of
17b-estradiol (oil, 10, 50, or 150 mg/kg, respectively). Asterisks indicate a significant difference between the PE and NPE groups, namely, presence of LI
(**po0.01).
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(after tone onset) of the PE and NPE female (Figure 4a),
male (Figure 4b), and OVX female (Figure 4c) rats treated
with saline or MK-801 (50 mg/kg), and pre-treated with oil,
50, or 150 mg/kg 17b-estradiol. As expected with strong
conditioning, LI was absent in vehicle-injected rats, whereas
MK-801-injected rats persisted in showing LI. In MK-801-
treated female rats, both doses of 17b-estradiol were
without any effect, whereas in males and OVX females,
both doses reversed MK-801-induced LI persistence. On its
own, 17b-estradiol led to LI in gonadally intact female
and male rats, but not in OVX female rats. ANOVA for
female rats yielded significant main effects of pre-
exposure (F(1, 61)¼ 58.0, po0.0001), treatment (F(1, 61)¼ 17.7,
po0.0001), and hormonal treatment (F(2, 61)¼ 5.6, po0.01),

as well as a significant pre-exposure� treatment� hormonal
treatment interaction (F(2, 61)¼ 3.4, po0.05). ANOVA for
male rats yielded a significant main effect of pre-
exposure (F(1, 73)¼ 33.2, po0.0001), as well as a significant
pre-exposure� treatment� hormonal treatment interaction
(F(2, 73)¼ 11.6, po0.0001). ANOVA for OVX female rats
yielded significant main effects of pre-exposure (F(1, 61)¼
6.0, po0.05) and treatment (F(1, 61)¼ 27.7, po0.0001), as well
as a near significant pre-exposure� treatment� hormonal
treatment interaction (F(2, 61)¼ 2.97, p¼ 0.059). Post-hoc
comparisons for each of the analyses confirmed the presence
of LI in saline-injected female and male rats given 50 or
150mg/kg 17b-estradiol, in MK-801-injected female rats given
0, 50, or 150mg/kg 17b-estradiol, and in MK-801-injected rats
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17b-estradiol (oil, 10, 50, or 150 mg/kg, respectively). Asterisks indicate a significant difference between the PE and NPE groups, namely, presence of LI
(**po0.01).

0

0.5

1

1.5

2

2.5

oil

saline amph saline amph saline amph

E 50 µg/kg E 150 µg/kg oil E 50 µg/kg E 150 µg/kg

saline amph saline amph saline amph

females males

NPE
PE

m
ea

n 
lo

g 
tim

e 
to

 c
om

pl
et

e 
lic

ks
  7

6-
10

0

**
**

** **

******
**

**
**

Figure 3 Effects of 17b-estradiol on amphetamine (amph)-induced LI disruption under weak conditioning (forty pre-exposures and two conditioning
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significant difference between the PE and NPE groups, namely, presence of LI (**po0.01).
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given 0mg/kg 17b-estradiol (p’so0.05), but not in the other
conditions.

DISCUSSION

The present study sought to assess whether estrogen exerts
an antipsychotic action, as indexed by the LI model, in
gonadally intact female and male rats. Using a non-
pharmacological and two acute pharmacological LI models,
we showed that: (1) under conditions yielding LI in non-
treated controls, 10 mg/kg 17b-estradiol disrupted LI,
whereas higher doses (50 and 150 mg/kg) were without any
effect in both sexes; (2) 17b-estradiol at higher doses
restored LI under conditions preventing LI in non-treated
controls, an effect considered predictive for activity against
positive symptoms, in both sexes; (3) 17b-estradiol at
higher doses reversed amphetamine-induced disruption of
LI, an effect considered predictive for activity against
positive symptoms, in both sexes; and (4) 17b-estradiol at
higher doses reversed MK-801-induced persistent LI, an
effect considered predictive for activity against negative/
cognitive symptoms, in gonadally intact male and OVX
rats, but not in gonadally intact female rats (see Table 1).
These findings indicate that in the LI model, 17b-estradiol
exerts a clear-cut antipsychotic activity in both sexes and,
remarkably, is more efficacious in males and OVX females,
in which it also exerts activity considered predictive of anti-
negative symptoms/pro-cognitive action.

Bimodal Effect of 17b-Estradiol on LI

17b-estradiol, administered on its own, produced a dose-
dependent bimodal effect on LI in both female and male
rats, with the low dose disrupting LI and the two higher

doses restoring LI under conditions (strong conditioning)
that disrupted LI in controls.
Potentiation or facilitation of LI under conditions of weak

or absent LI in controls by APDs is a widely used index of
antipsychotic activity. It is produced by a wide range of
typical and atypical APDs and is also seen in normal
humans (Barrett et al, 2004; Dunn et al, 1993; McCartan
et al, 2001; Shadach et al, 1999; Weiner, 2003; Weiner and
Arad 2009; Weiner and Feldon 1987; Williams et al, 1996;
Williams et al, 1997). The fact that higher doses of 17b-
estradiol produced a pattern typically found for APDs
suggests that at these doses, 17b-estradiol may have
antipsychotic properties.
The LI-facilitating effect of 17b-estradiol was restricted to

high doses as the low dose of 10 mg/kg disrupted LI in both
sexes. We have previously obtained this same bimodal effect
of 17b-estradiol on LI in OVX rats (Arad and Weiner, 2010)
and Nofrey et al (2008) have also reported LI-disrupting
effect of 10 mg/kg 17b-estradiol in OVX rats. The fact that
17b-estradiol produces contrasting effects on LI at low and
high doses implies that estradiol acts dose-dependently on
different neural substrates. One likely substrate is the
dopaminergic system. APD-induced LI potentiation is
mediated by blockade of DA transmission within the
nucleus accumbens (NAC) at the time of conditioning
(Gray et al, 1995a; Gray et al, 1997; Joseph et al, 2000;
Warburton et al, 1996; Weiner 2003). Consequently,
our results imply that the higher doses of 17b-estradiol,
which potentiated LI, reduced mesolimbic DA function.
Conversely, low dose, which disrupted LI, may have acted
by increasing DA release within the NAC as does the
amphetamine (Warburton et al, 1996). Both reduction
and increase of striatal dopaminergic function by 17b-
estradiol have been reported for all indices of dopaminergic
activity, including receptor levels/binding, membrane
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dopamine transporter levels, and release, depending on
dose and treatment paradigm (Arvin et al, 2000; Becker,
1999; Chavez et al, 2010; Di Paolo, 1994; Disshon et al, 1998;
Dluzen and Horstink, 2003; McDermott, 1993; Morissette
et al, 2008; Morissette and Di Paolo, 1993; Peris et al, 1991;
Shieh and Yang, 2008; Thompson and Moss, 1994; Yu et al,
2009; Zhou et al, 2002). It has been suggested that anti-
dopaminergic effects are primarily exerted by high doses of
estrogen or chronic administration, whereas pro-dopami-
nergic actions are more associated with lower levels of
estrogen (Barber et al, 1976; Becker, 1999; Bedard et al,
1977; Chavez et al, 2010; Cyr et al, 2002; Di Paolo, 1994; Di
Paolo et al, 1981; Hruska and Silbergeld, 1980; McEwen and
Alves, 1999; Riddoch et al, 1971; Yu et al, 2009). Although
the specific mechanisms by which 17b-estradiol exerts its
dose-dependent effects on LI observed here remain to be
elucidated, if both effects are indeed DA-mediated, this
would imply that low 17b-estradiol doses exert a pro-
psychotic action.
An alternative mechanism for the dose-dependent effect

of 17b-estradiol can be derived from our finding that a
similar dose-dependent bimodal effect is produced by
atypical APDs, such as risperidone, which disrupts LI at
low doses and potentiates LI at higher doses (Weiner et al,
2003). The LI disruptive effect of atypical APDs is distinct
from that of amphetamine because it occurs in the pre-
exposure stage and is mediated by 5HT2A antagonism,
whereas the disruptive effect of amphetamine occurs in the
conditioning stage and is mediated by enhanced DA
transmission. As estrogen modulates brain serotonergic
activity and specifically the 5HT2A receptors (Fink et al,
1998; Sumner and Fink, 1997), this could be the mechanism
underlying the LI disruptive action of low 17b-estradiol,
and thus reflect an atypical antipsychotic action of this
hormone. Clearly it is of interest to determine whether low
estrogen is pro-psychotic or antipsychotic. Testing the
effects of APDs on 17b-estradiol-induced LI disruption

would be one straightforward way to answer this question;
In addition, these alternatives can be teased out by assessing
at which stage 17b-estradiol acts to disrupt LI.

Reversal of Disrupted LI: Putative Efficacy for Positive
Symptoms

Amphetamine-induced LI disruption and its reversal by
both typical and atypical APDs in the male rodent is a long
standing model of positive symptoms (Weiner, 2003;
Weiner and Arad, 2009). Although gender differences in
response to amphetamine and other psychostimulants have
been widely reported (for review see Fattore et al, 2008),
such differences are not evident in the pro-psychotic action
of amphetamine in the LI model (Arad and Weiner, 2010).
Disruption of LI reflects a selective attention deficit,
whereby animals lose the capacity to ignore the irrelevant
stimulus, and is also observed in amphetamine-treated
humans and high-schizotypal humans, (Braunstein-
Bercovitz et al, 2002; Gray et al, 1992b; Salgado et al,
2000; Swerdlow et al, 2003; Thornton et al, 1996) as well as
in acutely psychotic schizophrenia patients (Baruch et al,
1988; Gray et al, 1992a; Gray et al, 1995b; Rascle et al, 2001;
Swerdlow et al, 2005). A failure to inhibit attention to
irrelevant stimuli is likely to give rise to aberrantly
increased salience perception and distractibility that are
associated with psychotic symptoms (Kapur et al, 2005;
Weiner and Arad, 2009). 17b-estradiol at 50 and 150 mg/kg
doses, which potentiated LI under conditions that disrupted
LI in untreated gonadally intact rats (strong conditioning),
also reversed amphetamine-induced LI disruption, as
typically found with APDs. The present results replicate
our recent finding (Arad and Weiner, 2010) that
17b-estradiol prevents amphetamine from disrupting LI
in gonadally intact female rats and extends this action of
17b-estradiol to gonadally intact male rats.

Table 1 Summary of Experimental Design and Results

Tone-shock pairings Sex Pro-psychotic treatment Doss of 17b-estradiol

Vehicle 10lg/kg 50lg/kg 150lg/kg

Experiments 1 and 2 2 F F LI No LI LI LI

M F LI No LI LI LI

Experiments 3 and 4 5 F F No LI No LI LI LI

M F No LI No LI LI LI

Experiments 5 and 6 2 F Sal LI F LI LI

Amph No LI F LI LI

M Sal LI F LI LI

Amph No LI F LI LI

Experiments 7–9 5 F Sal No LI F LI LI

MK LI F LI LI

M Sal No LI F LI LI

MK LI F No LI No LI

OVX (F) Sal No LI F No LI No LI

MK LI F No LI No LI

Abbreviations: Amph, amphetamine; F, female; LI, latent inhibition; M, male; MK, MK-801; OVX, ovariectomy; Sal, saline; F, has not been administered.
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Reversal of amphetamine-induced LI disruption by
APDs, like APD-induced potentiation of LI, is mediated
by blockade of DA transmission within the NAC at the time
of conditioning (Gray et al, 1995a; Gray et al, 1997;
Joseph et al, 2000; Warburton et al, 1996; Weiner, 2003).
Consequently, our findings that acute high doses of
17b-estradiol blocked the effects of amphetamine as well
as potentiated LI on its own support the notion that
17b-estradiol reduces mesolimbic DA function. Taken
together, the efficacy of 17b-estradiol to alleviate non-
pharmacologically and pharmacologically induced LI
disruption is indicative of its therapeutic capacity for
positive symptoms in schizophrenia.
Previous studies showed that in OVX rats, 17b-estradiol

can reverse psychosis-mimicking abnormalities induced by
dopamine agonists, including hyperactivity, stereotypy and
circling (Becker and Beer, 1986; Becker and Rudick, 1999;
Bedard et al, 1983; Bedard et al, 1978; Earley and Leonard,
1978; Euvrard et al, 1979; Euvrard et al, 1980; Gordon, 1980;
Gordon and Diamond, 1981; Naik et al, 1978), disrupted PPI
(Gogos et al, 2010), and disrupted LI (Arad and Weiner,
2009, 2010). To the best of our knowledge, this is the first
demonstration that 17b-estradiol exerts an antipsychotic
action in gonadally intact rats of both sexes. These
outcomes indicate that 17b-estradiol possesses antipsycho-
tic properties in both sexes and, by extension, that such
action is independent of endogenous estrogen levels.

Reversal of Abnormally Persistent LI: Putative Efficacy
for Negative and Cognitive Symptoms

As NMDA antagonists induce in addition to positive
symptoms, also negative symptoms and cognitive impair-
ments characteristic of endogenous schizophrenia (Javitt
and Zukin, 1991; Krystal et al, 2003; Lahti et al, 1995;
Malhotra et al, 1997; Tamminga, 1998), their behavioral
effects in animals, with the exception of locomotor
hyperactivity, are usually used as pharmacological models
of negative and/or cognitive symptoms (Bakshi et al, 1994;
Javitt and Zukin, 1991; Moghaddam and Jackson, 2003;
Nilsson et al, 2001; Sams-Dodd, 1996; Swerdlow et al, 1996).
Cognitive and behavioral inflexibility that is often observed
following NMDA blockade in rats and humans has
been argued to be particularly relevant to the modeling
of negative/cognitive symptoms (Carlsson et al, 1999;
Carlsson and Carlsson, 1990b; Krystal et al, 2000; Moghad-
dam et al, 1997).
As shown previously (Gaisler-Salomon et al, 2008;

Gaisler-Salomon and Weiner, 2003; Lipina et al, 2005),
under strong conditioning, MK-801 induced persistent LI in
male rats. In other words, whereas vehicle-injected PE male
rats switched in the conditioning stage to respond accord-
ing to the stimulus-reinforcement contingency, MK-801-
injected PE rats persisted in responding according to the
stimulus-no-event contingency acquired in pre-exposure, in
line with many findings showing that NMDA receptor
blockade induces behavioral and cognitive inflexibility
(Carlsson and Carlsson, 1990a; Jentsch and Taylor, 2001;
Moghaddam et al, 1997; Svensson, 2000; van der Meulen
et al, 2003). The same effect of MK-801 on LI was shown
here, for the first time, in gonadally intact and OVX females.
Thus, like amphetamine, MK-801 produced its schizophrenia-

relevant effect in a sex-independent manner. However,
unlike amphetamine-induced disrupted LI, in gonadally
intact rats, MK-801-induced persistent LI was ameliorated
by 17b-estradiol in male but not female rats. The latter is
rather remarkable as it suggests that 17b-estradiol is more
efficient in ameliorating MK-801 effects on LI in the absence
of estrogen. This suggestion was supported by our finding
that 17b-estradiol was also effective in reversing MK-801-
induced persistent LI in OVX rats. The basis for the sex-
dependent sensitivity of MK-801-induced persistent LI to
17b-estradiol in gonadally intact rats is unclear. Greater
sensitivity of gonadally intact females than males to NMDA
antagonists, such as MK-801, requiring higher 17b-estradiol
doses to block its effects, has been reported but for much
higher, neurodegeneration-producing MK-801 doses
(Andine et al, 1999; Auer, 1996; de Olmos et al, 2008;
Dribben et al, 2003; Fix et al, 1995; Honack and Loscher,
1993; Wozniak et al, 1998). The sex-dependent effects might
also be dependent on the behavioral phenomenon tested, as
17b-estradiol was found to reverse the disruptive effects of
the NMDA antagonist PCP in the novel object-recognition
test in gonadally intact female rats (Sutcliffe et al, 2007).
The mechanism/s by which 17b-estradiol reverses MK-

801-induced persistence of LI remain to be investigated, but
two options can be suggested based on known pharmaco-
logical reversals of this abnormality. Reversal of MK-801-
induced persistent LI by atypical APDs is mediated by
5HT2A receptor antagonism (Gaisler-Salomon and Weiner,
2003; Weiner and Arad, 2009). In addition, MK-801-induced
persistent LI is reversed by a wide variety of compounds
enhancing NMDA receptor function (Black et al, 2009;
Gaisler-Salomon et al, 2008).
The relationship between estrogen and serotonin is well

documented. Studies in intact rats of both sexes have shown
that estrogen modulates brain serotonergic activity (Fink
et al, 1998) and that during high estrogen levels, 5HT2A

density is increased (Sumner and Fink 1997). 17b-estradiol
treatment in gonadectomized female and male rats in-
creased 5HT2A mRNA levels and receptors’ density in the
frontal cortex and NAC (Cyr et al, 1998; Fink et al, 1998;
Summer and Fink, 1995; Sumner and Fink, 1998).
Importantly, the same effect is produced in intact male rats
by clozapine (Buckland et al, 1997). Clinical studies
reported that raloxifene, a second generation selective
estrogen receptor modulator, mimics 17b-estradiol effect
on 5HT2A receptor binding by increasing 5HT2A receptor
binding levels and its mRNA levels in the frontal cortex,
amygdala, NAC, and striatum (Cyr et al, 2002).
There is also a well-established relationship between

estrogen and NMDA receptor function. In OVX rats, 17b-
estradiol increases hippocampal NMDA receptors and
glutamate transmission, whereas in the striatum, frontal
cortex, and NAC, 17b-estradiol decreases NMDA receptor
binding. Furthermore, 17b-estradiol increases agonist
binding but decreases antagonist binding of NMDA
receptors in the hippocampus (Cyr et al, 2000; Cyr et al,
2001; Daniel and Dohanich, 2001; El-Bakri et al, 2004;
Gazzaley et al, 1996; Weiland, 1992; Woolley and
Schwartzkroin, 1998; Woolley et al, 1997). Although these
effects could explain the reversal of MK-801-induced
persistent LI in OVX rats seen here, it is not clear whether
similar effects are exerted in intact male brains. However,
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17b-estradiol does enhance glutamatergic transmission in
hippocampal slices taken from male rats (Teyler et al, 1980).

17b-Estradiol in LIFAn Antipsychotic with
a Sex-Dependent Action

Although the mechanisms underlying the effects of 17b-
estradiol seen here remain to be investigated, our results
show that at certain doses this agent possesses an
antipsychotic profile in the LI model. Moreover, this profile
is sex dependent. Specifically, 17b-estradiol possesses a
profile of a typical APD (consisting of LI potentiation on its
own and reversal of amphetamine-induced LI disruption) in
both sexes and a profile of an atypical APD (consisting of LI
potentiation on its own, reversal of amphetamine-induced
disrupted LI and reversal of MK801-induced persistent LI),
in male rats.
In psychological terms, in all of the models, 17b-estradiol

targeted selectively the processes responsible for attentional
selectivity (in the PE groups) without affecting associative
capacity (in the NPE groups). Furthermore, reversal
of disrupted and persistent LI can be seen as normalization
of two poles of dysfunctional attentional control. On the one
hand, 17b-estradiol strengthens/restores the capacity to
ignore irrelevant stimuli in amphetamine-treated rats and
on the other hand, 17b-estradiol strengthens/restores the
capacity to dis-ignore irrelevant stimuli when they become
relevant, enabling flexible re-deployment of attentional
resources according to current situational demands, in
MK-801-treated rats. The former would be beneficial in
normalizing aberrantly increased salience perception and
distractibility that are associated with psychotic symptoms
(Gray et al, 1991; Kapur, 2003; Smith et al, 2006; Swerdlow
and Koob, 1987; Weiner and Joel, 2002), whereas the latter
would be beneficial in reducing cognitive inflexibility and
inattention that are associated with negative/cognitive
symptoms (Carlsson and Carlsson, 1990b; Krystal et al,
2003; Moghaddam et al, 1997; Weiner, 2003). Given that
17b-estradiol reverses amphetamine-induced LI disruption
in both sexes, but MK-801-induced LI persistence only in
male and OVX rats, the implications of our results for the
clinic are that 17b-estradiol would be beneficial against
positive symptoms in both sexes but against negative/
cognitive symptoms in male patients and in women with
very low estrogen levels, eg, during menopause.
This conclusion seems in line with positive reports from

the clinic. Efficacy of 17b-estradiol against positive symp-
toms in schizophrenic women has been shown in several
studies (Kulkarni et al, 2008a; Kulkarni et al, 1996; Kulkarni
et al, 2008b; Kulkarni et al, 2001; Riecher-Rossler and de
Geyter, 2007), as it was reported to be less effective or
ineffective against negative symptoms (Akhondzadeh et al,
2003; Kulkarni et al, 2008a). In an attempt to reconcile
inconsistent reports in the literature regarding efficacy of
estradiol treatment in schizophrenic women, Mortimer
(2007) suggested that such treatment would be effective in
schizophrenic women who suffer from severe estrogen
deficiency. Interestingly, reduced levels of plasma estrogen
were found in both male (Huber et al, 2005) and female
(Bergemann et al, 2005; Huber et al, 2004; Huber et al, 2001;
Riecher-Rossler et al, 1994) schizophrenia patients, and
recently a small study of men with schizophrenia who

received oral estradiol valerate also showed an abatement in
psychotic symptoms (Kulkarni, 2009). The role of estrogen
in schizophrenia has been supported by the finding that
variation in the estrogen receptor alpha gene and cortical
estrogen receptor alpha mRNA is associated with schizo-
phrenia (Perlman et al, 2005; Perlman et al, 2004; Weickert
et al, 2008; Wong and Weickert, 2009) and it has been
suggested that the brain response to circulating estrogen
may be altered in schizophrenia (Weickert et al, 2008).
Taken together with our animal data, estrogen seems to
have the potential to be useful in the treatment of
schizophrenia.
In summary, our previous (Arad and Weiner, 2010) and

present data are clear in showing that estrogen can exert
antipsychotic activity, reversing hyperdopaminergia-in-
duced behavioral abnormality in gonadally intact rats of
both sexes and in OVX rats, and reversing hypoglutama-
tergia-induced abnormality in male and OVX rats. By
extension, these results suggest that estrogen can be viewed
as an effective treatment not only for positive symptoms in
women with schizophrenia, but also for a wide spectrum of
symptoms in women and men with schizophrenia, includ-
ing negative/cognitive symptoms. Unfortunately, the risk of
inducing cancers has limited the applicability of estrogen in
humans for use in modulating the central nervous system
neurotransmission (Rossouw et al, 2002), although recent
studies found no increased risk (Anderson et al, 2006;
Stefanick et al, 2006; Stevenson, 2009). Importantly in this
context, our previous data showed that co-administration of
a physiological dose of 17b-estradiol and APD augments
APD efficacy, and in fact may be more effective than raising
the dose of APD. Further research is required to determine
the correct dose and duration of the use of 17b-estradiol as
monotherapy, as well as an adjunctive therapy. Our present
results raise the possibility that variable outcomes in the
clinic may be because of the differences in the dosage of
estrogen and, in general, alert to the importance of dose-
response studies. Finally, new estrogenic compounds acting
selectively in the brain may provide a safer, non-feminizing
approach for the treatment of schizophrenia (Cyr et al,
2002; Kulkarni, 2009).
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