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The ability to quit smoking is heritable, yet few genetic studies have investigated prospective smoking cessation. We conducted a

systems-based genetic association analysis in a sample of 472 treatment-seeking smokers of European ancestry after 8 weeks

of transdermal nicotine therapy for smoking cessation. The genotyping panel included 169 single-nucleotide polymorphisms (SNPs) in

7 nicotinic acetylcholine receptor subunit genes and 4 genes in the endogenous cholinergic system. The primary outcome was smoking

cessation (biochemically confirmed) at the end of treatment. SNPs clustered in the choline acetyltransferase (ChAT) gene were individually

identified as nominally significant, and a 5-SNP haplotype (block 6) in ChAT was found to be significantly associated with quitting success.

Single SNPs in ChAT haplotype block 2 were also associated with pretreatment levels of nicotine dependence in this cohort. To replicate

associations of SNPs in haplotype blocks 2 and 6 of ChAT with nicotine dependence in a non-treatment-seeking cohort, we used data

from an independent community-based sample of 629 smokers representing 200 families of European ancestry. Significant SNP and

haplotype associations were identified for multiple measures of nicotine dependence. Although the effect sizes in both cohorts are

modest, converging data across cohorts and phenotypes suggest that ChAT may be involved in nicotine dependence and ability to quit

smoking. Additional sequencing and characterization of ChAT may reveal functional variants that contribute to nicotine dependence

and smoking cessation.
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INTRODUCTION

Chronic exposure to nicotine, the addictive chemical in
tobacco smoke, produces neuroadaptive changes that
promote continued smoking (Buisson and Bertrand,
2002). Even with the most effective pharmacotherapies,
only one in four smokers are able to quit (Schnoll and
Lerman, 2006). Evidence for the heritability of nicotine
dependence and smoking cessation (Li et al, 2003; Xian
et al, 2003) has led to intensive efforts to identify
susceptibility genes for these complex traits.

Nicotine binds to neuronal nicotinic acetylcholine recep-
tors (nAChRs) in the mesolimbic-cortical reward pathway
(Nestler, 2005), pointing to nAChRs as attractive candidates
for genetic investigations of nicotine dependence. Data from
genome-wide and candidate gene-based association studies
have identified single-nucleotide polymorphisms (SNPs) in
the CHRNA5/CHRNA3/CHRNB4 gene cluster as associated
with smoking rate and nicotine dependence (Saccone et al,
2007; Thorgeirsson et al, 2008). However, these SNPs have
not been related consistently to smoking cessation (Baker
et al, 2009; Breitling et al, 2009; Conti et al, 2008),
supporting the premise that risk of developing dependence
and the ability to quit once dependence has been
established may represent two different but genetically
overlapping phenotypes (Heath and Martin, 1993). Pro-
spective assessment of smoking cessation among indivi-
duals intending to quit represents a more refined
dependence phenotype for genetic association studies, as
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well as a powerful approach to identify novel therapeutic
targets for developing more effective therapies for smoking
cessation (Breitling et al, 2009).
We used a candidate gene panel focused on nAChRs in

the endogenous cholinergic system to examine associations
with prospective smoking cessation and nicotine depen-
dence. The primary ‘discovery’ cohort included 472
smokers of European ancestry receiving open-label trans-
dermal nicotine therapy, the most widely used treatment
in the United States (Jonk et al, 2005) and Europe (West
et al, 2005). We extended a previous systems-based genetic
study of smoking cessation (Conti et al, 2008) by including
genes involved in acetylcholine (ACh) synthesis and
transport. Such genes may also contribute to nicotine
dependence because ACh (released by cholinergic neurons)
binds to presynaptic nAChRs, thereby influencing dopa-
mine neurotransmission (Exley and Cragg, 2008). A set
of nominally significant SNPs identified in the discovery
cohort was tested in an independent family-based
community sample of non-treatment-seeking smokers of
European ancestry to replicate associations with nicotine
dependence.

MATERIALS AND METHODS

Smoking Cessation Discovery Cohort

Sample. Treatment-seeking smokers were screened at the
University of Pennsylvania from 2004 to 2008. Inclusion
criteria included ages 18–65 and a smoking rate of X10
cigarettes per day. The exclusion criteria were: DSM IV
Axis I psychiatric or substance abuse disorder (based on
the Structured Clinical Interview-Non-Patient) (Spitzer
et al, 1990), current use of psychotropic medications,
and pregnancy or lactation. In the full cohort of 571 trial
participants, there were 472 smokers of self-reported
European ancestry. In all, 42% of participants were
female and 34% were college graduates. The mean age was
45 years (SD¼ 10.4), with an average smoking duration of
29.5 years (SD¼ 10.9), and average cigarettes smoked per
day of 21.9 (SD¼ 9.1). The mean Fagerström test for
nicotine dependence (FTND) score was 5.24 (SD¼ 2.2), with
a median of 5.

Procedures. The study protocol was approved by the
University of Pennsylvania institutional review board.
Participants completed assessments of demographics,
current smoking rate, and nicotine dependence assessed
with the FTND (Heatherton et al, 1991). After a pre-quit
counseling session, transdermal nicotine therapy was
initiated on a target quit date, which occurred 2 weeks
later. All participants received brief behavioral counseling
sessions at weeks 1, 2, and 4 of treatment (Schnoll et al,
2009). Self-reported smoking was assessed using the time-
line follow-back procedure (Brown et al, 1998), and
biochemically verified with a carbon monoxide (CO) breath
sample. The primary outcome was biochemically confirmed
7-day point-prevalence abstinence at the end of treatment.
As per convention (SRNT, 2002), participants who reported
smoking within 7 days before the assessment (n¼ 136),
failed to provide a CO sample (n¼ 140), or provided
a CO 410 p.p.m. (n¼ 9) were considered nonabstinent.

SNP selection. The genes included those coding for
nAChRs, choline acetyltransferase (ChAT), acetylcholines-
terase (AChE), choline transporter (CHT), and vesicular
acetylcholine transporter (VChAT). The Illumina Assay
Design Tool (www.illumina.com) identified all SNPs within,
or 10 kb up- or down-stream from, the 11 targeted genes.
The resulting list was filtered for Illumina designability rank
of 1 and minor allele frequency (MAF) 40.1; one SNP from
any pairs separated by o60 bp was chosen by design score
prioritization to prevent interference in the multiplex
genotyping assay. The filtered SNPs provided multiple
markers distributed throughout each targeted gene region
(Supplementary Table S1), generating a high-resolution
panel for detecting haplotype structures in the study cohort.
The panel was shown on existing HapMap linkage
disequilibrium (LD) maps to identify any previously known
Caucasian LD blocks not covered by SNPs in the panel.
In such cases, the design filters were relaxed to include
at least two SNPs within the relevant LD block. Non-
synonymous coding SNPs and SNPs identified in previous
association studies were included. The final custom
Illumina GoldenGate array included 169 SNPs in 11
candidate genes and 359 ancestry informative markers
and technical control SNPs found in the pre-designed
Illumina DNA Test Panel (Supplementary Tables S1 and S2).
The Illumina ‘SNPscore’ file containing all the annotations
for the SNPs tested in the panel at the time of design is
available by request.

Genotyping. GoldenGate 768-plex genotyping assays
were performed in the Sentrix Array Matrix format. Failed
SNP assays (n¼ 18) and DNA samples with low call rates
(n¼ 65 out of 571) were removed from the data set after
confirming replicate concordance. There were no significant
deviations from Hardy–Weinberg equilibrium (HWE) using
an adjusted cut-off of p¼ 9.4� 10�5 to account for 528
SNPs tested based on Bonferroni correction. Thirty-four
SNPs with MAF o0.05 in this cohort were excluded.
Potential population stratification in this European ancestry
sample was analyzed with a multi-dimensional scaling
(MDS) algorithm (Li and Yu, 2008) implemented in PLINK
(Purcell et al, 2007) using ancestry informative markers;
all 472 participants fall into one strong cluster suggesting
a homogeneous study population (Supplementary Figure S1).
This method identifies both clustered and continuous
patterns of genetic variation and corrects for potential
confounding effects by adjusting each subject’s positions
along identified axes of genomic variation and his/her
memberships in detected clusters simultaneously. We
analyzed up to 10 dimensions of variation in our MDS
analyses.

Initial SNP analysis. Individual SNP associations with
cessation were assessed using two-sided w2 tests or Fisher’s
exact tests. Both the one degree of freedom genotypic trend
test (analogous to the Cochran–Armitage test) and the two
degree of freedom tests of independence were performed.
As there is no a priori knowledge of the underlying
biological mechanism for these intronic SNPs, an additive
model was considered most informative in both of the
cohorts (Foulkes, 2009). Logistic regression models pro-
vided adjusted odds ratios and 95% confidence intervals
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adjusting for age, sex, and nicotine dependence score. Odds
ratios present the increase in risk associated with each
additional copy of the minor allele. Associations between
individual SNPs and nicotine dependence were modeled
using linear regression. The distribution of FTND was
found to approximate a Gaussian distribution and hence
no transformation of this outcome was applied. As the
primary objective of the discovery cohort was to find
potential target genes of interest, p-values in this cohort
were not corrected for multiple testing. Analyses were
conducted using PLINK (Purcell et al, 2007) and SAS
Genetics Version 9.2 (SAS Institute, Cary, NC).

Gene selection for further analysis. Gene selection criteria
were (a) X5 SNPs with p-values p0.10 with at least three
of these clustered within a 10-kb DNA sequence, or (b) any
gene with a SNP association at a level of po0.001. Only the
ChAT gene met this first criterion, and none met the second
criterion. Therefore, subsequent analysis of nicotine depen-
dence and haplotype analysis focused only on the ChAT
SNPs, as did analyses in the replication cohort.

Haplotype analysis. Pair-wise LD between all SNP markers
in ChAT was computed using Haploview (Barrett et al,
2005) and determination of haplotype blocks was based on
criteria recommended by Gabriel et al (2002) (Figure 1).
The single-SNP analysis informed which haplotype blocks
would be examined (specifically haplotype block 6 in
ChAT). We used the EM algorithm (Excoffier and Slatkin,
1995) to estimate haplotype frequencies, and haplotype-
specific associations with cessation were tested using
generalized linear models (GLM) (Schaid et al, 2002). This
approach allowed us to assess the global significance
between all haplotypes and outcome. For ease of inter-
pretation, we also conducted haplotype-specific tests and

estimated haplotype-specific odds ratios and confidence
intervals using the common haplotype as the reference
haplotype. We chose this method because when comparisons
are made between each haplotype to all others, the reference
haplotype does not remain the same, and hence makes
interpretation of the results more difficult. Testing used the
haplo.stat program (haplo.glm, haplo.score, haplo.em; R
version 2.7.2, http://www.R-project.org). As the score statistic
distribution (to test for overall haplotype association) may
not be normal in our data, p-values were calculated from
empirical null distributions based on 1000 simulations.
The power analysis was conducted in SAS using a

program based on the Schlesselman formulas (Schlessel-
man, 1982, 1987). Analyses of cessation in the discovery
cohort were powered to detect an odds ratio of 1.8 or
greater for allelic frequencies of 0.2 or greater with 80%
power and type I error rate (a) of 5%. For a variant allele
frequency of 0.1, our study provided 80% power to detect an
odds ratio 42.0 at a¼ 5%. This level of effect would be
considered clinically significant, and is comparable to
effects in previous pharmacogenetic trials of smoking
cessation (David et al, 2007; Johnstone et al, 2007; Lerman
et al, 2006).

Replication Cohort

Sample. Participants were recruited from the Mid-South
states of Tennessee, Mississippi, and Arkansas from 1999 to
2004. Proband smokers were 18 years of age and older
and reported smoking at least 20 cigarettes per day for
the last 12 months. Siblings and parents of the smoking
probands were recruited whenever possible. The 629
participants of European ancestry represented 200 families;
69.5% were female, with a mean age of 39.4 years
(SD¼ 14.4) and mean nuclear family size of 3.17

Figure 1 LD plot for SNPs on ChAT gene in the discovery cohort.
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(SD¼ 0.69). The mean cigarettes per day was 19.5
(SD¼ 13.4) and median cigarettes per day was 25. The
mean heaviness of smoking index (HSI) was 3.9 (SD¼ 1.4)
with a median of 4; the mean FTND score was 6.33
(SD¼ 2.22) with a median of 7.

Procedures. Current nicotine dependence was ascertained
by: smoking quantity (SQ: defined as the number of
cigarettes smoked per day), the HSI (0–6 scale), which
includes SQ and smoking urgency (ie, how soon after
waking up does the subject smoke the first cigarette?), and
the previously described FTND (Heatherton et al, 1991).
The correlations among these measures ranged from 0.88 to
0.94, suggesting that these measures assess common and
unique aspects of dependence (Li et al, 2008). All of the
three measures showed a normal distribution.
The replication cohort analysis focused on seven SNPs

in ChAT haplotype blocks 2 and 6, based on the presence
of SNPs with po0.05 associations with either cessation or
nicotine dependence in the discovery cohort, as well as to
capture SNPs in both the 30 and 50 end regulatory regions
of the gene. These included two SNPs in haplotype block 2
(rs1880676 and rs3810950) and five SNPs in haplotype
block 6 (rs4838547, rs6537546, rs1917810, rs11101202, and
rs867687). Genotyping used the TaqMan SNP Genotyping
Assay in a 384-well microplate format (Applied Biosystems,
Foster, CA). Allelic discrimination analysis was performed
on the ABI Prism 7900HT Sequence Detection System, and
SNP-specific control samples were added to each 384-well
plate. Detailed procedure and conditions for genotyping in
the replication cohort were described previously (Beuten
et al, 2005; Li et al, 2005).
Family-based association analysis accounted for family

structure. We used the PedCheck program to determine
genotyping consistency for Mendelian inheritance of all
SNPs. Departure from HWE was assessed at each locus
by the w2 test at a significance threshold of po0.01. The
allele frequencies for each SNP were calculated using the
FREQ program of SAGE (v. 5.0). Associations between
individual SNPs and the dependence measures were
determined by the PBAT program (version 3.6) using
generalized estimating equations assuming an additive
genetic model to be consistent with the discovery cohort
(Lange et al, 2003).
An exploratory haplotype analysis in the replication cohort

used a sliding window approach as performed in previous
association studies of these nicotine dependence measures
and other complex traits (Huang et al, 2009; Lin et al, 2004;
Nussbaum et al, 2008). We used the FBAT program, with the
computation of p-values for the Z-statistic based on the
Monte Carlo sampling option under the null distribution of
no linkage and no association (Horvath et al, 2004). Gender
and age were included as covariates. Significant associations
were corrected for multiple testing using the Bonferroni
correction for haplotype analysis.

RESULTS

Discovery Cohort

Smoking cessation. Of the 472 participants, 150 were
verified quitters and 322 had relapsed. The quit rates

observed in our study are comparable to our previous
NRT study (Lerman et al, 2004) and meta-analyses of
other NRT studies (Stead et al, 2008). Eight SNPs in ChAT
showed nominal associations (po0.10) with smoking
cessation (uncorrected for multiple testing) (Table 1).
These include one SNP in haplotype block 2 (rs1880676),
which is located in an alternatively spliced version of
ChAT that produces a 74-kDa protein (ChAT isoform 3),
three SNPs in haplotype block 4 (rs1917818, rs3793792,
and rs7094248) and four SNPs in haplotype block 6
(rs4838547, rs6537546, rs1917810, and rs11101202). How-
ever, if we correct for multiple testing using a stringent
Bonferrroni correction for all the SNPs tested, none of the
associations would remain statistically significant. In all
logistic regression models of 8-week smoking cessation,
FTND score was significantly associated with outcome
(po0.0001); however, age and sex were not.
The most significant (pp0.005) single SNP associa-

tions were observed in haplotype block 6 (formed by
rs4838547, rs6537546, rs1917810, rs11101202, and
rs867687). Therefore, we focused our haplotype analysis
on this block. Common haplotypes accounted for 99% of
all haplotypes, with the most common one being G–A–G–
G–A with a frequency of 43%. Haplotype block 6 was
significantly associated with cessation using a global test
for haplotype association under an additive model
(p¼ 0.02). When each haplotype was compared with
the most common haplotype (G–A–G–G–A), haplotypes
A–A–A–C–G and A–T–A–C–A were significantly asso-
ciated with relapse (Table 2). The odds of cessation at the
end of treatment was 0.65 (CI¼ 0.44–0.95, p¼ 0.04)
among individuals with haplotype A–A–A–C–G, and 0.5
(CI¼ 0.29–0.88, p¼ 0.02) among individuals with haplo-
type A–T–A–C–A compared with the reference haplotype
(Table 2).
Smoking cessation was not associated with SNPs in

any of the nAChR genes examined (p-values ranged from
0.15 to 0.83) (Supplementary Table S1). Allele frequencies
for the SNPs in the CHRNA5/A3/B4 gene cluster previously
associated with nicotine dependence (Saccone et al, 2007;
Thorgeirsson et al, 2008) were not different in relapsers
and abstainers. For example, frequencies for the major A
allele of rs16969968 were 61% in the relapsed and 62%
in the abstinent groups, respectively; for the G allele of
rs1051730, allele frequencies were 61% and 63% respec-
tively. Supplementary Table S3 includes the allele frequen-
cies and p-values for selected SNPs in the nAChR genes
that have been associated with smoking behavior in
previous studies (Etter et al, 2009; Greenbaum et al, 2006;
Hutchison et al, 2007; Li et al, 2005; Saccone et al, 2007,
2009).

Nicotine dependence. Three ChAT SNPs (rs1880676,
rs3810950, and rs868750) were also significantly associated
with level of nicotine dependence (allele p-values were 0.01,
0.02, and 0.04, respectively). The 2-SNP haplotype
(rs1880676 and rs3810950 in block 2) showed borderline
statistical significance for association with nicotine
dependence under an additive model after adjustment
for age and sex (p¼ 0.06). However, these reported p-values
are unadjusted for multiple-testing in the discovery
cohort.
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Replication Cohort

Minor allele frequencies for the seven SNPs in the
replication cohort were comparable to those in the primary
discovery cohort. Three SNPs in haplotype block 6 showed
pp0.05 associations with at least one measure of nicotine
dependence (Table 3a). Two SNPs located in haplotype
block 2 were not significantly associated with any measure
of nicotine dependence during individual SNP testing.
Haplotype G–G–T–A–A (formed by rs1880676 and
rs3810950 in block 2 and rs4838547, rs6537546, and
rs1917810 in block 6; frequency of 34.7%) was significantly

associated with SQ, HSI, and FTND assuming a dominant
model, yielding p-values of 0.018, 0.0085, and 0.0096,
respectively (Table 3b). The haplotype A–A–C–A–G showed
a trend toward association with SQ and HSI, with p-values
of 0.058 and 0.056, respectively (Table 3b).

DISCUSSION

This study examined genetic variation in the nicotinic
receptor system for associations with prospective smoking
cessation and nicotine dependence. In the discovery cohort

Table 2 Haplotype Analyses of ChAT with Smoking Cessation in the Discovery Cohort (5 ChAT SNPs: formed by rs4838547, rs6537546,
rs1917810, rs11101202, and rs867687 in Haplotype Block 6)

Haplotype Freq (%) Haplotype frequency in abstinent Haplotype frequency in relapsed OR (95% CI) p-Valuea

G-A-G-G-A 43.1 49.6 40.1 1

A-A-A-C-A 24.8 23.4 25.4 0.72 (0.51, 1.03) 0.07

A-A-A-C-G 21.8 18.5 23.3 0.65 (0.44, 0.95) 0.04

A-T-A-C-A 9.3 6.6 10.6 0.5 (0.29, 0.88) 0.02

Global p-value 0.02

aComputed using the haplotype score test using an additive model. Adjusted for age, sex, and nicotine dependence score.

Table 1 Allele Frequencies for ChAT SNPs and Association with Smoking Cessation

dbSNP ID (alleles)a
Hap
block Position

SNP
location MAF

MAF
abstinent

MAF
relapsed ORb (95% CI)

p-Value
(per allele)

rs11101179 (G/A) 1 50480897 5’ near gene 0.29 0.3 0.29 1.05 (0.77, 1.43) 0.75

rs885834 (G/A) 1 50485518 5’ near gene 0.41 0.44 0.39 1.25 (0.94, 1.43) 0.12

rs1880676 (A/G) 2 50494123 Intron 0.34 0.39 0.33 1.34 (0.96, 1.87) 0.08

rs3810950 (A/G) 2 50494625 Exon 0.26 0.28 0.25 1.19 (0.86, 1.66) 0.29

rs7091005 (A/G) 50496169 Intron o0.1 0.08 0.07 1.23 (0.7, 2.14) 0.47

rs10082479 (A/T) 50499225 Intron 0.1 0.09 0.11 0.96 (0.65, 1.41) 0.61

rs868750 (A/G) 3 50503845 Intron 0.17 0.17 0.17 0.96 (0.65, 1.41) 0.83

rs4838392 (G/A) 3 50504984 Intron 0.37 0.4 0.36 1.2 (0.88, 1.63) 0.25

rs2177370 (G/A) 50508880 Intron 0.39 0.38 0.4 0.92 (0.68, 1.23) 0.56

rs3793790 (G/A) 50510742 Intron 0.33 0.35 0.33 1.11 (0.82, 1.51) 0.49

rs3793791 (G/A) 50511710 Intron o0.1 0.06 0.08 0.68 (0.4, 1.17) 0.16

rs1917818 (C/A) 4 50519348 Intron 0.39 0.43 0.37 1.3 (0.98, 1.7) 0.072

rs3793792 (A/G) 4 50520169 Intron 0.39 0.43 0.38 1.29 (0.97, 1.7) 0.08

rs7903612 (G/C) 4 50522533 Intron 0.32 0.3 0.32 0.9 (0.65, 1.23) 0.49

rs8178991 (A/G) 4 50524643 Exon 0.03 0.03 0.02 1.3 (0.53, 3.15) 0.57

rs7094248 (C/G) 4 50525374 Intron 0.50 0.54 0.48 1.32 (0.99, 1.75) 0.06

rs1917813 (G/A) 5 50527841 Intron 0.48 0.52 0.46 1.27 (0.95, 1.68) 0.1

rs6537545 (G/A) 5 50529255 Intron 0.47 0.51 0.46 1.23 (0.93, 1.64) 0.15

rs4838547 (G/A) 6 50532410 Intron 0.44 0.5 0.42 1.53 (1.14, 2.04) 0.004

rs6537546 (T/A) 6 50534049 Intron 0.09 0.06 0.11 0.60 (0.35, 1.03) 0.06

rs1917810 (G/A) 6 50540077 Intron 0.44 0.5 0.42 1.53 (1.14, 2.04) 0.004

rs11101202(G/C) 6 50542408 Intron 0.43 0.5 0.41 1.51 (1.13, 2.02) 0.005

rs867687(G/A) 6 50547271 3’flanking 0.22 0.19 0.23 0.76 (0.52, 1.1) 0.14

Abbreviation: MAF, minor allele frequency.
aThe minor allele is bolded for each SNP.
bOdds ratio for the minor allele adjusting for age, sex, and nicotine dependence score assuming an additive model (SNPs with po0.05 are in bold). The direction of
association can be determined based on the MAF in the abstinent and relapsed groups.
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of treatment-seeking smokers, we identified a cluster of
SNPs in ChAT haplotype block 6 (formed by rs4838547,
rs6537546, rs1917810, and rs11101202) showing nominal
associations with smoking cessation in individual SNP-level
as well as haplotype analysis. Specifically, three SNPs in
haplotype block 6 (rs4838547, rs1917810, and rs11101202)
were associated with smoking cessation at an individual
SNP level (pp0.005, uncorrected for multiple comparisons).
Further, the 5-SNP haplotypes in block 6, A–A–A–C–G and
A–T–A–C–A, were significantly associated with relapse as
compared with the most common haplotype group. A closer
examination of the haplotypes associated with greater
relapse risk confirmed that the same SNPs that were
significant in the single SNP analysis were also driving the
haplotype results. Three ChAT SNPs were also associated
with nicotine dependence in the discovery sample. In
the replication sample of non-treatment-seeking smokers,
three SNPs in haplotype block 6 (rs4838547, rs11101202,
and rs867687) were also associated with nicotine depen-
dence; rs4838547 and rs11101202 were also associated with
cessation status in the discovery cohort with the same
alleles predisposing to relapse and nicotine dependence
phenotypes in the respective cohorts. Also in the replication
cohort, a major haplotype (G–G–T–A–A) formed by 5 SNPs
(rs1880676, rs3810950, rs4838547, rs6537546, and rs1917810)
with a frequency of 34.7% was significantly associated with

all three measures of nicotine dependence. Although the
overall effect sizes are modest, the convergent signals for
haplotype blocks 2 and 6 across cohorts and phenotypes
provide initial evidence that ChAT may contribute to
nicotine dependence and smoking cessation.
These ChAT SNPs are likely to be surrogate markers for

as yet undiscovered functional polymorphisms. Although
our initial cohorts were not powered to test for associations
with the known but rare non-synonymous coding SNPs
included in the genotyping assay, a polymorphism
(ie, rs1880676) previously unrecognized as affecting amino
acid sequence was associated with nicotine dependence
(p¼ 0.01) and smoking cessation (p¼ 0.08) in the discovery
cohort. The SNP rs1880676 in haplotype block 2 is located
in an alternatively spliced version of ChAT that encodes a
rarely studied isoform (Ohno et al, 2001). The minor allele
of ChAT rs1880676 alters amino acid 7 from aspartate to
its uncharged amide asparagine in isoform 3, reducing the
number of negatively charged residues from four to three
in the 36 amino acid N-terminal extension (Figure 2). As
this region also contains five basic (positively charged)
residues, this polymorphism may affect regional electro-
static charge in this N-terminal domain. The development
of assays to detect ChAT isoform 3 and determine its tissue
and subcellular distribution, and to characterize the
consequences of this coding polymorphism with respect
to ACh levels, could be useful to determine whether
this SNP may have a key role in neuronal function
and possibly nicotine dependence. It is noteworthy
that rs1880676 has also been associated with late-onset
Alzheimer’s disease (Harold et al, 2006), as well as
schizophrenia and response to anti-psychotic treatment
(Mancama et al, 2007); however, the molecular mechanism
underling its involvement in these disorders is largely
undetermined.
In spite of the lack of knowledge regarding the functional

significance of the SNPs in this report, there is a compelling
biological rationale to support a potential contribution of
ChAT to nicotine dependence and smoking persistence.
ChAT is the key enzyme responsible for synthesis of
endogenous ACh and is traditionally used as a marker for
cholinergic terminals in the brain. Cholinergic projections
from the posterior pendunculopontine tegemental nucleus
(PPTg) to ventral striatum are thought to have a role in
nicotine self-administration (Alderson et al, 2006; Corrigall
et al, 2002). Nicotine administration causes release of ACh

Table 3b Exploratory Analysis Examining the Association of Major Haplotypes Formed by rs1880676, rs3810950, rs4838547, rs6537546,
and rs1917810 with Three Nicotine Dependence Measures in the Replication Sample

Haplotype Freq (%) SQ HSI FTND

G-G-T-A-A 34.7 2.351 (0.0187, 61) 2.630 (0.00854, 63) 2.589 (0.00962, 65)

G-G-G-A-G 32.1 �0.049 (0.961, 62) �0.520 (0.603, 61) �0.258 (0.797, 64)

G-G-A-T-A 6.3 0.249 (0.803, 26) 0.772 (0.440, 27) 0.859 (0.390, 27)

A-A-G-A-G 11.1 �1.899 (0.0576, 43) �1.913 (0.0557, 44) �1.687 (0.0916, 45)

A-A-A-A-A 13 0.186 (0.852, 49) 0.301 (0.764, 49) 0.108 (0.914, 52)

Global p-value 7.804 (0.167) 9.940 (0.0770) 9.350 (0.0959)

Three numbers within each cell are Z score, p-value, and informative family size (last two are in parentheses), respectively. Results for the dominant model are
reported.

Table 3a p-Values for Associations of Individual SNPs with Three
Nicotine Dependence Measures under an Additive Model in the
Replication Sample

dbSNP ID MAF SQ HSI FTND

rs1880676 0.28 0.311 (G) 0.276 (G) 0.234 (G)

rs3810950 0.27 0.413 (G) 0.339 (G) 0.279 (G)

rs4838547 0.44 0.108 (A) 0.038 (A) 0.058 (A)

rs6537546 0.08 0.718 (A) 0.621 (A) 0.2589 (A)

rs1917810 0.45 0.106 (A) 0.051 (A) 0.077 (A)

rs11101202 0.45 0.095 (C) 0.041 (C) 0.066 (C)

rs867687 0.21 0.066 (G) 0.050 (G) 0.096 (G)

Alleles in parentheses indicate the allele positively associated with the smoking
phenotype (ie, the risk allele).
Bold entries indicate significant po0.05 associations.
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in both in vivo and in vitro model systems (Rowell and
Winkler, 1984; Tani et al, 1998), and repeated nicotine
administration sensitizes ACh release (Arnold et al, 2003).
Chronic nicotine administration to adult rats increases
ChAT enzyme activity (Hernandez and Terry, 2005) and
nicotine withdrawal in adolescent animals alters levels of
ChAT enzyme activity in some brain regions (Slotkin et al,
2008). These studies support the biological plausibility of
an association of smoking behavior with ChAT genetic
variation.
The observed association of ChAT with smoking cessation

is consistent with the results of a previous pharmacogenetic
trial (Heitjan et al, 2008). ChAT SNP rs1917810 in haplotype
block 6 was associated with response to bupropion vs
placebo; consistent with the current findings, smokers with
the minor allele had higher abstinence rates on placebo
(Heitjan et al, 2008). Replication in additional clinical trials
and community-based cohorts will be important to confirm
whether variation in the ChAT gene is associated with
nicotine dependence severity and cessation.
Some limitations of this study should be considered when

interpreting the results. First, although SNPs chosen for the
study provided adequate coverage of the ChAT gene, the
functional consequences are unknown for the vast majority
of these. Second, the sample sizes of these cohorts are not
very large and most of the identified associations would not
remain significant after correction for multiple compa-
risons. However, the studies were adequately powered to
detect SNP associations at a level considered to be clinically
significant. Third, the primary end of treatment (8-week)
end-point might not be a sufficient duration to define
someone as a quitter, given relapses that may occur after
treatment. However, the vast majority of relapses occur
within 5–10 days after a quit attempt (Piasecki, 2006),
suggesting that we are probably able to capture most of the
treatment success by our 8-week time point. Further,
exploratory analysis of the ChAT SNP associations with
quitting success at 12 months after the target quit date
indicates that SNPs associated significantly with cessation
at week 8 remain significant (p¼ 0.01) at 12 months
(Supplementary Table S4).
In summary, this study provides novel convergent

evidence for associations of ChAT with smoking cessation
and nicotine dependence, suggesting that this gene warrants
closer attention. Pre-clinical pharmacology studies that alter
the activity of the ChAT enzyme and analyze effects on
dependence phenotypes in rodents would be useful to
increase our understanding of the role of the endogenous
cholinergic system in nicotine dependence. Studies to
identify functional variants in the ChAT gene that affect
expression levels or enzymatic function of ChAT are
needed. Pending further investigation, the current findings
may have implications for medication development for
nicotine dependence. Although molecules that alter ChAT
activity have not been tested clinically, acetylcholinesterase

(AChE) inhibitors, such as galanatamine, may decrease
smoking behavior (Diehl et al, 2006).
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Figure 2 The N-terminal extension of 74-kDa ChAT.
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