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Certain polymorphisms reduce serotonin (5-HT) reuptake transporter (5-HTT) function and increase susceptibility to psychiatric

disorders. Heterozygous (5-HTT+ /�)-deficient mice, models for humans with these polymorphisms, have elevated brain 5-HT

concentrations and behavioral abnormalities. As postsynaptic 5-HT2A/2C receptors are coupled to cytosolic phospholipase A2 (cPLA2),

which releases arachidonic acid (AA) from membrane phospholipid, 5-HTT-deficient mice may have altered brain AA signaling and

metabolism. To test this hypothesis, signaling was imaged as an AA incorporation coefficient k* in unanesthetized homozygous knockout

(5-HTT�/�), 5-HTT+ /� and wild-type (5-HTT+ /+ ), mice following saline (baseline) or 1.5mg/kg s.c. DOI, a partial 5-HT2A/2C receptor

agonist. Enzyme activities, metabolite concentrations, and head-twitch responses to DOI were also measured. Baseline k* was widely

elevated by 20–70% in brains of 5-HTT+ /� and 5-HTT�/� compared to 5-HTT+ /+ mice. DOI increased k* in 5-HTT+ /+ mice, but

decreased k* in 5-HTT-deficient mice. Brain cPLA2 activity was elevated in 5-HTT-deficient mice; cyclooxygenase activity and

prostaglandin E2 and F2a and thromboxane B2 concentrations were reduced. Head-twitch responses to DOI, although robust in

5-HTT+ /+ and 5-HTT+ /� mice, were markedly fewer in 5-HTT�/� mice. Pretreatment with para-chlorophenylalanine, a 5-HT synthesis

inhibitor, restored head twitches in 5-HTT�/� mice to levels in 5-HTT+ /+ mice. We propose that increased baseline values of k* in

5-HTT-deficient mice reflect tonic cPLA2 stimulation through 5-HT2A/2C receptors occupied by excess 5-HT, and that reduced k* and

head-twitch responses to DOI reflected displacement of receptor-bound 5-HT by DOI with a lower affinity. Increased baseline AA

signaling in humans having polymorphisms with reduced 5-HTT function might be identified using positron emission tomography.
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INTRODUCTION

Extracellular serotonin (5-hydroxytryptamine (5-HT)) in
brain is regulated in part by the presynaptic serotonin
reuptake transporter (5-HTT, SLC6A4). Mice with a partial
(5-HTT+ /�) or complete (5-HTT�/�) 5-HTT deletion,
compared with wild-type (5-HTT+ /+ ) mice, differ with
regard to brain anatomy; brain concentrations, reuptake,
synthesis, and release of 5-HT; 5-HT and GABA receptor
densities; programmed cell death; and brain glucose
metabolism (Bengel et al, 1998; Esaki et al, 2005; Fox
et al, 2007a, 2008a; Mathews et al, 2004; Murphy et al, 2008;

Murphy and Lesch, 2008). They also show increased
anxiety- and depression-like behaviors and reduced aggres-
siveness on various tests (Fox et al, 2007a; Murphy et al,
2008; Murphy and Lesch, 2008).
Reduced serotonergic function in 5-HTT+/� and 5-HTT�/�

mice is thought to be comparable to reduced serotonergic
function in humans who carry one or two short (S)
compared with long (L) alleles of the promoter-region
polymorphism of 5-HTT (5-HTTLPR), or who express
rs25531 or rs25532 variants of the 5-HTT allele (Murphy
et al, 2008; Murphy and Lesch, 2008). Thus, studying
5-HTT-deficient mice could elucidate dysfunctional seroto-
nergic neurotransmission in humans with these polymorph-
isms, and suggest new methods for identifying and
quantifying this dysfunction.
For example, humans carrying one ‘S’ 5-HTTLPR allele

have 50% reductions in 5-HTT expression and function in
lymphocytes, platelets, and brain, compared with those with
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the LL genotype (Hu et al, 2006; Murphy et al, 2008;
Murphy and Lesch, 2008; Praschak-Rieder et al, 2007;
Wendland et al, 2008). They also have comparatively
elevated anxiety, depression, and aggression-related per-
sonality traits, and increased susceptibility to depression
associated with major negative life events (Caspi et al, 2003;
Uher and McGuffin, 2008). They respond poorly to selective
serotonin reuptake inhibitors (SSRIs; Hu et al, 2006;
Murphy et al, 2004; Serretti et al, 2005), and are at
increased risk for bipolar disorder, comorbid disorders
accompanying alcoholism, and suicide (Baca-Garcia et al,
2007; Li and He, 2007; Marques et al, 2006; Masoliver et al,
2006). Extracellular striatal 5-HT concentrations are three-
and sixfold higher, respectively, in 5-HTT+/� and 5-HTT�/�

than 5-HTT+ /+ mice (Mathews et al, 2004). 5-HT2A

receptor density is reduced in the striatum but increased
in the hypothalamus and septum of 5-HTT�/� compared
with 5-HTT+ /+ mice, whereas 5-HT2C receptor density is
elevated in the amygdala and choroid plexus (Li et al, 2003).
Elevated extracellular 5-HT concentrations would be

expected to increase 5-HT occupancy of the postsynaptic
5-HT2A/2C receptors that are coupled to cytosolic phospho-
lipase A2 (cPLA2), and thereby tonically activate cPLA2

(Berg et al, 1998a; Clark et al, 1995; Felder et al, 1990).
cPLA2 when activated selectively releases arachidonic acid
(AA, 20:4n-6) from membrane phospholipid to initiate the
AA signaling cascade (Fitzpatrick and Soberman, 2001;
Shimizu and Wolfe, 1990). AA and its metabolites (eg,
prostaglandins and endocannabinoids) can modify sleep,
neural firing, neurotransmitter release, nociception, cere-
bral blood flow, and gene transcription (Bosetti, 2007). We,
therefore, thought it of interest in this study to see whether
this cascade is upregulated in 5-HTT-deficient mice.
Brain AA signaling involving cPLA2-coupled neurorecep-

tors can be imaged in unanesthetized rodents by infusing
radiolabeled AA i.v. and measuring tracer uptake into brain
with quantitative autoradiography (Rapoport, 2001;
Robinson et al, 1992). k* for AA at baseline or following
drug is independent of changes in cerebral blood flow, thus
only reflecting brain AA metabolism (Chang et al, 1997).
The flux Jin of AA, which represents the rate of regional
brain AA consumption, as AA cannot be synthesized de
novo in vertebrate tissue or converted from its circulating
precursor, linoleic acid (18:2n-6) in brain (DeMar et al,
2006; Holman, 1986; Rapoport et al, 2001) can be calculated
as the product of k* and the unesterified plasma AA
concentration.
In this study, we used in vivo brain AA imaging to test

whether the reported high levels of brain extracellular 5-HT
in 5-HTT-deficient mice would tonically stimulate
5-HT2A/2C receptors to augment cPLA2 activity, and thereby
elevate baseline values of k* and Jin, and of AA-derived
eicosanoid concentrations. We also examined whether these
changes would be accompanied by elevated cyclooxygenase
(COX) activity and concentrations of COX-derived eicosa-
noids, as COX-1 and -2 have been reported to be
functionally coupled to cPLA2 in brain (Bosetti and
Weerasinghe, 2003; Fitzpatrick and Soberman, 2001;
Kaufmann et al, 1996; Ong et al, 1999; Pardue et al, 2003;
Sapirstein et al, 2005; Xu et al, 2008). Additionally, we
checked whether k* responses to ( + /�)-2,5-dimethoxy-4-
iodophenyl-2-aminopropane (DOI), a partial 5-HT2A/2C

agonist (Marek and Aghajanian, 1996), would be reduced
in 5-HTT-deficient mice by displacing already bound 5-HT.
The 1.5mg/kg s.c. DOI dose that we chose has been reported
to increase k* for AA significantly in mouse brain regions
rich in 5-HT2A/2C receptors (Qu et al, 2005). Finally, we
quantified head-twitch responses (HTRs) to DOI as a
behavioral test of 5-HT2A receptor function (Willins and
Meltzer, 1997), before and after pharmacological alteration
of extracellular 5-HT (Cesana et al, 1993; Fox et al, 2007b).
Parts of this study have been presented in abstract form
(Basselin et al, 2007a).

MATERIALS AND METHODS

Animals

Experiments were conducted following the ‘Guide for the
Care and Use of Laboratory Animals’ (National Institute of
Health Publication No. 86-23) and were approved by the
Animal Care and Use Committee of the Eunice Kennedy
Shriver National Institute of Child Health and Human
Development. Five- to nine-month-old male 5-HTT+ /� and
5-HTT�/� mice and their littermate 5-HTT+ /+ controls,
derived from a C57BL/6J genetic background (Bengel et al,
1998), were maintained in an animal facility in which
temperature, humidity, and light cycle were regulated with
free access to water and a fixed diet (Rodent NIH-31 auto
18-4, Zeigler Bros, Gardners, PA). The diet contained (as
percent of total fatty acids) 20.1% saturated, 22.5%
monounsaturated, 47.9% linoleic, 5.1% a-linolenic, 0.02%
AA, 2.0% eicosapentaenoic, and 2.3% docosahexaenoic
acid.

Drugs

Unanesthetized mice received 0.9%. NaCl (saline) or 1.5mg/kg
s.c. DOI (Sigma-Aldrich, St Louis MO). [1-14C]AA in
ethanol (53mCi/mmol; 99.4% pure, Moravek Biomedicals,
Brea, CA) was evaporated and resuspended in 5mM HEPES
buffer, pH 7.4, which contained 50mg/ml of bovine serum
albumin, essentially fatty acid free (Sigma-Aldrich). Tracer
purity was ascertained to exceed 99% by gas chromato-
graphy, after converting AA into its methyl ester with 1%
sulfuric acid in anhydrous methanol. The 5-HT synthesis
inhibitor para-chlorophenylalanine (PCPA, 30mg/ml pre-
pared in distilled deionized water) and the 5-HT precursor
5-hydroxy-L-tryptophan (5-HTP, 5mg/ml prepared in 5%
Tween 80 in distilled water) were obtained from Sigma-
Aldrich.

Surgical Procedures and Tracer Infusion

A mouse was anesthetized with 2–3% halothane in O2 and
PE 10 polyethylene catheters were inserted into its right
femoral artery and vein as reported (Basselin et al, 2006b;
Qu et al, 2005). The wound site was closed with 454 Instant
Adhesive (Loctite Corp. Hartford, CT), and the mouse was
wrapped loosely, with its upper body remaining free, in a
fast-setting plaster cast taped to a wooden block. It was
allowed to recover from anesthesia for 3–4 h in a warming
environment maintained at 251C. Starting 20min after s.c.
DOI or saline injection, 45 ml [1-14C]AA (300 mCi/kg) was
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infused for 3min through the femoral vein at a rate of 15 ml/
min, using a Hamilton syringe and an infusion pump
(Harvard Apparatus Model 22, Holliston, MA). Ten 15-20 ml
arterial blood samples were collected at 0, 0.25, 1.0, 1.5, 2.0,
2.8, 3.2, 5.0, 10, and 19min to determine radioactivity of
unesterified AA in the plasma. At 20min, the mouse was
killed by an overdose of Nembutals (50mg/kg, i.v.). The
brain was removed quickly within o30 s, frozen in 2-
methylbutane in dry ice at �401C, and stored at �801C until
sectioned.

Chemical Analysis

The blood samples collected before, during, and after
[1-14C]AA infusions were centrifuged immediately (30 S at
18 000 g) to obtain plasma, which was stored at �801C. Total
lipids were extracted from 5 ml of thawed plasma with 1ml
chloroform:methanol (2:1, by vol) and 0.5ml 0.1M KCl,
using a modified method of Folch (Folch et al, 1957).
Radioactivity was determined in 100 ml of the lower organic
phase by liquid scintillation counting. As reported earlier,
more than 95–98% of total plasma and brain radioactivity at
5min was radiolabeled AA (Lee et al, 2007).
Concentrations of unlabeled unesterified fatty acids were

determined in 100–150ml of frozen arterial plasma collected
by heart puncture. Total lipids were extracted by the
modified Folch method, and were separated by thin layer
chromatography on silica gel 60 plates using the solvent
system: heptane/diethyl ether/acetic acid (60:40:3, by vol).
Unesterified fatty acids were scraped from the plate and
methylated with 1% sulfuric acid (by vol) in anhydrous
methanol for 3 h at 701C, then separated and quantified by
gas chromatography using heptadecanoic acid (17:0) as an
internal standard.

Quantitative Autoradiography and Calculations

Frozen brains were cut in serial 20-mm thick coronal
sections on a cryostat at �201C, then placed for 4 weeks
together with calibrated [14C]methylmethacrylate standards
(Amersham, Arlington Heights, IL) on Ektascan C/RA film
(Eastman Kodak Company, Rochester, NY). Radioactivity
(nCi/g of brain) in 92 anatomically identified regions
(Franklin and Paxinos, 1997) was measured bilaterally six
times by quantitative densitometry, using the public
domain NIH Image program 1.62 (http://rsb.info.nih.gov/
nih-image/). Regional AA incorporation coefficients k* (ml/
s/g brain) of AA were calculated as (Robinson et al, 1992),

k� ¼
c�
brainð20 mÞ

R20

0

c�
plasmadt

ð1Þ

where c�brain (nCi/g brain) is brain radioactivity at 20min
after the onset of infusion as determined by densitometry,
c�plasma (nCi/ml plasma) is the arterial plasma concentration
of labeled unesterified AA as determined by scintillation
counting, and t (min) is time after the onset of [1-14C]AA
infusion. Integrals of plasma radioactivity (input function in
denominator) were determined in each experiment by
trapezoidal integration, and divided into c�brain to calculate
k* for each experiment.

Regional rate of incorporation of unesterified AA from
plasma into brain phospholipids, Jin (fmol/s/g), was
calculated as,

Jin ¼ k �cplasma ð2Þ
where cplasma (nmol/ml) is the plasma concentration of
unlabeled unesterified AA.

Brain cPLA2 Activity

In separate experiments, mice were anesthetized with
Nembutal (50mg/kg, i.p.) and decapitated. The brain was
rapidly excised, frozen in 2-methylbutane maintained at
�401C with dry ice, and stored at �801C. Brain hemispheres
were homogenized using a Teflon-glass homogenizer in 2
vol of ice-cold buffer containing 10mM HEPES, pH 7.5,
1mM EDTA, 0.34M sucrose and protease inhibitor cocktail
tablet (Complete, Roche, Mannheim, Germany). Homo-
genates were centrifuged at 14 000 g for 20min, then at
100 000 g for 1 h at 41C. Supernatants corresponding to the
cytosolic fraction were assayed for cPLA2 activity, using a
cPLA2 assay kit and secretory PLA2 and Ca2+ -independent
PLA2 inhibitors (Cayman, Ann Arbor MI).

Brain COX Activity

Brain hemispheres (see above) were homogenized using a
Teflon-glass homogenizer in 1ml of ice-cold lysate buffer
containing 10mM Tris-HCl, pH 7.8, 1% Igepal CA-630,
0.15M NaCl, and 1mM EDTA. Homogenates were centri-
fuged at 14 000 g for 20min at 41C. Brain COX activity was
measured as the rate of PGE2 formation (pg PGE2/min/mg
cytosolic protein) in homogenate cytosolic fractions diluted
1:5 with lysate buffer in the presence of 10mM phenol,
18.2mM (�)-epinephrine, 4.6mM L-glutathione reduced,
and 10 mM porcine hematin. The reaction was started by
adding AA (Oxford Biochemical Research, Oxford, MI) to a
final concentration of 0.1mM, and the mixture was
incubated at 371C for 15min. The reaction was terminated
by adding 250 ml of 1M HCl. PGE2 was extracted with ethyl
acetate and quantified using a PGE2 immunoassay kit
(Oxford Biochemical Research, Oxford, MI). A sample not
containing AA was assayed and used for the blank
determination.
In the same study, test drugs, Celebrexs (400mg; Pfizer

Inc., New York, NY; obtained from NIH Division of
Veterinary Medicine, Bethesda, MD), a specific COX-2
inhibitor, and DOI were dissolved in dimethylsulfoxide at a
concentration of 0.1% and in saline, respectively. These
drugs were added to the mixture 10min before adding AA
(see above).

Brain PGE2, PGF2a, and TXB2 Concentrations

In separate experiments, mice were anesthetized with
Nembutal (50mg/kg, i.p.) and subjected to head-focused
microwave irradiation (5.5 kW, 0.9 s; Cober Electronics,
Stamford, CT) to stop postmortem changes (Anton et al,
1983). Frozen half brains were weighed, homogenized with
18 vol of hexane:isopropanol (3:2 by vol) using a glass
Tenbroeck homogenizer, and the homogenate was centri-
fuged for 5min at 800 g. Tissue residues then were rinsed
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with 3� 2 vol of the same solvent. The resultant lipid
extract was concentrated to dryness under nitrogen and
resuspended in enzyme immunoassay buffer provided with
the polyclonal PGE2, PGF2a and TXB2 kits (Oxford
Biochemical Research, Oxford, MI).

Head-Twitch Responses

Mice were administered PCPA (300mg/kg i.p.) or vehicle
twice daily for 3 days (Cesana et al, 1993). On the fourth
day, 18 h after the final dose of PCPA, mice were placed in a
Plexiglas container. Following 15min of habituation, DOI
(2.5mg/kg i.p.) was administered. HTR were counted for
five 1-min periods starting 5min after drug administration,
and were summed over these five periods. In a separate
experiment, HTR following administration of 5-HTP
(80mg/kg i.p.) were assessed in a similar manner (Fox
et al, 2007b).

Statistical Analysis

A one-way analysis of variance (ANOVA) with a Bonferroni’s
post-test was used to compare mean body weights, cPLA2

and COX activities, and eicosanoid concentrations using
GraphPad Prism version 4.0b for Macintosh (GraphPad
Software, San Diego CA, www.graphpad.com). A two-way
ANOVA was employed to examine the effects of two factors,
genotype (5-HTT�/� or 5-HTT+ /� vs 5-HTT+ /+ ), and drug
(DOI vs saline) using SPSS 16.0 (SPSS Inc., Chicago, IL,
http://www.spss.com) on the arterial input function, plasma
unesterified fatty-acid concentrations, k* and Jin. We report
all main effect statistics (p- and F-values), although main
effects in the context of a significant interaction may be
difficult to interpret (Motulsky 2003; Tabachnick and Fidell,
2001). A one-way ANOVA with Bonferroni’s post-test with
correction for five comparisons (5-HTT+ /+ plus DOI vs
5-HTT+ /+ saline; 5-HTT+ /� saline vs 5-HTT+ /+ saline,
5-HTT+ /� plus DOI vs 5-HTT+ /� saline, 5-HTT�/� saline vs
5-HTT+ /+ saline, and 5-HTT�/� plus DOI vs 5-HTT�/�

saline) was performed. For k* and Jin, corrections for
multiple comparisons across regions were not made
because the purpose of this exploratory study was to
identify regions that were involved in individual drug effect.
One-way (genotype) or two-way (genotype� drug condi-

tion) ANOVAs followed by Bonferroni’s post-tests were
used to assess differences in 5-HTP- and DOI-induced HTR,
respectively. Data are reported as mean±SD, with statistical
significance taken as pp0.05.

RESULTS

Body Weight and Arterial Plasma Input Function

Mean body weight was significantly higher in 5-HTT�/�

(po0. 01) than 5-HTT+ /+ mice (38.9±5.7 g (n¼ 10) vs
29.5±5.4 g (n¼ 11)). Body weight equaled 34.2±2.8 g
(n¼ 10) in 5-HTT+ /� mice.
A two-way ANOVA revealed a significant effect of DOI

(p¼ 0.008) on integrated arterial plasma radioactivity
(denominator of Eq. 1; plasma input function). Input
functions [(nCi/ml� s)±SD, n¼ 4–6] are 5-HTT+ /+ plus
saline, 135 476±21 938; 5-HTT+ /+ plus DOI,

116 030±19 123; 5-HTT+ /� plus saline, 130 028±10 446;
5-HTT+ /� plus DOI, 106 044±11 708; 5-HTT�/� plus saline,
113 179±18 727, and 5-HTT�/� plus DOI, 105 875±11 947.

Plasma Concentrations of Unlabeled Unesterified Fatty
Acids

A two-way ANOVA showed significant interactions between
5-HTT genotype and DOI for plasma concentrations of
unesterified palmitoleic, stearic, oleic, and arachidonic acids
(Table 1). Subsequent one-way ANOVAs with Bonferroni’s
post-tests showed that palmitoleic and oleic acid concen-
trations were higher in 5-HTT�/� and 5-HTT+ /� mice than
in 5-HTT+ /+ mice by 57 and 34%, respectively, and that
DOI compared with saline decreased palmitoleic acid in
5-HTT+ /� and 5-HTT�/� mice by 52 and 38%, respectively.
The mean unesterified plasma AA concentration did not
differ significantly between groups. Where 5-HTT�DOI
interactions were insignificant, the 5-HTT genotype had a
main effect for palmitic, linoleic and a-linolenic acid, and
DOI had a main effect for linoleic and a-linolenic acids.

Regional Brain AA Incorporation Coefficients k*

Figure 1 illustrates color-coded coronal autoradiographs of
k* for AA from brains of 5-HTT+ /+ , 5-HTT+ /�, and
5-HTT�/� mice injected with either saline (baseline) or
DOI. 5-HTT+ /� mice, and to a greater extent 5-HTT�/�

mice, had higher baseline values of k* (Eq. 1) than the 5-
HTT+ /+ mice. Values of k* were elevated in 5-HTT+ /+

mice injected with DOI compared with saline-injected mice,
but reduced in 5-HTT+ /� and 5-HTT�/� mice.
Mean AA incorporation coefficients k* in each of 92 brain

regions were compared among the different experimental
groups and conditions using a two-way ANOVA. As
illustrated in Table 2, 90 brain regions (but not the bed
nucleus of the stria terminalis and the dorsal raphe nucleus,
highlighted) had statistically significant genotype� drug
interactions.

Effect of 5-HTT genotype on baseline values of k*. A one-
way ANOVA with a Bonferroni’s post-test showed that
partial and total 5-HTT deletion significantly increased
mean baseline values of k* for AA in 45 (by 20–67%) and 72
(by 21–71%) regions, respectively. Cerebral cortex, olfactory
tubercle, hippocampus, nucleus accumbens, caudate-
putamen, geniculate nucleus, thalamus, mammillary nu-
cleus, mesencephalon, and rhombencephalon were affected
in both genotypes. In the two regions with statistically
insignificant genotype� drug interactions, 5-HTT genotype
did not have any main effect.

Effect of DOI in 5-HTT+ /+ mice. DOI compared with
saline significantly increased k* for AA (by 17–65%) in 42 of
92 regions of the 5-HTT+ /+ mice (Table 2). Positively
affected regions included cerebral cortex (21 of 25 regions,
average 33%), suprachiasmatic nucleus (39%), hippocam-
pus CA1 (17%), caudate-putamen ventral (23%), geniculate
nucleus (29%), subthalamic nucleus (26%), mesencephalon
(6 of 9 regions, average 38%), rhombencephalon (6 of 10
regions, average 51%), white matter (1 of 4 regions, 19%),
and nonblood–barrier regions (2 of 3, average 42%). In the
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two regions with insignificant genotype� drug interactions,
DOI did not have any significant main effect.

Effect of DOI in 5-HTT+ /� and 5-HTT�/� mice. DOI
compared with saline did not significantly increase k* in
any of the 42 regions where 5-HTT genotype� drug
interactions were statistically significant (Table 2), but
significantly reduced k* in 31 (�12 to �31%) and 83 (�16
to �63%) regions in 5-HTT+ /� and 5-HTT�/� mice,
respectively. In the two regions with statistically insignif-
icant genotype� drug interactions, DOI did not have any
main effect.

Patterns of significant differences in k*. Figure 2 presents
difference patterns of k* responses to DOI in sagittal
representations of the mouse brain. The 5-HTT+ /�+DOI
image compared with the 5-HTT+ /+ + saline image illus-
trates the positive regional effects of DOI in the wild-type
mice, whereas the 5-HTT+ /�+ saline image and the
5-HTT�/�+ saline image compared with the 5-HTT+ /+ +
saline image illustrates the positive effects of a partial and
complete deletion of 5-HTT, respectively, on baseline values
of k*. The 5-HTT+ /�+DOI and the 5-HTT�/�+DOI
images compared with the 5-HTT+ /�+ saline and the 5-
HTT�/�+DOI saline images show the negative effects of
acute DOI on k* for AA, in mice with a partial and complete
deletion of 5-HTT.

Regional Incorporation Rates of Unlabeled Unesterified
AA from Plasma into Brain

Baseline and DOI-induced rates of incorporation of
unlabeled unesterified AA from plasma into brain phos-
pholipids, Jin, were calculated by multiplying individual
regional values of k* by the plasma concentration of
unlabeled unesterified AA (Eq. 2; data not shown). Each of
the 92 regions showed a statistically significant
5-HTT genotype� drug interaction with regard to Jin. In

5-HTT+ /+ mice, baseline Jin ranged from 4.19 fmol/s/g in
the internal capsule (white matter) to 23.4 fmol/s/g in the
choroid plexus. The partial and total 5-HTT deletions
significantly increased Jin in 15 and 68 brain regions,
respectively. DOI elevated Jin significantly in 71 out of 92
regions in the 5-HTT+ /+ mice, whereas the drug signi-
ficantly decreased Jin in 68 and 83 out of 92 regions in
5-HTT+ /� and 5-HTT�/� mice, respectively.

Brain cPLA2 Activity

An in vitro assay with calcium chelators showed that brain
cPLA2 activity was increased by 29 (po0.001) and 34.5%
(po0.001) in 5-HTT+ /� and 5-HTT�/� mice, respectively,
compared with 5-HTT+ /+ mice (Table 3). Activity did not
differ significantly between the 5-HTT+ /� and 5-HTT�/�

mice. We did not analyze brains following DOI, because we
could not reproduce the intracellular Ca2+ concentrations
associated with DOI in vivo.

Brain COX Activity

Brain COX activity was decreased by 49.2 (po0.001) and
74.2% (po0.001) in 5-HTT+ /� and 5-HTT�/� mice,
respectively, compared to 5-HTT+ /+ mice (Table 3). COX
activity was 49% less in 5-HTT�/� than in 5-HTT+ /� mice.
Preincubation of 5-HTT+ /+ homogenate with 100 mM DOI
did not significantly affect COX activity (102.9±9.8 vs
112.4±13.9 pg/min/mg protein), indicating that DOI did
not inhibit COX enzymes. On the other hand, 100 mM
Celebrex, a selective COX-2 inhibitor used as a positive
control, inhibited COX activity by 68% (35.5±4.2 vs
112.4±13.9 pg/min/mg protein, n¼ 5, po0.001).

Brain PGE2, PGF2a, and TXB2 Concentrations

As illustrated in Table 3, the basal brain PGE2 concentration
was decreased significantly by 74 and 90% in 5-HTT+ /� and
5-HTT�/� mice, respectively, compared with 5-HTT+ /+

Table 1 Unesterified plasma fatty-acid concentrations in 5-HTT+/+, 5-HTT+/�, and 5-HTT�/� mice after s.c. saline or DOI administration

5-HTT+/+ 5-HTT+/� 5-HTT�/�
5-HTT�DOI
interaction

5-HTT
effect

DOI
effect

Fatty acid
Saline
(n¼5)

DOI
(n¼6)

Saline
(n¼ 5)

DOI
(n¼ 5)

Saline
(n¼5)

DOI
(n¼ 5) p-value p-value p-value

Palmitate (16:0) 94.0±26.5 118.0±37.7 104.6±26.9 77.3±23.4 128.4±21.5 128.7±19.6 0.118 0.016 0.923

Palmitoleate (16:1n-7) 24.8±3.1 22.9±3.8 32.9±12.2 15.8±7.1** 39.0±6.3* 24.3±3.2** 0.031

Stearate (18:0) 37.0±11.9 45.5±15.1 27.3±5.5 33.5±10.1 40.8±5.0 28.2±5.6 0.047

Oleate (18:1n-9) 108.6±15.0 119.3±16.7 106.0±29.4 76.5±11.9 145.8±12.9** 127.2±7.7 0.032

Linoleate (18:2n-6) 124.1±14.7 118.3±15.9 111.4±20.1 94.5±28.1 165.0±12.9 123.9±15.9 0.106 o0.001 0.004

a-Linolenate (18:3n-3) 8.79±±1.34 7.27±0.89 8.32±2.43 6.08±1.56 11.6±1.2 10.4±1.6 0.732 o0.001 0.007

Arachidonate (20:4n-6) 8.23±2.15 10.2±0.3 7.09±1.04 5.94±1.55 7.80±1.54 7.15±0.90 0.028

Docosahexaenoate (22:6n-3) 18.1±5.9 18.2±4.8 18.8±6.6 18.6±6.2 21.9±7.0 22.1±23.4 0.997 1.000 0.280

Concentrations are nmol/ml plasma. Values are mean±SD.
Main effects are not reported for statistically significant 5-HTT�DOI interaction. In cases of statistically insignificant 5-HTT�DOI interaction, Bonferroni’s post-test
was performed. *po0.05; **po0.01; 5-HTT+/++DOI vs 5-HTT+/+ saline; 5-HTT+/� saline vs 5-HTT+/+ saline, 5-HTT+/�+DOI vs 5-HTT+/� saline, 5-HTT�/� saline
vs 5-HTT+/+ saline, 5-HTT�/�+DOI vs 5-HTT�/� saline.
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mice. Brain PGF2a was decreased significantly by 23 and
35% in 5-HTT+ /� and 5-HTT�/� mice, respectively, and
brain TXB2 was decreased significantly by 34 and 72% in
5-HTT+ /� and 5-HTT�/� mice, respectively.

Head-Twitch Responses

After vehicle pretreatment, 5-HTT�/� mice had 86% fewer
DOI-induced HTR than 5-HTT+ /+ mice (p¼ 0.006), similar
to an earlier report (Qu et al, 2005); the number of
responses did not differ significantly between 5-HTT+ /�

and 5-HTT+ /+ mice, although 5-HTT+ /� mice had
an intermediate response (decreased 22% compared to
5-HTT+ /+ mice; Figure 3). PCPA pretreatment increased
the number of HTR in 5-HTT�/� mice by 386% (po0.0001),
with a trend toward an increase in 5-HTT+ /� mice
(p¼ 0.08), but had no significant effect in 5-HTT+ /+ mice.
After PCPA pretreatment, DOI-induced HTR did not differ
significantly among the three genotypes. These findings
suggest that 5-HT depletion ‘normalized’ DOI-induced HTR
in 5-HTT�/� mice (main effect of genotype (F(2,57)¼ 6.33,
p¼ 0.003), main effect of pretreatment drug (F(1,57)¼ 3.22,
p¼ 0.078), and genotype� pretreatment drug interaction
(F(2, 57)¼ 3.13, p¼ 0.05).
Administration of the 5-HT precursor, 5-HTP, is reported

to increase 5-HT syndrome behaviors (Fox et al, 2008a,
2007b) and brain 5-HT concentrations 2-5-fold in 5-HTT+/+

and 5-HTT+ /� mice and 4.5–12-fold in 5-HTT�/� mice (Fox
et al, 2008a). 5-HTT�/� mice given 5-HTP displayed B48%
fewer HTR than did 5-HTT+ /+ mice (p¼ 0.037), whereas
there was no difference between 5-HTT+ /+ and 5-HTT+ /�

mice given 5-HTP (Figure 4; main effect of genotype
(F(2,36)¼ 4.24, p¼ 0.022).

DISCUSSION

Baseline AA incorporation coefficients k* were increased
significantly in 5-HTT�/� mice in 72 of 92 regions by 21–71%,
and in 5-HTT+/� mice in 45 regions by 20–67%, compared to
5-HTT+/+ mice. Comparable increases were found for Jin as
well. The increases were accompanied by elevated brain cPLA2

activity (29 and 35% in 5-HTT+/� and 5-HTT�/� mice,
respectively), decreased COX activity (�49 and �74%,
respectively) and decreased concentrations of the COX-
derived AA metabolites, PGE2 (�74 and -90%, respectively),
PGF2a (�24 and �35%, respectively), and TXB2 (�34 and
�72%, respectively). The partial 5-HT2A/2C agonist DOI
increased k* in 42 regions in wild-type mice, but decreased
k* in 31 and 83 regions, respectively, in the 5-HTT+/� and
5-HTT�/� mice. DOI-induced HTR were reduced in 5-HTT�/�

mice, but this decreased response was ‘normalized to 5-HTT+/+

levels after 5-HT depletion by pretreatment with PCPA.
Together, these studies suggest that elevated extracellular

5-HT levels in 5-HTT deficient mice, by increasing 5-HT
occupancy of PLA2-coupled postsynaptic 5-HT2A/2C recep-
tors, likely tonically activate cPLA2 and increase AA release
from membrane phospholipid, thereby increasing baseline
values of k* and Jin for AA. Tonic activation of cPLA2-
coupled neuroreceptors also has been reported to increase
cPLA2 expression (mRNA and activity) in rats treated
chronically with a subconvulsive dose of N-methyl-D-
aspartic acid (NMDA) to stimulate NMDA receptors (Lee
et al, 2008; Rao et al, 2007), or with fluoxetine, a 5-HTT
inhibitor, to stimulate 5-HT2A/2C receptors through elevated
extracellular 5-HT (Lee et al, 2007; Qu et al, 2006; Stenfors
and Ross, 2002). In these and the present case, excess
neuroreceptor-induced AA release may have activated
protein kinase C and nuclear transcription factor-kB to

Figure 1 Coronal autoradiographs of brain showing effects of DOI and 5-HTT genotype on regional AA incorporation coefficients k* in mice. Values of
k* (ml/s/g brain� 10�4) are given on a color scale from 5 (blue) to 30 (red). Acg, anterior cingulate cortex; Aud, auditory cortex; CPu, caudate-putamen;
Hipp, hippocampus; IPC, interpeduncular nucleus; Mot, motor cortex; SN, substantia nigra; Thal, thalamus; Vis, visual cortex.
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Table 2 Arachidonic acid incorporation coefficients (k*) in 5-HTT+/+, 5-HTT+/�, and 5-HTT�/� mice at baseline and in response to DOI

5-HTT+/+ 5-HTT+/� 5-HTT�/� Genotype�drug interaction Genotype effect Drug effect

Brain region Saline (n¼ 5) DOI (n¼6) Saline (n¼ 5) DOI (n¼5) Saline (n¼ 5) DOI (n¼5) p and F-values p- and F-values p- and F-values

Prefrontal cortex layer I 6.47±0.44 8.84±1.59* 7.90±1.36 6.56±1.14 9.41±1.44** 4.89±0.77** o0.001 (21.2) 0.598 (0.53) 0014 (7.05)

Prefrontal cortex layer IV 8.29±0.91 10.4±1.5 10.4±1.0 8.70±1.40 10.6±1.9* 6.32±0.71** o0.001 (16.2) 0.162 (1.96) 0.009 (8.06)

Primary olfactory cortex 7.34±0.76 9.19±1.28* 9.25±0.78* 7.93±0.59 8.92±1.19 5.50±0.62*** o0.001 (21.4) 0.007 (6.05) 0.008 (8.30)

Frontal cortex (10)

Layer I 7.27±1.12 8.14±0.51 8.44±0.69 7.87±1.06 9.80±1.12* 7.01±1.19* 0.034 (3.89) 0.565 (0.58) 0.137 (2.36)

Layer IV 9.16±1.30 10.4±1.2 12.1±0.5* 9.00±0.83* 11.8±1.8* 8.10±1.09* 0.001 (9.17) 0.476 (0.76) 0.002 (12.17)

Frontal cortex (8)

Layer I 7.37±1.00 10.3±1.9** 9.48±1.07 8.49±0.42 10.3±1.5** 6.17±0.95*** o0.001 (20.62) 0.388 (0.98) 0.111 (2.73)

Layer IV 9.67±1.08 13.0±1.9** 11.8±0.8 9.10±0.58* 13.7±1.9** 6.48±0.78*** o0.001 (23.44) 0.073 (2.91) 0.004 (10.34)

Pyriform cortex 6.11±0.61 8.12±1.34* 7.87±0.86 6.91±1.48 8.49±1.22** 3.98±0.44*** o0.001 (23.95) 0.061 (3.14) 0.006 (8.85)

Anterior cingulate cortex 9.74±1.00 12.3±1.4** 11.9±0.9* 10.1±1.2 12.7±1.4** 7.37±1.22*** o0.001 (29.10) 0.124 (2.27) 0.002 (12.57)

Motor cortex

Layer I 6.42±1.10 8.09±0.52 8.82±1.57* 7.76±0.68 9.92±2.69** 7.06±0.91* 0.006 (6.28) 0.133 (2.20) 0.169 (2.00)

Layer II–III 6.80±0.97 9.07±0.71* 9.67±1.31** 8.76±1.00 10.4±2.0*** 6.94±0.65*** o0.001 (15.77) 0.059 (3.17) 0.107 (2.79)

Layer IV 8.96±1.22 12.1±1.3*** 11.8±0.8** 10.4±1.3 13.0±1.3*** 7.89±0.73*** o0.001 (33.37) 0.356 (1.078) 0.013 (7.09)

Layer V 7.04±0.49 9.94±1.17*** 10.2±1.5*** 8.80±0.99 9.82±1.35** 6.34±0.75*** o0.001 (23.35) 0.023 (4.42) 0.113 (2.70)

Layer VI 6.58±0.53 9.59±1.08*** 9.62±1.14*** 8.94±1.07 9.80±1.08*** 6.19±1.10*** o0.001 (32.08) 0.008 (5.86) 0.219 (1.59)

Somatosensory cortex

Layer I 6.99±0.65 10.0±0.8*** 9.38±0.74** 8.53±0.97 10.4±1.2*** 8.70±1.21* o0.001 (18.88) 0.064 (3.08) 0.606 (0.274)

Layer II–III 8.13±0.85 11.2±0.7*** 11.1± 1.1*** 8.81±0.80** 10.9±1.3*** 8.07±1.01*** o0.001 (28.65) 0.567 (0.58) 0.065 (3.71)

Layer IV 9.66±0.89 13.1±1.9** 12.2±1.1* 10.9±0.8 12.9±1.8** 9.86±0.97** o0.001 (16.24) 0.937 (0.07) 0.549 (0.37)

Layer V 9.01±1.09 12.1±1.7** 12.0±1.2** 10.6±1.3 11.7±1.7* 7.92±1.00*** o 0.001 (16.90) 0.082 (2.77) 0.151 (2.19)

Layer VI 9.19±1.08 11.4±0.9* 11.4±1.0* 9.92±0.89 10.6±1.7 8.65±1.02 o0.001 (10.56) 0.138 (2.14) 0.303 (1.11)

Auditory cortex

Layer I 7.62±1.43 9.84±1.11* 11.3±0.8*** 8.56±1.15** 11.2±1.0*** 6.84±1.01*** o0.001 (25.55) 0.052 (3.34) o0.001 (17.21)

Layer IV 9.23±1.43 12.1±1.3** 12.1±0.9** 9.76±0.67* 11.9±1.6** 7.40±0.34*** o0.001 (30.22) 0.046 (3.48) 0.003 (10.43)

Layer VI 8.09±1.21 10.0±0.8** 10.9±0.4*** 9.07±0.68** 9.98±1.1** 6.38±0.25*** o0.001 (33.00) o0.001 (12.95) o0.001 (16.79)

Visual cortex

Layer I 7.17±1.22 9.42±1.04* 9.99±1.71** 8.26±1.06 10.0±0.7** 6.47±0.31*** o0.001 (19.21) 0.148 (2.07) 0.017 (6.51)

Layer IV 8.64±0.65 12.3±2.4*** 11.5±1.1** 9.04±0.72* 10.2±1.1 7.40±0.34* o0.001 (20.78) 0.015 (5.01) 0.275 (1.25)

Layer VI 8.31±0.86 10.9±1.9* 11.6±0.9** 8.31±0.51** 10.7±1.8* 7.03±0.30*** o0.001 (20.01) 0.174 (1.88) 0.005 (9.69)
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Table 2 Continued

5-HTT+/+ 5-HTT+/� 5-HTT�/� Genotype�drug interaction Genotype effect Drug effect

Brain region Saline (n¼ 5) DOI (n¼6) Saline (n¼ 5) DOI (n¼5) Saline (n¼ 5) DOI (n¼5) p and F-values p- and F-values p- and F-values

Preoptic area (LPO/MPO) 6.46±0.50 7.60±2.07 7.89±0.46 6.44±0.57 6.95±0.71 4.58±0.57** 0.002 (7.87) 0.011 (5.45) 0.027 (5.55)

Suprachiasmatic nu 6.42±0.81 8.93±1.85* 7.44±1.09 6.20±1.02 7.56±1.45 4.12±0.54*** o0.001 (15.59) 0.009 (5.77) 0.117 (2.63)

Globus pallidus 5.83±0.65 6.33±0.95 7.08±0.59 6.27±0.54 6.77±0.87 4.13±0.51*** o0.001 (12.80) 0.003 (7.42) 0.001 (14.68)

Bed nu stria terminalis 6.63±0.86 7.22±1.21 7.09±0.70 6.49±1.05 7.58±0.45 6.50±0.42 0.088 (2.68) 0.801 (0.22) 0.252 (1.38)

Olfactory tubercle 8.67±1.06 9.91±1.11 10.7±0.8* 8.29±0.94** 11.1±1.4** 6.54±0.43*** o0.001 (22.5) 0.352 (1.09) o0.001 (28.29)

Diagonal band dorsal 7.97±0.37 9.00±2.3 8.81±0.57 7.07±1.09 10.9±1.3** 5.01±0.58*** o0.001 (19.32) 0.551 (0.61) o0.001 (22.93)

Ventral 8.09±0.93 8.49±1.83 8.59±1.06 6.38±1.30* 11.5±0.7** 4.23±0.68*** o0.001 (22.97) 0.320 (1.19) o0.001 (50.10)

Amygdala 6.78±0.28 7.57±0.79 8.70±0.96* 6.68±1.28* 8.32±1.1 5.38±0.89*** o0.001 (11.27) 0.152 (2.03) o0.001 (16.86)

Hippocampus

CA1 5.91±0.44 6.89±0.62* 8.23±1.10** 6.31±0.37** 7.17±0.97 5.49±0.27* 0.001 (9.41) 0.036 (3.82) 0.009 (8.06)

CA2 6.25±0.39 7.27±0.94 8.14±0.42*** 6.83±0.38* 7.72±0.43* 5.39±1.06*** o0.001 (16.75) 0.013 (5.18) 0.002 (12.70)

CA3 6.26±0.70 7.57±0.56 8.15±0.53*** 7.00±0.70* 8.29±0.91** 4.66±0.50*** o0.001 (36.45) 0.004 (7.00) o0.001 (23.38)

Dentate gyrus 7.01±0.70 7.83±0.85 8.84±0.65** 7.65±0.64 8.71±0.83** 5.56±0.62*** o0.001 (19.47) 0.006 (6.29) o0.001 (20.09)

SLM 9.27±1.12 11.0±1.0 11.9±1.2* 9.74±0.47 11.3±1.1 7.96±1.46** 0.001 (9.97) 0.171 (1.90) 0.021 (6.12)

Accumbens nu 6.95±0.69 7.72±1.09 9.18±0.62** 7.89±0.92 8.73±0.79* 5.84±0.66*** o0.001 (13.07) 0.003 (7.53) 0.001 (14.57)

Caudate putamen

Dorsal 7.45±0.91 8.66±0.95 9.32±1.49* 7.55±0.30* 10.2±0.8** 5.07±0.58*** o0.001 (31.28) 0.161 (1.96) o0.001 (33.00)

Ventral 7.65±0.32 9.39±0.91** 9.21±0.74* 7.53±0.36* 11.4±1.4*** 5.55±0.64*** o0.001 (32.41) 0.951 (0.05) o0.001 (24.79)

Lateral 7.34±0.46 8.66±0.75 9.67±1.27* 8.12±0.73 11.8±1.9*** 5.76±0.64*** o0.001 (25.09) 0.192 (1.76) o0.001 (23.54)

Medial 7.28±0.45 7.98±0.94 9.26±0.88* 7.90±0.52 10.9±1.9*** 5.24±0.61*** o0.001 (26.61) 0.124 (2.28) o0.001 (33.34)

Septal nucleus lateral 6.46±0.74 6.30±0.77 7.58±0.74 6.19±0.42* 8.48±0.67*** 4.69±0.61*** o0.001 (19.33) 0.241 (1.51) o0.001 (54.26)

Septal nucleus medial 8.33±1.01 9.22±1.86 8.68±0.62 7.26±0.72 10.9±1.1** 4.86±0.65*** o0.001 (25.32) 0.146 (2.08) o0.001 (29.12)

Diencephalon

Habenular nu lateral 14.0±1.6 16.5±2.3 15.3±1.7 13.8±0.9 17.7±2.0** 9.03±0.91*** o0.001 (29.60) 0.050 (3.38) o0.001 (18.81)

Habenular nu medial 13.2±2.3 16.8±2.1 18.1±4.8 13.7±0.7 17.3±1.7** 8.41±0.37*** o0.001 (17.49) 0.032 (3.98) 0.001 (13.54)

Lateral geniculate nu 10.7±1.1 13.5±1.0*** 13.4±1.1** 10.5±0.8*** 14.6±1.3*** 8.13±0.63*** o0.001 (55.61) 0.247 (1.48) o0.001 (35.7)

Medial geniculate nu 11.0±1.3 14.4±0.9*** 14.4±1.1*** 11.5±0.7** 15.3±0.9*** 10.5±1.8*** o0.001 (31.85) 0.333 (1.15) 0.017 (6.55)

Thalamus

Ventroposterior lateral nu 10.9±0.9 12.7±1.9 12.2±1.00 9.32±1.16* 13.3±1.0* 7.31±1.04*** o0.001 (24.22) 0.034 (3.89) o0.001 ((27.53)

Ventroposterior medial nu 10.1±1.5 12.6±1.9 12.9±1.5 9.62±0.96* 13.1±1.4* 7.79±1.18*** o0.001 (20.57) 0.303 (1.25) 0.001 (14.76)

Paratenial nu 8.70±1.38 10.5±1.1 11.5±1.3 9.21±0.97 12.2±1.9 6.73±0.76** o0.001 (21.40) 0.257 (1.44) o0.001 (19.40)

Anteroventral nu 12.8±1.3 14.4±1.5 16.8±2.5* 12.4±0.7* 17.7±2.1* 10.4±0.5*** 0.002 (8.28) 0.786 (0.24) 0.001 (14.30)

Anteromedial nu 9.51±1.68 10.9±1.1 13.2±1.5** 10.1±1.1* 13.4±2.5** 7.23±1.08*** o0.001 (15.27) 0.072 (2.93) o0.001 (21.79)

Reticular nu 9.98±1.23 11.6±1.9 10.7±1.7 10.1±0.7 12.7±2.0* 7.35±0.89*** o0.001 (14.55) 0.521 (0.67) 0.014 (6.94)

Paraventricular nu 9.25±1.39 10.6±1.0 11.5±1.3* 9.62±0.78 12.2±1.9** 6.73±0.76*** o0.001 (19.97) 0.167 (1.93) o0.001 (20.51)
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Table 2 Continued

5-HTT+/+ 5-HTT+/� 5-HTT�/� Genotype�drug interaction Genotype effect Drug effect

Brain region Saline (n¼ 5) DOI (n¼6) Saline (n¼ 5) DOI (n¼5) Saline (n¼ 5) DOI (n¼5) p and F-values p- and F-values p- and F-values

Parafascicular nu 9.46±1.33 11.3±1.3 10.8±0.8 10.1±1.5 12.5±2.7** 6.17±0.94*** o0.001 (19.25) 0.194 (1.75) 0.005 (9.66)

Subthalamic nu 10.4±1.1 13.1±1.0* 12.6±1.1 12.2±1.2 14.5±2.3*** 12.4±0.8 0.004 (7.06) 0.044 (3.56) 0.856 (0.034)

Hypothalamus

Supraoptic nu 7.04±0.67 7.24±0.87 8.89±0.44** 7.37±0.46* 7.75±0.95 4.23±0.68*** o0.001 (17.76) o0.001 (22.63) o0.001 (39.58)

Lateral 6.34±0.21 7.23±1.05 7.95±0.99 6.37±0.35 8.19±1.88* 4.30±0.57*** o0.001 (14.64) 0.145 (2.09) o0.001 (17.64)

Anterior 6.42±0.39 7.44±1.27 7.96±0.87 6.29±0.49 9.21±2.28** 4.83±0.56*** o0.001 (13.73) 0.930 (0.072) 0.001 (15.62)

Periventricular 5.20±0.36 6.48±1.20 7.01±0.65 5.05±0.64* 7.58±1.90** 4.01±0.47*** o0.001 (15.25) 0.863 (0.148) 0.001 (14.75)

Arcuate 6.41±0.90 7.77±1.55 4.34±1.03 6.15±0.29 8.01±1.34 4.88±0.74*** o0.001 (11.41) 0.406 (0.94) 0.017 (6.48)

Ventromedial 6.64±0.82 8.04±1.45 7.84±1.15 6.35±0.28 7.98±1.50 4.57±0.69*** o0.001 (12.94) 0.086 (2.71) 0.006 (8.89)

Posterior 8.91±1.88 11.7±1.8 9.38±0.56 8.07±0.68 17.7±3.3*** 6.74±1.02*** o0.001 (39.83) 0.001 (9.66) o0.001 (24.29)

Mammillary nu 6.45±0.82 8.41±1.61 9.25±0.78** 8.15±0.55** 9.96±1.71*** 7.39±1.09** o0.001 (14.37) 0.063 (3.09) 0.008 (8.22)

Mesencephalon

Interpeduncular nu 14.4±2.6 23.1±±3.2*** 19.5±3.6 15.7±1.1 23.6±4.2*** 13.7±2.2*** o0.001 (25.93) 0.658 (0.43) 0.137 (2.37)

Substantia nigra 7.01±0.98 9.75±1.20** 10.8±1.0*** 8.14±1.06** 9.68±0.62** 7.42±1.47* o0.001 (20.06) 0.074 (2.90) 0.077 (3.39)

Pretectal area 9.49±1.14 12.7±2.5* 12.1±1.5 10.2±1.4 13.0±1.9* 9.81±1.36* 0.001 (10.01) 0.918 (0.09) 0.344 (0.93)

Grey layer Sup colliculus 9.00±1.56 10.5±1.2 11.1±0.7 9.52±0.76 11.1±1.8 7.37±1.17*** o0.001 (11.10) 0.181 (1.83) 0.010 (7.72)

Superior colliculus 9.70±1.16 13.0±2.2* 14.0±2.5** 9.68±0.75** 13.4±1.9* 8.09±1.23*** o0.001 (19.16) 0.380 (1.06) 0.003 (11.12)

Inferior colliculus 14.7±1.3 18.0±0.9 18.5±2.2 15.3±1.7 20.5±3.7** 15.6±2.1* 0.001 (9.53) 0.228 (1.57) 0.063 (3.78)

Median raphe nu 7.70±1.12 10.3±0.9* 11.3±0.9*** 11.0±1.5 11.3±0.9*** 11.4±1.5 0.016 (4.89) o0.001 (13.97) 0.064 (3.25)

Dorsal raphe nu 8.56±1.18 11.2±1.5 10.9±0.8 11.1±1.1 11.4±1.5 10.6±0.9 0.173 (1.89) 0.585 (0.55) 0.556 (0.36)

Pedunculopontine tegmental nu 7.88±0.87 9.94±1.48* 9.56±0.64 8.62±0.84 9.56±0.64** 8.89±0.362 0.002 (8.49) 0.737 (0.31) 0.655 (0.21)

Rhombencephalon

Flocculus 9.46±1.02 10.8±0.8 10.4±1.1 10.3±0.6 12.2±1.3** 8.98±1.43*** o0.001 (12.24) 0.585 (0.55) 0.099 (2.94)

Cerebellar gray matter 7.93±0.58 10.1±1.2 11.4±1.2** 8.79±0.94* 12.5±1.5*** 7.95±1.74*** o0.001 (19.67) 0.062 (3.11) 0.001 (13.82)

Molecular layer cerebellar gray 11.2±1.2 15.9±1.7** 14.2±1.8 13.0±1.2 16.8±2.4*** 12.3±2.4** o0.001 (16.33) 0.407 (0.93) 0.602 (0.28)

Raphe magnus nu 8.12±0.84 11.3±1.3* 11.3±2.1* 10.5±1.0 14.1±2.8*** 11.2±2.0 0.003 (7.66) 0.004 (6.97) 0.794 (0.07)

Raphe pallidus nu 8.08±1.7 11.5±1.6* 10.4±1.0 8.96±1.23 12.3±3.7* 8.1±1.0* 0.001 (10.26) 0.813 (0.21) 0.297 (1.13)

Locus coeruleus 9.09±0.60 12.5±1.9* 11.7±1.3 12.6±1.9 14.6±2.3*** 13.8±1.8 0.032 (3.98) 0.001 (9.67) 0.077 (3.39)

Cochlear nu 9.92±1.52 11.9±1.8 11.8±0.5 11.7±1.8 14.9±1.0 12.9±1.3 0.012 (5.26) o0.001 (12.28) 0.945 (0.01)

Spinal trigeminal nu, interpolar 9.68±1.22 12.6±1.5 13.8±2.1** 9.53±0.62** 12.8±1.8 9.45±2.32* o0.001 (13.20) 0.782 (0.25) 0.011 (7.63)

Superior olive 7.12±0.52 11.6±3.1* 11.9±0.9* 9.77±1.31 11.3±2.8* 8.86±2.9*** o0.001 (12.71) o0.001 (18.41) o0.001 (17.13)

Medial vestibular nu 9.84±0.85 16.2±3.2*** 13.1±2.1 10.5±0.9 14.8±2.6** 7.60±2.30*** o0.001 (25.62) 0.165 (1.94) 0.171 (1.98)
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transcriptionally upregulate cPLA2 expression by a feed-
back mechanism (Toborek et al, 1999; Xu et al, 2002).
Although the increased Jin for AA in the deficient mice

represented increased AA loss by brain metabolism
(Demar et al, 2005; Holman, 1986; Rapoport et al, 2001),
the reduced brain COX activity and PGE2, PGF2a, and TXB2
concentrations indicate that AA loss was not through
COX-mediated pathways, but by other pathways, such as
b-oxidation, formation of endocannabinoids, or oxidation
by cytochrome P450 epoxygenase or lipoxygenase (Fitzpa-
trick and Soberman, 2001; Shimizu and Wolfe, 1990).
Although there is a limitation that we do not know the
exact pathways of increased loss, these might be deter-
mined in the future by measuring brain COX-2, COX-1,
5-lipoxygenase and cytochrome P450 epoxygenase activ-
ities and their metabolic products in the 5-HTT-deficient
mice, in relation to altered behavior (Fox et al, 2007a;
Murphy and Lesch, 2008). In this regard, endocannabi-
noids derivatives, such as anandamide, can induce anxiety-
like behaviors in rodents (Rubino et al, 2008; Rutkowska
et al, 2006). We do not have a ready explanation for the
reductions in COX activity and in eicosanoid concentra-
tions, in the face of increased cPLA2 activity, but such
‘uncoupling’ of the enzymes also was noted in COX-2
knockout mice (Bosetti et al, 2004; Zhang et al, 2002).
cPLA2 and COX-2 normally are functionally coupled and
colocalized on postsynaptic membranes in rodent brain
(Bosetti and Weerasinghe, 2003; Fitzpatrick and Sober-
man, 2001; Kaufmann et al, 1996; Ong et al, 1999; Pardue
et al, 2003; Sapirstein et al, 2005; Xu et al, 2008).
The decreased k* and Jin responses to DOI in the 5-HTT-

deficient mice are not due to reductions in 5-HT2A/2C

receptor density or their availability due to internalization,
as binding studies indicate that 5-HT2A receptor density is
reduced only in the striatum but is increased in the
hypothalamus and septum of the mice, whereas 5-HT2C

receptor density is elevated in the amygdala and choroid
plexus (Li et al, 2003). The hypothalamus, septum, and
amygdala belong to the limbic system, which is involved in
emotional regulation. Altered 5-HT2A/2C receptors and
their signaling may contribute to some of the behavioral
changes observed in these mice, such as increased anxiety-
like behaviors and reduced aggressiveness on various tests
(Fox et al, 2007a; Murphy et al, 2008; Murphy and Lesch,
2008).
One possibility for the decreased k* and Jin responses to

DOI is that, as a partial agonist, DOI displaced bound 5-HT
from cPLA2-coupled 5-HT2A/2C receptors, and produced
less activation compared with 5-HT (Marek and Aghaja-
nian, 1996). Such displacement also can explain the
decreased DOI-induced HTR in 5-HTT�/� mice, replicat-
ing an earlier report (Qu et al, 2005), as PCPA pretreat-
ment, sufficient to deplete extracellular 5-HT by 67–94% in
wild-type or 5-HTT�/� mice (Cesana et al, 1993; Fox et al,
2008b), returned the DOI-induced HTR in 5-HTT�/� mice
to wild-type levels. Consistent with this interpretation,
5-HTT overexpressing mice have lower levels of
extracellular 5-HT and higher DOI-induced HTR than do
wild-type mice (Jennings et al, 2008). Postnatal PCPA
administration is reported to prevent some aspects of the
adult 5-HTT�/� behavioral phenotype (Alexandre et al,
2006), and it would be worthwhile to see whether it alsoT
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prevented some of the differences in the AA signal
(Fox et al, 2007a).
The serotonin precursor 5-HTP, which increases 5-HT

levels in 5-HTT-deficient mice (Fox et al, 2008a), induces
HTR in mice. In this study, 5-HTP induced fewer HTR in
5-HTT�/� vs 5-HTT+ /+ mice, indicating that excessive

baseline levels of synaptic 5-HT increases HTR. Brain
extracellular concentrations of dopamine, glutamate, and
acetylcholine are unchanged in 5-HTT-deficient mice and
rats (Homberg et al, 2007; Mathews et al, 2004), and likely
did not contribute to the elevations in k* and Jin for AA in
the 5-HTT-deficient mice.

Figure 2 Difference patterns of k* responses to DOI in sagittal representation of 5-HTT mouse brain. Regions in which k* was increased significantly
(po0.05) are solid gray, regions in which k* was decreased significantly are hatched. The 5-HTT+ /�+DOI image is compared with the 5-HTT+ / + + saline
image. The 5-HTT+ /�+ saline and the 5-HTT�/�+ saline images are compared with the 5-HTT+ /+ + saline image. The 5-HTT+ /�+ DOI and the
5-HTT�/�+DOI images are compared with the 5-HTT+ /�+ saline and the 5-HTT�/�+ saline, respectively. List of regions: A, amygdala; Acb, nucleus
accumbens; AUD, auditory cortex; am, anteromedial thalamic nucleus; av, anteroventral thalamic nucleus; CbG, cerebellar gray matter; CbW, cerebellar
white matter; Co, cochlear nucleus; CPu, caudate putamen; DLG, dorsal lateral geniculate nucleus; DR, dorsal raphe; Fr, frontal cortex; GP, globus pallidus;
Hb, habenular complex; HIP, hippocampus; HYP, hypothalamus; IC, inferior colliculus; IPC, interpeduncular nucleus; LC, locus coeruleus; MI, mammillary
nucleus; mG, medial geniculate nucleus; MolCbG, molecular layer of cerebellar gray matter; MOT, motor cortex; MR, median raphe; MVe, medial vestibular
nucleus; OT, olfactory tubercle; PF, prefrontal cortex; PPTg, pedunculopontine tegmental nucleus; SN, substantia nigra; S, septum; SO, superior olive; Sp5,
spinal trigeminal nucleus; SS, somatosensory cortex; SC, superior colliculus; SCgl, gray layer of superior colliculus; STH, subthalamic nucleus; THa, thalamus;
Vis, visual cortex.
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In the 5-HTT+ /+ mice, statistically significant elevations
in k* for AA in response to DOI occurred in the neocortex,
mesencephalon, and rhombencephalon, which have high
5-HT2A receptor densities. The olfactory tubercle, hypotha-
lamus, amygdala, hippocampus, and choroid plexus, which
contain mainly 5-HT2C receptors (Li et al, 2003) were not
activated significantly, suggesting that the k* responses to
DOI were mediated mainly by 5-HT2A receptors. However,
stimulation of 5-HT2A or 5-HT2C receptors by different
agonists can activate cPLA2 to release AA (Berg et al,
1998b). Selective 5-HT2A and 5-HT2C antagonists could be
used to distinguish the roles of the two receptor subtypes.

Dorsal raphe neurons of 5-HTT�/� and 5-HTT+ /� mice
exhibit decreased firing rates (Murphy and Lesch, 2008),
and 5-HTT�/� mice have widespread reductions in brain
glucose metabolism, a measure of energy consumption
(Esaki et al, 2005; Sokoloff, 1999), despite their elevated
values of k* and Jin. The obesity of the 5-HTT�/� mice is
consistent with published data and is associated with
increased plasma levels of insulin, leptin, cholesterol, and
triglycerides (Murphy and Lesch, 2008). Their high plasma
unesterified fatty-acid concentrations may be related to
adrenocorticotropic hormone and corticosterone elevations
and to anxiety-related behaviors (Gottschalk et al, 1969;
John et al, 1987; Murphy and Lesch, 2008).
The baseline values of k* for AA in the 5-HTT+ /+ mice

agree with published values (Basselin et al, 2006b; Qu et al,
2005). An earlier study reported that baseline values did not
differ significantly between 5-HTT�/� and 5-HTT+ /+ mice,
unlike the current findings. However, the earlier study is
likely erroneous. Frozen brain sections in the earlier study
were exposed to X-ray film for 6–10 weeks, rather than for 4
weeks as was carried out in this study, which resulted in
saturation at high optical densities, with loss of linearity and
discrimination (Basselin M, unpublished observations).
The 5-HTT+ /� mouse is considered a model for humans

who carry the ‘S’ compared with ‘L’ allele of the 5-HTTLPR,
or who express rs25531 or rs25532 variants of the 5-HTT
allele with regard to the levels of 5-HTT expression and
function (Murphy et al, 2008; Murphy and Lesch, 2008).
Individuals with these lesser-expressing 5-HTT polymorph-
isms are at risk for multiple psychiatric disorders, including
bipolar disorder (Masoliver et al, 2006; Murphy et al, 2008;
Murphy and Lesch, 2008). In this regard, elevated brain AA
metabolism has been suggested to contribute to and be a
risk factor for bipolar disorder (Basselin et al, 2006a, 2007b;
Rao et al, 2008; Rapoport and Bosetti, 2002).
The new data in this study suggest that baseline k* and Jin

for AA would be elevated in individuals with the ‘S’

Table 3 Effect of 5-HTT genotype on global brain cPLA2 and
COX activities, and eicosanoid concentrations

5-HTT+/+ 5-HTT+/� 5-HTT�/�

cPLA2 activity (nmol/min/g protein)

(n¼ 6) (n¼ 7) (n¼ 5)

896.3±83.7 1155±95*** 1207±83***

COX activity (pg PGE2/min/mg protein)

(n¼ 6) (n¼ 7) (n¼ 5)

112.4±13.9 57.1±9.6*** 29.0±3.6***a

Eicosanoid concentration

(n¼ 4) (n¼ 4) (n¼ 4)

PGE2 (ng/g brain) 23.6±1.8 6.12±1.18*** 2.44±0.75*** b

PGF2a (pg/g brain) 63.5±4.3 48.5±3.6*** 41.3±3.1***

TXB2 (pg/g brain) 102.4±24.3 67.4±4.3*** 28.4±2.4*** b

Values are mean±SD. Bonferroni’s multiple comparison tests were performed:
***po0.001; 5-HTT�/� and 5-HTT+/� vs 5-HTT+/+.
apo0.001 5-HTT�/� vs 5-HTT+/�.
bpo0.01.

Figure 3 Effects of brain 5-HT depletion by PCPA pretreatment on
DOI-induced head twitches in 5-HTT mice. At baseline (vehicle
pretreatment), DOI induced fewer head twitches in 5-HTT�/� mice
compared to 5-HTT+ / + mice, whereas DOI-induced head twitches were
similar between 5-HTT+ /+ and 5-HTT+ /� mice. Pretreatment with PCPA,
which depletes 5-HT levels, increased DOI-induced head twitches in
5-HTT�/� mice, with a trend toward a significant increase in 5-HTT+ /�

mice (p¼ 0.08), compared to their vehicle-pretreated counterparts. Data
represent the mean±SEM, n¼ 7–13 per group. **po0.01 compared to
5-HTT+ /+ mice in the same pretreatment condition; + + + +po0.0001
compared to vehicle-pretreated mice of the same 5-HTT genotype.

Figure 4 5-HTP-induced head twitches in 5-HTT mice. The 5-HT
precursor 5-HTP, which increases 5-HT levels, induced fewer head
twitches in 5-HTT�/� mice compared to 5-HTT+ /+ mice, with no
difference between 5-HTT+ /� and 5-HTT+ /+ mice. Data represent the
mean±SEM; n¼ 9–16 per group. *po0.05 compared to 5-HTT+ /+ mice.
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5-HTTLPR allele. This prediction might be tested with the
use of positron emission tomography (PET) in human
subjects in the resting state, following the i.v. injection of
[1-11C]AA. In such PET studies, the coefficient of variation
of k* for AA ranges from 12 to 16% (Esposito et al, 2008;
Giovacchini et al, 2004). A power analysis (http://statpage-
s.org/#Power) shows that statistically significant (a¼ 5,
statistical power¼ 0.8) resting-state differences of 20% (the
lower range of significant elevations in the 5-HTT-deficient
mice) thus could be shown in eight subjects each belonging
to long and short 5-HTTLPR groups. To date, PET studies
assessing acute drug responses of the AA signal have not
been performed in humans, but in any case, if DOI were
given, it would be expected to produce untoward hallucino-
genic effects (Marek and Aghajanian, 1996).
The present findings extend our knowledge of altered

neurotransmission involving 5-HT, which is thought to
contribute to depression and anxiety disorders. The data
showed that reduced or absent 5-HTT function in mice
results in the upregulation of baseline AA signaling
involving 5-HT. Given the parallels between phenotypic
abnormalities in 5-HTT-deficient mice and in human mood
and anxiety disorders, these data provide a model for
humans with 5-HTT polymorphisms and mutations that
affect 5-HTT expression and function.
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