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Atypical antipsychotic drugs, which are more potent direct acting antagonists of brain serotonin (5-HT)2A than dopamine (DA) D2

receptors, preferentially enhance DA and acetylcholine (ACh) efflux in the rat medial prefrontal cortex (mPFC) and hippocampus (HIP),

compared with the nucleus accumbens (NAc). These effects may contribute to their ability, albeit limited, to improve cognitive function

and negative symptoms in patients with schizophrenia. Asenapine (ASE), a new multireceptor antagonist currently in development for

the treatment of schizophrenia and bipolar disorder, has complex serotonergic properties based upon relatively high affinity for multiple

serotonin (5-HT) receptors, particularly 5-HT2A and 5-HT2C receptors. In the current study, the effects of ASE on DA, norepinephrine

(NE), 5-HT, ACh, glutamate, and g-aminobutyric acid (GABA) efflux in rat mPFC, HIP, and NAc were investigated with microdialysis in

awake, freely moving rats. ASE at 0.05, 0.1, and 0.5mg/kg (s.c.), but not 0.01mg/kg, significantly increased DA efflux in the mPFC and HIP.

Only the 0.5mg/kg dose enhanced DA efflux in the NAc. ASE, at 0.1 and 0.5mg/kg, significantly increased ACh efflux in the mPFC, but

only the 0.5mg/kg dose of ASE increased HIP ACh efflux. ASE did not increase ACh efflux in the NAc at any of the doses tested. The

effect of ASE (0.1mg/kg) on DA and ACh efflux was blocked by pretreatment with WAY100635, a 5-HT1A antagonist/D4 agonist,

suggesting involvement of indirect 5-HT1A agonism in both the actions. ASE, at 0.1mg/kg, increased NE, but not 5-HT, efflux in the mPFC

and HIP. ASE, at 0.1mg/kg (s.c.), had no effect on glutamate and GABA efflux in either the mPFC or NAc. These findings indicate that

ASE is similar to clozapine and other atypical antipsychotic drugs in preferentially increasing the efflux of DA, NE, and ACh in the mPFC

and HIP compared with the NAC, and suggests that, like these agents, it may also improve cognitive function and negative symptoms in

patients with schizophrenia.
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INTRODUCTION

Atypical antipsychotics differ from conventional antipsy-
chotic drugs in that they cause fewer extrapyramidal
symptoms (EPS), do not produce sustained elevations of
serum prolactin levels (with the exception of risperidone
and paliperidone), and can improve some domains of
cognition in patients with schizophrenia (Meltzer and
McGurk, 1999; Harvey and Keefe, 2001; Woodward et al,
2005; Keefe et al, 2007). The basis for the cognitive
impairment in schizophrenia is complex; it has principally

been related to diminished or dysregulated brain dopami-
nergic (Weinberger et al, 1988), noradrenergic (Arnsten and
Li, 2005), cholinergic (Meltzer and McGurk, 1999; Bymaster
et al, 2002), glutamatergic (Hirsch et al, 1997), and
g-aminobutyric acid (GABA) activity (Benes and Berretta,
2000), to neuronal or neuropil loss (Selemon and Goldman-
Rakic, 1999), and to abnormalities in connectivity (Pantelis
et al, 1997; Nakamura et al, 2005). Thus, the ability of
atypical antipsychotic drugs to preferentially increase
extracellular efflux of dopamine (DA), norepinephrine
(NE), and acetylcholine (ACh) in the medial prefrontal
cortex (mPFC) and hippocampus (HIP) has been postulated
to contribute to their ability to improve cognition, in
schizophrenia, and possibly negative symptoms and depres-
sion (Assie et al, 2005; Devoto et al, 2004; Ichikawa et al,
1998; Ichikawa et al, 2002a, b, c; Kuroki et al, 1999; Zhang
et al, 2000). The effects of atypical antipsychotic drugs on
glutamatergic transmission has also been suggested to
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contribute to their ability to improve cognitive impairment
in schizophrenia (Konradi and Heckers, 2003; Coyle, 2006).
Acute treatment with clozapine has been reported to
enhance extracellular glutamate levels while decreasing
GABA efflux in the rat mPFC, in some but not all studies
(Bourdelais and Deutch, 1994; Daly and Moghaddam, 1993;
Yamamoto et al, 1994; Yamamoto and Cooperman, 1994;
Heidbreder et al, 2001). Olanzapine, however, at 5mg/kg,
had no effect on the extracellular levels of glutamate,
whereas clozapine, at 10mg/kg, significantly increased
extracellular glutamate levels in the same study (Heidbreder
et al, 2001). Haloperidol has also been reported to decrease
extracellular GABA efflux from interneurons in the mPFC
(Bourdelais and Deutch, 1994).
Asenapine (ASE) (Org 5222; trans-5-chloro-2-methyl-

2,3,3a,12b-tetrahydro-1H-dibenz[2,3:6,7,5]-oxepino-[4,5c]
pyrrolidine maleate) is a putative atypical antipsychotic
drug (Broekkamp et al, 1990; Bymaster et al, 1996; Costall
et al, 1990; De Boer et al, 1990, 1993; Shahid et al, 2007)
currently being developed for the treatment of schizophre-
nia and bipolar disorder (Alphs et al, 2007). Potkin et al
(2007) have recently reported that ASE improves positive
and negative symptoms in patients with schizophrenia at
least as effectively as risperidone (Potkin et al, 2007).
In vitro and in vivo receptor binding studies have shown

that ASE has high affinities for multiple monoamine recep-
tors, including (1) D1,2,3 and D4; (2) 5-HT2A, 2C, 1A,1B, 2B, 5A, 6, 7;
(3) adrenergic a1A and a2A,2B,2C; and (4) histamine H1 and
H2 receptors, but that it lacks affinity for muscarinic
receptors (Bymaster et al, 1996; Cosi and Koek, 2001;
Matsubara et al, 1993; Prinssen et al, 2000; Richelson and
Souder, 2000; Schotte et al, 1996; Shahid et al, 2007). In vitro
assessments have shown that ASE is an antagonist at all of
the monoamine receptors listed above (Shahid et al, 2007).
ASE has approximately 20-fold higher affinity for 5-HT2A

compared with DA D2 receptors (De Boer et al, 1993;
Schotte et al, 1996; Shahid et al, 2007). Shahid et al (2007)
reported the pKi for ASE for the 5-HT2A receptor as 10.15,
and for the D2L, 8.90, using cloned human receptors stably
expressed in mammalian cell lines. The occupancy in the rat
brain of cortical 5-HT2A receptors by ASE is also about 20-
fold higher than that of striatal D2 receptors (Schotte et al,
1996). The relatively high occupancy of 5-HT2A compared
with the D2 receptor may be critically important for some
atypical antipsychotic drug actions, such as low EPS and
efficacy in treatment-resistant schizophrenia (Meltzer et al,
1989, 2003, 2008). This profile has also been proposed as an
important component of the preferential release of cortical
DA by relatively specific ligands for these receptors, for
example, M 100907, SR 43469B, or ACP-103, and haloper-
idol (Liegeois et al, 2002; Bonaccorso et al, 2002; Li et al,
2005), as well as clozapine, olanzapine, risperidone, and
other atypical antipsychotic drugs, which are more potent
5-HT2A than D2 antagonists (Kuroki et al, 1999).
The ability of WAY100635, a silent 5-HT1A antagonist and

D4 agonist (Chemel et al, 2006), to block most or all of the
ability of the atypical antipsychotic drugs to enhance
cortical DA (Ichikawa et al, 2001; Li et al, 2004), as well
as, for some, for example, quetiapine, ACh efflux (Ichikawa
et al, 2002a, c; Sato et al, 2007), suggests that these effects of
the atypical antipsychotic drugs are due in part to indirect
or direct 5-HT1A agonism (Ichikawa et al, 2001; Meltzer

et al, 2003; Li et al, 2004). Risperidone and olanzapine are
atypical antipsychotic drugs whose effects on cortical DA
efflux are blocked by WAY100635, but which themselves are
not 5-HT1A agonists. Aripiprazole, bifeprunox, clozapine,
quetiapine, and ziprasidone, on the other hand, are 5-HT1A

partial agonists (Cosi and Koek, 2001). We, therefore,
sought to characterize the effect of WAY100635 on ASE-
induced increases in DA and ACh efflux in mPFC. We also
sought to characterize the effect of ASE on the efflux of
cortical 5-HT, glutamate, and GABA, as there are limited
data on the ability of atypical antipsychotic drugs to affect
the efflux of these important neurotransmitters.

MATERIALS AND METHODS

Animals

Male Sprague–Dawley albino rats (Zivic-Miller Labora-
tories, Porterville, PA) weighing 250–300 g were used
throughout the study. They were housed two per cage in a
controlled 12:12-h light–dark cycle under constant tem-
perature at 221C, with free access to food and water.

Surgery and Microdialysis

Rats were anesthetized with a combination of intraperito-
neal chloral hydrate (172mg/kg) and pentobarbital
(35.6mg/kg), and mounted in a stereotaxic frame (Stoetling,
Wood Dale, IL). A stainless steel guide cannula (21 G) with a
dummy probe was placed and fixed by cranioplastic cement
(Plastics One, Roanoke, VA) onto the cortex, dorsal to
the mPFC. The stereotaxic coordinates for the implanted
probe were A, + 3.2mm; L, �0.8mm (101 inclination);
V, �5.5mm, relative to the bregma. The coordinates
for HIP and nucleus accumbens (NAc) were A, �5.6mm;
L, + 5mm; V, �7mm; and A, + 2mm; L, + 1.5mm;
V, �7.5mm, respectively. The incisor bar level was
�3mm, according to the atlas of Paxinos and Watson
(1986). Concentric-shaped dialysis probes were constructed
as described elsewhere (Ichikawa et al, 2001). A hollow-fiber
dialysis membrane (polyacrylonitrile/sodium methylsulfo-
nate polymer, 310 mm, o.d., 220 mm, i.d., molecular weight
cut-off 40 000Da; AN69 HF; Hôpital SA, Lyon, France) was
used, with 2mm of non-glued surface exposed for dialyzing.
A total of 3–5 days after cannulation, dual dialysis probes
were implanted into the rat mPFC and HIP/NAc under light
anesthesia with methylsulfonate (Metofane; Pitman-Moore,
Mundelein, IL). For systemic administration of drugs or the
vehicle, a microbore Tygon tubing (TGY-010, 0.03 inches,
o.d., 0.01 inches, i.d.; Small Parts Inc., Miami Lakes, FL)
catheter was implanted subcutaneously into the intrascap-
ular space. Rats were then housed individually in dialysis
cages, with overnight perfusion (0.3 ml/min) of the probe,
with the perfusion rate increased to 1.5 ml/min on the
morning of the day of dialysis. After 1 h of perfusion at
1.5 ml/min, dialysate samples were collected every 30min for
measuring dialysate neurotransmitter concentrations. The
perfusion medium was Dulbecco’s phosphate-buffered
saline solution (Sigma, St Louis, MO), including Ca2+

(138mM NaCl, 8.1mM Na2HPO4, 2.7mM KCl, 1.5mM
KH2PO4, 0.5mM MgCl, 1.2mM CaCl2, pH¼ 7.4). After
stable baseline values were obtained in the dialysates, each

Effect of asenapine on neurotransmitter efflux in the rat brain
M Huang et al

2935

Neuropsychopharmacology



drug or vehicle was administered subcutaneously. The effect
of the drug on neurotransmitter release was monitored for
another 180min. Locations of dialysis probes were verified
at the end of each experiment by manual brain dissection
and using 100-mm brain slices (OTS-4000; FHC Inc.,
Bowdoinham, ME). The procedures used in this experiment
were approved by the Institutional Animal Care and Use
Committee of Vanderbilt University, Nashville, TN.

Biochemical Assays

DA, NE, serotonin, and ACh analysis. All samples were
directly applied onto a high-performance liquid chromato-
graphy (HPLC) system with electrochemical detection. DA
and NE were simultaneously separated on a reversed-phase
column (Xtera RP18, 3 mm, 2.1� 100mm; Waters Co.,
Milford, MA). The mobile phase consisted of buffer
(24mM anhydrous citric acid, 48mM sodium acetate
trihydrate, 2mM sodium dodecylsulfate, 0.5mM EDTA-
2Na), acetonitrile, and methanol in a ratio of 88:8:4,
respectively, and adjusted to pH 4.8 with sodium hydroxide.
The flow rate was 0.3ml/min. The potentials for Coulochem
microdialysis electrode (ESA 5014B; ESA Biosciences Inc.,
Chelmsford, MA) were �100mV and 180mV vs an Ag/AgCl
reference electrode. The retention times for NE and DA
were 4.6 and 13min, respectively. The method for
determination of dialysate 5-HT has been described
previously (Ichikawa et al, 1998). The method for determi-
nation of dialysate ACh, without addition of a cholinester-
ase inhibitor, has been described previously (Ichikawa et al,
2002b).

Glutamate and GABA analysis. The stock-derivatizing
agent OPA (o-phthalaldehyde, 3.0mg; Sigma-Aldrich, St
Louis, MO) was dissolved in 140 ml absolute ethanol (HPLC
grade), to which was added 140 ml sodium sulfite (Na2SO3,
1mM) and 2.4ml of sodium tetraborate buffer at pH 10.4
(NaBH4, 1mM). The working OPA consisted of 0.5ml
stock OPA, 0.5ml Na2SO3, and 4ml NaBH4 (pH 10.4).
b-Aminobutyric acid dissolved in water constituted the
internal standard. The reaction of 5 ml internal standard,
20 ml sample, and 5 ml working OPA solution proceeded at
room temperature for 30min before injection into the
HPLC system. The column system consisted of a small
column (XTrra reverse-phase C18, 2.1� 10mm, column A;
Waters Co.) and a main reverse-phase column (Nova-Pak
C18, 3.9� 300mm, 5 mm, column B; Waters Co.) kept at
361C when in use. The mobile phase consisted of 83.5% (v/
v) of buffer (0.1M sodium dihydrogen phosphate dehy-
drate, 2mM tetrabutylammonium phosphate, and 1mM
EDTA, adjusted to pH 4 with 1M phosphoric acid) and
16.5% of acetonitrile, perfused at a flow rate of 0.9ml/min
by a gradient liquid chromatograph pump (LC-10AD;
Shimadzu Corp., Kyoto, Japan). A high-density glassy
carbon working electrode combined with an Ag/AgCl
reference electrode was operated at + 0.58 V. A Rheodyne
injection valve with a 20-ml sample loop with auto-sampler
was used to inject the samples. Column A was outside the
main system and perfused by mobile phase at 0.1ml/min,
with a Waters HPLC pump. At sample injection, the flow
rate was raised to 0.25ml/min, and 45 s later the small
column was connected to main column B for a minute.

Column A was then isolated and perfused with 50% buffer
and 50% acetonitrile for 10min, and eluted with the mobile
phase for a further 5min. The flow rate of column A was
then decreased to 0.1ml/min, prior to the next sample
injection.

Drugs

ASE (Org 5222; trans-5-chloro-2-methyl-2,3,3a,12b-tetrahy-
dro-1H-dibenz[2,3:6,7,5]-oxepino-[4,5c]pyrrolidine maleate;
Organon, Lanarkshire, UK) and the 5-HT1A blocker
WAY100635 (Wyeth, Philadelphia, PA) were dissolved in
deionized water. Vehicle or drug was administered sub-
cutaneously through the implanted catheter in a volume of
1ml/kg. WAY100635 was given 30min prior to ASE. The
doses of ASE were selected based on published in vivo
behavioral and receptor studies (De Boer et al, 1993; Schotte
et al, 1996).

Data Analysis

All dialysis probe placements were checked after killing the
rats. Only results derived from rats with correctly posi-
tioned probes were included in the data analysis. Three rats,
which were sedated following surgery, were not studied. The
mean value of three consecutive stable samples prior to
drug injection was set at 100% and considered the predrug
basal level. Basal extracellular levels of each neurotransmit-
ter in the mPFC, HIP, and NAC were compared by one-way
analysis of variance (ANOVA). The time-dependent effect of
drugs on each neurotransmitter in the three regions was
analyzed using a repeated-measure ANOVA, with treatment
group as a fixed factor and time as the within-subject factor.
The response area under the curve (AUC) was calculated by
the trapezoid rule, using data following injection of the
vehicle or drug. Two-way ANOVA was used to compare the
effect of treatment on AUC for each neurotransmitter across
the three regions. ANOVA was followed by the least-square
significant difference post hoc pairwise comparison proce-
dure. The level of significance was set at po0.05. All
analyses were performed using SASt (SAS Institute Inc.,
Cary, NC, USA) statistical software.

RESULTS

Baseline Extracellular DA, NE, Serotonin, ACh,
Glutamate, and GABA Levels in the Cortex, HIP,
and NAc

One-way ANOVA showed no significant differences among
the treatment groups regarding baseline extracellular DA,
ACh, NE, 5-HT, glutamate, and GABA levels in the three
brain regions studied. Baseline extracellular DA levels in all
rats in this study were 0.12±0.02 nM in the mPFC (F¼ 1.16,
p¼ 0.36, n¼ 38), 0.15±0.03 nM in the HIP (F¼ 2.70,
p¼ 0.08, n¼ 38), and 0.75±0.06 nM in the NAc (F¼ 2.24,
p¼ 0.16, n¼ 20). Baseline NE levels were 0.19±0.03 nM in
the mPFC (F¼ 0.84, p¼ 0.46, n¼ 20) and 0.12±0.02 nM in
the HIP (F¼ 2.64, p¼ 0.09, n¼ 19). Baseline 5-HT levels in
the dialysates were 0.12±0.01 nM in the mPFC (F¼ 2.32,
p¼ 0.18, n¼ 15) and 0.13±0.02 nM in the HIP (F¼ 1.77,
p¼ 0.24, n¼ 15). Baseline ACh levels were 0.58±0.14 nM in
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the mPFC (F¼ 2.77, p¼ 0.08, n¼ 28), 0.47±0.09 nM in the
HIP (F¼ 3.00, p¼ 0.10, n¼ 23), and 0.44±0.17 nM in the
NAc (F¼ 1.76, p¼ 0.24, n¼ 21). Baseline extracellular
glutamate levels were 2.38±0.60 mM in the mPFC
(F¼ 0.85, p¼ 0.40) and 2.46±0.67 mM in the NAc
(F¼ 1.69, p¼ 0.26, both n¼ 10). Baseline GABA levels were
0.04±0.01 mM in the mPFC (F¼ 0.57, p¼ 0.48) and
0.05±0.01 mM in the NAc (F¼ 0.35, p¼ 0.58, both n¼ 10).
Vehicle administration did not affect extracellular baseline
levels of these neurotransmitters, in these regions.

Effect of ASE on DA Efflux in the MPFC, HIP, and NAc

ASE increased extracellular DA in the mPFC, HIP, and NAC
(Figure 1). Repeated-measure ANOVA of mPFC data showed
significant overall group (F¼ 7.31, p¼ 0.0001) and time
effects (F¼ 2.66, p¼ 0.02). The group� time effect was not
significant. Post hoc analysis revealed that ASE at 0.05mg/kg
(p¼ 0.004), ASE at 0.1mg/kg (p¼ 0.005), and ASE at 0.5mg/
kg (p¼ 0.0003) were significantly different from the vehicle,
whereas ASE at 0.01mg/kg differed from the higher doses
but not the vehicle. For the HIP, both overall group
(F¼ 4.32, p¼ 0.01) and time (F¼ 2.40, p¼ 0.03) effects were
significant, but the group� time interaction was not. Post

hoc analysis showed that ASE at 0.05mg/kg (p¼ 0.03) and
ASE at 0.5mg/kg (p¼ 0.004) differed significantly from the
vehicle; ASE at 0.1mg/kg differed at the trend level
(p¼ 0.09); ASE at 0.01mg/kg did not differ from the vehicle,
but was significantly different from the other doses studied.
For the NAc, the group� time interaction was significant
(F¼ 1.84, p¼ 0.03). The time effect was not significant, but
the overall group effect was (F¼ 5.93, p¼ 0.01). Post hoc
analysis revealed that ASE at 0.5mg/kg was significantly
different from the vehicle (p¼ 0.002), ASE at 0.1mg/kg
(p¼ 0.005), and ASE at 0.05mg/kg (p¼ 0.01). The response
AUC (Figure 1) was significantly different among the
treatment groups for each region, mPFC (F¼ 6.99,
p¼ 0.001), HIP (F¼ 4.69, p¼ 0.007), and NAC (F¼ 5.70,
p¼ 0.01). Post hoc analysis showed essentially the same
group differences within region as the repeated-measure
ANOVA reported above. P-values for differences among the
response AUCs are given in the legend to Figure 1.
Two-way ANOVA was used to compare the treatment

group across the three regions. The interaction of region
and treatment was not significant. The main effects of
region, regardless of dose (F¼ 3.20, p¼ 0.05), and treatment
group, regardless of region (F¼ 15.35, p¼ 0.0001), were
significant. ASE at 0.05mg/kg (p¼ 0.03) and ASE at 0.1mg/
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kg (p¼ 0.02), but not ASE at 0.5mg/kg (p¼ 0.09), produced
greater increases on DA efflux in the mPFC compared with in
the NAC; there were no differences between the effects of ASE
on DA efflux in the mPFC and HIP at any of the doses studied.

Effects of ASE on ACh Efflux in the mPFC, HIP, and NAc

ASE increased extracellular ACh in the mPFC and HIP but
not in the NAC (Figure 2). Repeated-measure ANOVA of
mPFC ACh data showed significant overall group (F¼ 7.94,
p¼ 0.0004) and time effects (F¼ 2.43, p¼ 0.03). The
group� time effect was not significant. Post hoc analysis
revealed that ASE at 0.05mg/kg (p¼ 0.04), ASE at 0.1mg/kg
(p¼ 0.00), and ASE at 0.5mg/kg (p¼ 0.002) were signifi-
cantly different from the vehicle, whereas ASE at 0.01mg/kg
differed from the higher doses, but not the vehicle. For the
HIP, both the overall group (F¼ 3.43, p¼ 0.03) and time
(F¼ 3.44, p¼ 0.004) effects were significant, but the group-
time interaction was not. Post-hoc analysis showed that ASE
at 0.5mg/kg differed significantly from the vehicle
(p¼ 0.005), from ASE at 0.01mg/kg (p¼ 0.01), and ASE at
0.05mg/kg (p¼ 0.04). The response AUC (Figure 2) was
significantly different among the treatment groups for each
region, mPFC (F¼ 7.02, p¼ 0.001) and HIP (F¼ 3.99,

p¼ 0.02) but not the NAC. Post hoc analysis showed
essentially the same group differences within region as the
repeated-measure ANOVA reported above. P-values for
differences among the response AUCs within regions are
given in the legend to Figure 2.
Two-way ANOVA was used to compare the treatment

groups in the mPFC and HIP. The interaction of region and
treatment was not significant. The main effect of group
(dose), was significant for both regions (F¼ 10.08,
p¼ 0.0001). There was no significant effect for region at
any of the doses studied.

Effect of Pretreatment with WAY100635 on ASE-
Induced DA and ACh Release in the mPFC and HIP

WAY100635 (0.2mg/kg, s.c.) alone had no significant effect
on DA or ACh efflux in the mPFC or the HIP (Figure 3).
Pretreatment with WAY100635 significantly attenuated the
increased DA efflux induced by ASE at 0.1mg/kg in both the
mPFC (F1,9¼ 20.56, Po0.001) and HIP (F1,9¼ 8.47,
p¼ 0.005). WAY100635 also significantly inhibited the
effect of ASE on ACh efflux in the mPFC (F1,9¼ 16.58,
Po0.001).
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Effect of ASE on NE Efflux in the mPFC and HIP

ASE increased extracellular NE in the mPFC and HIP
(Figure 4). Repeated-measure ANOVA of mPFC data
showed significant overall group effect (F¼ 5.08, p¼ 0.01);
the time effect was not significant. The group� time effect
was not significant. Post hoc analysis of mPFC data revealed
that ASE at 0.1mg/kg was significantly different from the
vehicle (p¼ 0.001), ASE at 0.01mg/kg (p¼ 0.01), and ASE at
0.05mg/kg (p¼ 0.01). For the HIP, both overall group
(F¼ 4.60, p¼ 0.02) and time (F¼ 2.40, p¼ 0.03) effects were
significant, but the group� time interaction was not. Post
hoc analysis revealed that ASE at 0.1mg/kg was significantly
different from the vehicle (p¼ 0.01) and ASE at 0.01mg/kg
(p¼ 0.01). The response AUC (Figure 4) was significantly
different among the treatment groups for each region,
mPFC (F¼ 5.69, p¼ 0.01) and HIP (F¼ 4.45, p¼ 0.02). Post
hoc analysis results showed the same group differences
within region as the repeated-measure ANOVA reported
above. P-values for differences among the response AUCs
are given in the legend to Figure 4.
Two-way ANOVA was used to compare the treatment

group across the three regions. The interaction of region
and treatment was not significant. The main effects of
region, regardless of dose (F¼ 3.20, p¼ 0.05), and treatment
group, regardless of region (F¼ 15.35, p¼ 0.0001), were
significant. ASE at 0.05mg/kg (p¼ 0.03) and ASE at 0.1mg/
kg (p¼ 0.02), but not ASE at 0.5mg/kg (p¼ 0.09), produced
greater increases on DA efflux in the mPFC compared with
in the NAc; there were no differences between the effects of

ASE on DA efflux in the mPFC and HIP at any of the doses
studied.

Effect of ASE on Serotonin Efflux in the mPFC and HIP

As shown in Figure 5, ASE, at 0.05 and 0.1mg/kg, had no
effect on 5-HT efflux in either the mPFC or HIP.

Effect of ASE on Glutamate and GABA Efflux in the
mPFC and NAc

ASE at 0.1mg/kg had no significant effect on glutamate or
GABA efflux in either the mPFC or NAc (data not shown).

DISCUSSION

The main findings of this study are the following: (1) ASE
produced a dose-dependent increase in DA efflux in the
mPFC and HIP; (2) ASE, at 0.5mg/kg, but not at lower doses
increased DA efflux in the NAc; (3) ASE dose dependently
increased ACh efflux in the mPFC and HIP, but not in the
NAc; (4) the effect of ASE on DA efflux in the mPFC and
HIP was blocked by pretreatment with the 5-HT1A

antagonist/D4 agonist, WAY100635; (5) ASE increased NE
efflux in the mPFC and HIP, but had no effect on 5-HT
efflux in either region, at the doses tested; and (6) ASE, at
the same dose that significantly increased DA and NE efflux
in the mPFC and HIP, had no effect on glutamate and GABA
efflux in the mPFC or NAc. These results suggest that acute
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treatment with ASE has effects on the mPFC, HIP, and NAc
DA, NE, and ACh efflux comparable to those of clozapine
and other atypical antipsychotic drugs, which are relatively
more potent 5-HT2A antagonists than D2 antagonists.

DA Efflux

Atypical antipsychotics have been reported to preferentially
increase DA efflux in the mPFC and HIP compared with in

the NAc in freely moving rats (Chung et al, 2004; Ichikawa
et al, 2001; Kuroki et al, 1999), compared with typical
antipsychotic drugs. ASE, in this study, at doses less than
0.5mg/kg, also showed preferential increase in cortical and
HIP DA efflux compared with in the NAc. This action is
due, in part, to blockade of 5-HT2A receptors in the cerebral
cortex and relatively weaker or negligible occupation of D2

and D1 receptors (Matsubara et al, 1993), since it can be
mimicked by the combination of potent 5-HT2A antagonism
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and weak blockade of D2 receptors (Liegeois et al, 2002;
Bonaccorso et al, 2002; Li et al, 2005). As reported by
Schotte et al (1996), these agents, including clozapine,
risperidone, 9-hydroxyrisperidone (paliperidone), olanza-
pine, pipamperone, quetiapine, sertindole, ziprasidone, and
zotepine, also have higher occupancy in the rat cortex and
striatum of 5-HT2A than D2 receptors, respectively, at all but
the highest doses studied. PET studies are also consistent
with the view that at clinically relevant doses, those agents,
which are direct acting antagonists of D2 receptors, have
higher occupancy of D2 than 5-HT2A receptors (Goyer et al,
1996; Nyberg et al, 1999; Gefvert et al, 2001; Kessler et al,
2005). Aripiprazole, a partial D2 receptor agonist, has a
higher D2 than 5-HT2A receptor occupancy at clinical doses,
but, nevertheless, has a weak functional effect to inhibit D2

receptor stimulation (Mamo et al, 2007). As mentioned
under Introduction, diminished dopaminergic and nora-
drenergic function in the cortex and HIP have been
implicated in the pathophysiology of cognitive impairment,
negative symptoms, and perhaps depression in patients
with schizophrenia (Meltzer and McGurk, 1999; Millan,
2006; Juckel et al, 2006). Recent studies have clearly
demonstrated the importance of increased cortical D1

receptor stimulation for specific types of memory, including
working memory and social memory (Castner and Wil-
liams, 2007; Nagai et al, 2007), possibly by increasing the
activity of pyramidal neurons, modulation of glutamate
NMDA receptor signaling at critical nodes within local
circuits and distributed networks (Castner and Williams,
2007), fine tuning GABAergic interneurons (Kroner et al,
2007), and enhancing the release of cortical ACh (Di Cara
et al, 2007). Thus, these effects on the efflux of cortical DA
and NE may be clinically relevant to the treatment of
schizophrenia (Ichikawa et al, 2001; Meltzer et al, 2003;
Arnsten and Li, 2005), as well as to the ability of these same
agents, in combination with at least some antidepressant
drugs, to be effective in patients with major depression who
fail to respond to antidepressant drug treatment alone
(Shelton et al, 2001).
The increased efflux of DA in the mPFC and HIP

produced by antipsychotic drugs (eg, aripiprazole, cloza-
pine, olanzapine, risperidone, ziprasidone) has been shown
to be partially or completely (eg, quetiapine) blocked by the
5-HT1A antagonist/D4 receptor agonist WAY100635 in most
(Ago et al, 2005; Chung et al, 2004; Ichikawa et al, 2001;
Ichikawa and Meltzer, 2000; Li et al, 2004; Sprouse et al,
1999; Yoshino et al, 2004), but not all (Assie et al, 2005),
studies. Although the recent demonstration of relatively
potent D4 agonist activity of WAY100635 (Chemel et al,
2006) complicates the interpretation of studies with this
agent, the role of 5-HT1A receptor agonism in mediating the
effects of atypical antipsychotics on mPFC DA efflux is also
supported by experiments in which the highly selective
5-HT1A agonist, BAY� 3702 (BAY; 10–40 mg/kg, i.v.),
increased DA release in the mPFC. WAY100635 reversed
the effects of BAY in both the areas. The atypical
antipsychotics, clozapine, olanzapine, and ziprasidone
(but not haloperidol), enhanced DA release in the mPFC
of wild-type, but not 5-HT1A-knockout, mice after systemic
and local (clozapine and olanzapine) administration in the
mPFC (Diaz-Mataix et al, 2005). Local administration of
WAY100635 into the mPFC of male rats blocks the effect of

systemic clozapine on cortical DA release (Li et al,
unpublished data). ASE is similar to quetiapine (Ichikawa
et al, 2002c) in that its ability to increase the efflux of
cortical DA in rats was completely blocked by WAY100635.
The clinical significance, if any, of this difference is
unknown at present. The increase in cortical DA release
produced by local injection of clozapine or olanzapine into
the cortex was also abolished in 5-HT1A-knockout mice
(Diaz-Mataix et al, 2005). Partial agonism at the 5-HT1A

receptor has been reported for some (eg, clozapine,
quetiapine, ziprasidone), but not all, atypical antipsychotic
drugs (eg, olanzapine and risperidone) (Meltzer et al, 2003),
a possible explanation for the blockade of the antipsychotic-
induced DA efflux by WAY100635. Unlike clozapine,
quetiapine, and ziprasidone (Meltzer et al, 2003), ASE does
not behave like a 5-HT1A agonist in cloned cell preparations
(Shahid et al, 2007), nor does it enhance cortical 5-HT efflux
at the doses tested. Thus, the mechanism by which ASE
influences 5-HT1A-receptor stimulation requires further
investigation.
ASE significantly increased DA efflux in the NAc at the

highest dose studied (0.5mg/kg), but not at 0.05mg/kg,
which increased DA efflux in the mPFC and HIP. Atypical
antipsychotic drugs, including clozapine and olanzapine,
can increase DA efflux in the NAc, although the magnitude
of the effect is significantly smaller than that produced in the
mPFC (Ichikawa et al, 2002c; Kuroki et al, 1999; Shilliam and
Dawson, 2005). Shilliam and Dawson (2005) demonstrated
that this increase was confined to the shell of the NAc and
did not occur in the NAc core. We have previously shown
that 5-HT2C-receptor antagonism, in combination with
D2-receptor antagonism, may contribute to the ability of
these agents to enhance DA release in the NAc (Bonaccorso
et al, 2002; Li et al, 2005). The potent 5-HT2C antagonist,
SB242084, significantly potentiated low-dose haloperidol-
induced increase in DA release in the NAc (Li et al, 2005).
The selective 5-HT2C antagonists, SB206553 and SB242084,
alone have been shown to increase DA efflux in both the
mPFC and NAc (De Deurwaerdere and Spampinato, 2001; Di
Matteo et al, 2001, 1998, 1999, 2000; Millan et al, 1998, 2003).
As ASE is a very potent 5-HT2C antagonist (pKi 10.46±0.15;
Shahid et al, 2007; Prinssen et al, 2000), this may, at least in
part, be involved in mediating its effects in the NAc.
Occupancy of D2 receptors may also contribute to the ability
of ASE to enhance DA efflux in the NAc (Kuroki et al, 1999).
There is also some evidence that the increase in DA efflux
produced by the atypical antipsychotic drugs is mediated, in
part, by a2A-adrenergic-receptor blockade (Blake et al, 1998;
Bymaster et al, 1996; Gobert et al, 1998; Hertel et al, 1999;
Millan et al, 2000; Wadenberg et al, 2007), which may
also contribute to the action of ASE in this regard,
as it also an a2A-adrenergic-receptor antagonist (Shahid
et al, 2007).

ACh Efflux

ASE preferentially increased ACh efflux in both the mPFC
and HIP, but not in the NAc, which is also the case for
clozapine, olanzapine, risperidone, quetiapine, and ziprasi-
done (Ichikawa et al, 2002a, b, c; Parada et al, 1997; Shirazi-
Southall et al, 2002). Muscarinic cholinergic receptors are
unlikely to be important for this action, since, unlike
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clozapine or olanzapine, ASE has no appreciable affinity for
these receptors (Shahid et al, 2007). Indirect 5-HT1A-
receptor stimulation seems more likely to be important
for this effect, since the increase in ACh induced by ASE is
sensitive to blockade by WAY100635. This is similar to the
profile of quetiapine (Ichikawa et al, 2002c). It has recently
been reported that systemic administration of risperidone,
at 1 and 2mg/kg, dose dependently increased ACh efflux in
the rat mPFC; this increase was antagonized by systemic
administration of high (1 and 3mg/kg), but not by a lower
dose (0.1mg/kg) of WAY100635, which preferentially
blocks presynaptic 5-HT1A autoreceptors (Sato et al, 2007;
Ago et al, 2003). Local application of WAY100635 into the
mPFC did not affect ACh release in the mPFC, but
did attenuate risperidone-induced increases in ACh efflux
(Sato et al, 2007). Local application of neither risperidone
(3 and 10 mM) and the 5-HT1A-receptor agonist, L-750,667
(8-hydroxy-2-(di-n-propylamino)tetralin; 1 and 10 mM), nor
the DA D4-receptor antagonist, 3-(4-(4-iodophenyl)piper-
azine-1-yl)methyl-1H-pyrrolo[2,3-b]pyridine (1 and 10mM),
into the mPFC affected ACh release in the mPFC (Sato et al,
2007). Taken together, these results suggest that atypical
antipsychotic drugs increase ACh efflux in the mPFC
through a circuit, which includes prefrontal 5-HT1A-receptor
activation. Histamine H1 and a2-adrenoceptor blockade have
also been shown to enhance ACh release (Dringenberg et al,
1998; Tellez et al, 1997), and, thus, may be also involved in
ASE-induced ACh release in both mPFC and HIP.

NE and Serotonin Release

ASE, like other atypical antipsychotics, dose dependently
increased NE release in the rat mPFC and HIP (Westerink
et al, 1998). ASE increased DA efflux in the mPFC at
0.05mg/kg, but not NE. The increases in DA and NE efflux
in the mPFC at 0.1mg/kg were comparable. The effect on
DA and NE efflux in the HIP were more similar. Increased
NE efflux, rather than, or in addition to, DA efflux, may be
important for the ability of atypical antipsychotic drugs to
improve cognitive function in schizophrenia (Arnsten and
Li, 2005; Rossetti and Carboni, 2005). Increases in NE
and DA release in the rat mPFC have been reported with
5-HT1A-receptor agonists (Hajos-Korcsok et al, 1999; Owen
and Whitton, 2003); the a2-adrenoceptor antagonists
RS79948 (Devoto et al, 2004) and 1-(2-pyrimidinyl-piper-
azine) (Gobert et al, 1999); and the selective 5-HT2C

antagonist, SB242084 (Millan et al, 1998). As previously
noted, ASE is a potent 5-HT2C-receptor and a2-adrenocep-
tor antagonist (Schotte et al, 1996; Shahid et al, 2007). A
combination of these actions may mediate its ability to
increase NE and DA efflux in the mPFC and HIP.
ASE did not affect 5-HT efflux in either the mPFC or HIP

at the doses tested, despite its a2-adrenoceptor-antagonist
properties. The a2-adrenoceptor antagonist, yohimbine,
increased, and the a2-agonist, clonidine, decreased, the
extracellular levels of 5-HT in the rat frontal cortex (Cheng
et al, 1993). One possible explanation for the lack of effect of
ASE on 5-HT efflux is that the degree of a2-adrenoceptor
block was insufficient at the doses used in the current study,
but this seems unlikely in that it its affinity for the a2-
adrenoceptoris identical to that for the D2,l receptor.
Alternatively, given the complex multireceptor profile of

atypical antipsychotic drugs, the inability of ASE to elevate
cortical 5-HT levels may results from action, which negates
the effects of a2-adrenoceptor blockade. Indeed, risperidone
has been reported in several studies to increase mPFC 5-HT
release (Cartmell et al, 2001; Hertel et al, 1996; Ichikawa
et al, 1998), whereas clozapine and olanzapine do not. The
lack of an increase in 5-HT efflux in the mPFC by ASE
suggests that stimulation of 5-HT1A receptors, which
appears to be critical for its ability to enhance ACh and
DA efflux, is not due to 5-HT efflux in this region. This is
consistent with the evidence that local administration of the
5-HT1A agonist, 8-OH-DPAT, did not enhance ACh efflux in
the mPFC (Sato et al, 2007).

Glutamate and GABA Efflux

In the present study, ASE did not alter extracellular glutamate
and GABA levels in the mPFC, at a dose that did enhance DA,
NE, and ACh efflux in that region. It also had no effect on
glutamate or GABA efflux in the NAc. In this regard, it differs
from clozapine, which significantly increased glutamate
efflux in the rat mPFC (Daly and Moghaddam, 1993;
Yamamoto and Cooperman, 1994). It also differs from
clozapine and haloperidol, which decreased basal GABA
release in the mPFC (Bourdelais and Deutch, 1994). These
data indicate that modulation of cortical glutamate and
GABA efflux does not represent a common action of
antipsychotic drugs. The significance of these differences
between antipsychotic drugs remains to be determined.
Both risperidone and clozapine have been reported to

diminish GABA release in the globus pallidus (Grimm and
See, 1998). Clozapine has also been shown to dose
dependently block phencyclidine-induced acute increases
in glutamate efflux in the rat mPFC, as well as to block PCP-
induced hyperlocomotion. Clozapine also attenuated acute
increases in glutamate efflux in the mPFC induced by local
perfusion with the competitive NMDA-receptor antagonist,
CPP (Abekawa et al, 2006). Further study of a broader dose
range of ASE is required to assess the effects of ASE on
glutamatergic mechanisms.

Conclusions

In conclusion, acute administration of ASE significantly
increased cortical and hippocampal DA, NE, and ACh efflux
in a dose-dependent and regionally selective manner, but
had no effect on cortical and HIP 5-HT, glutamate, or GABA
efflux. The effects on DA, NE, and ACh efflux are
comparable to those previously reported with clozapine
and quetiapine. Several key differences between clozapine
and ASE were noted, including the ability of WAY100635 to
block ACh efflux and the lack of an effect on cortical GABA
and glutamate efflux. Overall, these results suggest ASE is an
antipsychotic, which should improve cognition and nega-
tive symptoms in schizophrenia. Further study of its
efficacy and side effect profile is clearly of interest.
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