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s-Receptors (SigRs) have been implicated in behavioral and appetitive effects of psychostimulants and may also modulate the motivating

properties of ethanol. This study tested the hypothesis that SigRs modulate ethanol reinforcement and contribute to excessive ethanol

intake. The effects of subcutaneous treatment with the potent, selective Sig-1R antagonist BD-1063 on operant ethanol self-

administration were studied in two models of excessive drinkingFSardinian alcohol-preferring (sP) rats and acutely withdrawn ethanol-

dependent Wistar ratsFand compared to ethanol self-administration in nondependent Wistar controls. To assess the specificity of

action, the effects of BD-1063 on self-administration of an equally reinforcing saccharin solution were determined in Wistar and sP rats.

Gene expression of Sig-1R in reward-related brain areas implicated in ethanol reinforcement was compared between ethanol-naive sP

and Wistar rats and withdrawn ethanol-dependent Wistar rats. BD-1063 dose dependently reduced ethanol self-administration in sP rats

(3.3–11mg/kg) and withdrawn, dependent Wistar rats (4–11mg/kg) at doses that did not modify mean ethanol self-administration in

nondependent Wistar controls. BD-1063 did not reduce concurrent water self-administration and did not comparably suppress

saccharin self-administration, suggesting selectivity of action. BD-1063 also reduced the breakpoints of sP rats to work for ethanol under a

progressive-ratio reinforcement schedule. Ethanol-naive sP rats and 24-h withdrawn, dependent Wistar rats showed reduced Sig-1R

mRNA expression in the nucleus accumbens. The results suggest that SigR systems may contribute to innate or ethanol-induced

increases in susceptibility to self-administer high ethanol levels, identifying a potential neuroadaptive mechanism contributing to excessive

drinking and a therapeutic target for alcohol abuse and dependence.
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INTRODUCTION

Alcoholism is a multifactorial, chronic disorder of compul-
sive alcohol use (McLellan et al, 2000). Animal models that
mimic alcoholism are unattainable, but syndrome compo-
nents can be modeled (Koob et al, 1998). Excessive ethanol
self-administration has been observed in rodents selectively
bred for ethanol intake and in outbred rats withdrawn from

ethanol following induction of ethanol dependence (McBride
and Li, 1998; Rimondini et al, 2002; Roberts et al, 2000;
Rogers et al, 1979). Use of such animal models has identified
a role for opioid peptide systems in the acute reinforcing
effects of ethanol and excessive drinking (Lovinger and
Crabbe, 2005). Although much work has explored the role of
opioid peptide systems and related peptides (eg nociceptin)
on the reinforcing effects of ethanol, little work has examined
the role of s-receptors (SigRs).
SigRs were originally categorized as members of the

opioid receptor family (Martin et al, 1976) and a high-
affinity phencyclidine-binding site (Quirion et al, 1981).
However, it is now known that SigRs are unique binding
sites that differ from other known mammalian proteins
(Gundlach et al, 1985; Walker et al, 1990). Two different
SigR subtypes are known, Sig-1R and Sig-2R, differing in
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their binding profile and molecular weight (Hanner et al,
1996; Hellewell and Bowen, 1990; Moebius et al, 1993). The
Sig-1R gene (Mei and Pasternak, 2001; Pan et al, 1998; Seth
et al, 1998) encodes a 29 kDa polypeptide containing one or
two putative transmembrane domains. Sig-1Rs are synthe-
sized and expressed widely in rat brain, especially through-
out limbic areas and brainstem motor structures. The
highest levels of immunoreactivity are observed in the
olfactory bulb, hypothalamus, and hippocampus, but the
caudate putamen, septum, nucleus accumbens, and amyg-
dala show moderately concentrated, intense labeling
(Alonso et al, 2000; Bouchard and Quirion, 1997; Phan
et al, 2003). The anatomical distribution of SigRs, which
immunostain at synaptic contacts (Maurice et al, 2002;
Alonso et al, 2000), suggests that SigRs may modulate
motivationally relevant synaptic transmission, including
that of drugs of abuse.
Accordingly, SigRs are implicated in actions of psycho-

stimulants. SigR antagonists block cocaine-induced c-fos
expression, locomotion, place preference conditioning, sei-
zures, and lethality in rodents (Maurice and Romieu, 2004;
McCracken et al, 1999; Menkel et al, 1991; Witkin et al, 1993).
Likewise, the SigR antagonists BD-1063 and/or BD-1047
attenuated the locomotor stimulatory effects of methamphe-
tamine and 3,4-methylenedioxymethamphetamine in mice
(Brammer et al, 2006; Romieu et al, 2002), and MS-377
attenuated the development of behavioral sensitization to
methamphetamine (Takahashi et al, 2000). A SigR antagonist
also attenuated contextual reinstatement of cocaine-directed
responding (Martin-Fardon et al, 2007). Many actions of SigR
antagonists are shared by Sig-1R receptor antisense oligo-
deoxynucleotides (Brammer et al, 2006; Romieu et al, 2002).
Furthermore, repeated passive cocaine (Romieu et al, 2002)
and methamphetamine exposure (Itzhak, 1993) increased
Sig-1R mRNA expression in several discrete brain regions, as
did daily methamphetamine self-administration (Stefanski
et al, 2004). Accordingly, activation and overexpression of
Sig-1Rs are putative primary cellular responses to psychos-
timulants proposed to underlie addiction-associated neuroa-
daptations (Maurice and Romieu, 2004; Su and Hayashi,
2003; Takebayashi et al, 2002).
Few studies have examined SigR involvement in ethanol’s

actions. Although it often has been assumed that SigR
antagonist-sensitive actions of cocaine and methamphet-
amine reflect direct molecular interactions, the psycho-
stimulants in fact bind with only micromolar affinity to SigRs
(Brammer et al, 2006; Nguyen et al, 2005; Sharkey et al,
1988). Thus, indirect SigR-mediated effects may exist for all
substances of abuse, including ethanol. Indeed, the SigR
antagonist BD-1047 dose dependently attenuated ethanol-
induced locomotion and blocked ethanol-induced place and
taste conditioning. Moreover, Sig-1R gene functional poly-
morphisms that correlate with alterations in receptor
transcription were overrepresented in a Japanese population
of alcoholic subjects (Miyatake et al, 2004). The purpose of
this study was therefore to test the hypothesis that SigRs
modulate reinforcing effects of ethanol. For this, we
examined the effects of systemic administration of the SigR
antagonist BD-1063 on operant oral ethanol self-administra-
tion in dependent Wistar rats withdrawn from repeated,
intermittent ethanol vapor exposure and in genetically
selected Sardinian alcohol-preferring (sP) rats (Colombo,

1997; Colombo et al, 1995). To assess the selectivity of
action against high (‘excessive’) ethanol drinking, results
were compared to those seen in nondependent, outbred
Wistar rats and against similar rates of saccharin self-
administration. Finally, gene expression of Sig-1R in several
reward-related brain areas putatively implicated in ethanol
reinforcement (eg nucleus accumbens, ventral tegmental
area, central nucleus of the amygdala, basolateral amygdala;
Vengeliene et al, 2008) were compared between ethanol-
naive sP and Wistar rats and acutely withdrawn, dependent
Wistar rats.

MATERIALS AND METHODS

Animals

Male Wistar rats (n¼ 61; Charles River, Raleigh, NC) and
genetically selected TSRI sP rats (n¼ 34) were subjects.
TSRI sP rats were generated from the 22nd to 24th
generations of intraline breeding at The Scripps Research
Institute from sP rats obtained after 32 generations of
selection from Professor GL Gessa (University of Cagliari).
Rats, 300 g at study onset, were group-housed (2–3 per cage)
in a humidity- and temperature (221C)-controlled vivarium
on a 12-h light–dark cycle (lights off, 0800 hours) with water
and chow (Harlan Teklad 7012) available ad libitum.
Procedures adhered to the National Institutes of Health
Guide for the Care and Use of Laboratory Animals and were
approved by the Institutional Animal Care and Use
Committee of The Scripps Research Institute.

Drugs

Ethanol (10% v/v) and saccharin solutions were prepared
in tap water using 95% ethyl alcohol and saccharin sodium
salt hydrate (Sigma-Aldrich, catalog number S1002),
respectively. BD-1063 2� HBr salt (1-(2-(3,4-dichloro-
phenyl)ethyl)-4-methylpiperazine dihydrobromide) was
synthesized according to the previously reported procedure
(de Costa et al, 1993). BD-1063 was solubilized in isotonic
saline and injected subcutaneously (s.c. 1ml/kg), 15min
before testing.

Oral Self-Administration Apparatus

The self-administration test chambers (Coulbourn Instru-
ments, Allentown, PA) were located in sound-attenuating,
ventilated environmental cubicles. Syringe pumps (Razel
Scientific Instruments, Stamford, CT) dispensed ethanol or
water into two stainless steel drinking cups mounted 4 cm
above the grid floor in the middle of one side panel. Two
retractable levers were located 4.5 cm to either side of the
drinking cups. Fluid delivery and recording of operant
responses were controlled by microcomputers.

Ethanol Self-Administration Procedure

Outbred Wistar rats. Wistar rats were allowed to press a
lever for ethanol on a fixed ratio-1 (FR1) schedule of
reinforcement via a modified Samson fading procedure (Funk
et al, 2006). Briefly, rats first responded for 0.1ml of a glucose
(3% w/v)/saccharin (0.125% w/v) solution for 5 sessions.
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Then, ethanol self-administration was initiated by adding
ethanol (10% v/v) to the sweet solution for 4–5 sessions,
followed by 4–5 sessions of 10% ethanol + 0.125% saccharin
only. Finally, rats received operant access to the 10% ethanol
solution alone. During training, subjects received a 30-min
self-administration session 5 days per week.

sP rats. Sardinian alcohol-preferring rats were allowed to
self-administer 10% v/v ethanol without a fading procedure
under an FR1 reinforcement schedule, as previously
described (Sabino et al, 2006). Lever presses had no
scheduled consequences for 2.01 s after the activation of
the pumps to avoid double responses (Sabino et al, 2006).
For training, rats received a daily 60-min self-administra-
tion session 5 days per week until performance stabilized
(o15% variation across three consecutive sessions). For
both Wistar and sP rats, responses at the opposite lever
produced water, with the lever that produced water or
ethanol alternated daily during training.
Separate animals were allowed to self-administer 10% v/v

ethanol under a progressive ratio (PR) schedule of
reinforcement in which the number of responses
required to produce successive ethanol deliveries increased
per the exponential progression: response ratio¼ 4�
(eno. of reinforcer� 0.1)�3.8, rounded to the nearest integer.
The session began upon completion of the first ratio with a
maximum duration of 2 h. To avoid unintended session
starts, the first reinforcement required three responses.
Sessions ended when subjects did not complete a ratio for
15min. The dependent measures were the following: (a)
breakpoint, last ratio completed by a subject before the end
of the session; (b) total responses, total number of
reinforced and nonreinforced responses; (c) reinforcers,
total number of reinforced responses. Testing, performed
between 1500 hours and 1800 hours twice per week, began
when stable responding was achieved (o15% variation
across three consecutive sessions).

Saccharin Self-Administration Procedure

Rats were allowed 1–2 overnight (16-h) operant, 2-choice
access sessions during which lever responses led to delivery
of 0.1ml saccharin (0.1% w/v) or water solutions under an
FR1 schedule. Food was available ad libitum. All subsequent
FR1 sessions were 60 min in duration, without food present,
with saccharin concentrations reduced progressively from
0.1% w/v to 0.0035% w/v for Wistar rats and to 0.045% w/v
for sP rats. These concentrations maintained response rates
similar to those elicited by ethanol in dependent Wistar rats
and sP rats, respectively.

Ethanol Vapor Exposure Procedure

To induce dependence, Wistar rats were housed within
sealed, clear plastic chambers into which ethanol vapor was
intermittently introduced, as described previously (Sabino
et al, 2006). The chambers were connected to a timer that
turned the ethanol vapor on (2000 hours) and off (1000
hours), for 14 h of daily ethanol exposure. Tail blood
(0.05ml) was sampled at vapor offset for blood alcohol level
(BAL) determination twice during the first week and weekly
thereafter. The plasma was extracted with trichloroacetic

acid and assayed for ethanol content using the nicotinamide
adenine dinucleotide–alcohol dehydrogenase enzyme spec-
trophotometric method (Sigma). Target BALs were 150–
200mg% across a 6-week exposure period. This paradigm
induces physical dependence and increases operant ethanol
self-administration during withdrawal (Funk et al, 2006;
O’Dell et al, 2004; Sabino et al, 2006); control rats were kept
under similar conditions without ethanol vapor exposure.
After 6 weeks of exposure, rats in the self-administration

experiment were tested for operant ethanol self-adminis-
tration twice weekly, beginning 6 h after vapor offset. The
first four of these 30-min sessions allowed subjects to
experience the potential negative reinforcing effects of
ethanol during acute withdrawal, after which experimental
testing was initiated. Rats in the qPCR experiment were
instead anesthetized by isoflurane inhalation (6 or 24 h after
vapor offset) and decapitated. Brains were sectioned
coronally (2mm slices) in a rat brain matrix. Brain regions
of interest (nucleus accumbens, ventral tegmental area,
central nucleus of the amygdala basolateral amygdala),
chosen for their role in reward and reinforcement and
moderate-to-high SigR expression (Alonso et al, 2000;
Bouchard and Quirion, 1997), were punched using a 14-
gauge needle, guided by atlas (Palkovits, 1988), and stored
at �801C until processing. Naive sP rats were sacrificed
together with the 6 h withdrawal Wistar rat group.

Effects of BD-1063 on Ethanol Self-Administration

Outbred Wistar rats. Rats (controls, N¼ 11; dependents,
N¼ 9) were pretreated with BD-1063 (0, 4.4, 7, and 11mg/kg
of body weight, free base basis, s.c.) using a within-subject
Latin square design.

sP rats. Rats (N¼ 9) were pretreated with BD-1063 (0, 3, 4.4,
7, and 11mg/kg of body weight, free base basis, s.c.) using a
within-subject Latin square design.

Effects of BD-1063 on Progressive-Ratio Ethanol Self-
Administration

Sardinian alcohol-preferring rats (N¼ 11) were pretreated
with BD-1063 (0, 3, 4.4, 7, and 11mg/kg, s.c.) using a within-
subject Latin square design.

Effects of BD-1063 on Saccharin Self-Administration

Rats were pretreated with BD-1063 (Wistar: 0, 4.4, 7, 11mg/
kg, N¼ 8; sP: 0, 3, 4.4, 7, 11mg/kg, N¼ 7) using a within-
subject Latin square design.

Sig-1R Gene Expression

Total RNA was prepared from each punch using the RNeasy
mini kit (Qiagen, Valencia, CA) as recommended for animal
tissue. Total RNA (1 mg), quantified by Ribogreen reagent
(Molecular Probes, Invitrogen, Carlsbad, CA), was reverse
transcribed with SuperScript First-Strand Synthesis System
for RT–PCR (Invitrogen) in the presence of Oligo (dT)12–18
per the manufacturer’s instructions. For quantitative real-
time PCR, Roche Light Cycler 480 Master-plus SYBR Green
mix (Roche Applied Science, Indianapolis, IN) was used.
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Reactions (20 ml) were carried out in a 96-well plate
Realplex4 machine (Eppendorf). The primers (0.5 mM final
concentration; Valuegene, San Diego, CA), synthesized with
a standard desalting purification, were for Cyclophilin A
(Cyp), 50-TATCTGCACTGCCAAGACTGAGTG-30 and 50-CT
TCTTGCTGGTCTTGCCATTCC-30, and for Sig-1R, 50-GCTG
CAGTGGGTGTTTGTGAACG-30 and 50-GGTGGAAAGTGCC
AGAGATGATGGTA-30. The Cyp sequence was amplified
using a three-temperature protocol, which included an
initial 5min at 941C to activate Taq polymerase, followed by
40 denaturation cycles at 951C for 20 s, annealing at 581C for
15 s, and extension at 721C for 10 s. The Sig-1R sequence
was amplified per a two-temperature protocol after an
initial 5min at 941C: 40 cycles at 941C for 15 s and at 681C
for 8 s. The primers for Sig-1R hybridize to sequences
within exons 3 and 4 of the Oprs-1 transcript and therefore
amplify the ‘long’ isoform of the protein, corresponding to
the characterized receptor (Ganapathy et al, 1999). Standard
curves were constructed using sequenced PCR products.
Results were analyzed by second derivative methods and
expressed in arbitrary units, normalized to Cyp expression
levels. Standards and samples were run in duplicate, and all
reactions for a given brain region were performed
concurrently. Gene-specific amplification was determined
by melting curve analysis as one peak at the expected
melting temperature and by agarose gel electrophoresis.

Statistical Analysis

Ethanol responding data were analyzed by analyses of
variance (ANOVAs) and expressed as mean±SEM, normal-
ized for body weight (ie ethanol, g/kg; water and saccharin,
ml/kg). The effects of BD-1063 on ethanol and saccharin
responding in sP rats were analyzed by separate one-way
ANOVAs with dose of BD-1063 as a within-subject factor.
The effects of BD-1063 on ethanol responding in Wistar rats
were analyzed by a two-way ANOVA with ethanol history
(dependent vs nondependent) as a between-subjects factor
and dose of BD-1063 as a within-subject factor. Unless
otherwise specified, Dunnett’s test was used for pairwise
comparisons after significant omnibus tests. Quantitative
PCR data were analyzed by Student’s t-test. The software
package was Systat 11.0 (SPSS, Chicago, IL).

RESULTS

Effect of BD-1063 on Ethanol Self-Administration in
Nondependent and Withdrawn, Dependent Wistar Rats

As shown in Figure 1 (top panel), treatment with the SigR
antagonist BD-1063 reduced ethanol responding (treatment:
F(3, 54)¼ 5.41, Po0.01) in acutely withdrawn dependent
Wistar rats, but not in nondependent rats (depen-
dence� treatment: F(3, 54)¼ 2.92, Po0.05). In dependent
rats, BD-1063 reduced responding dose dependently as
reflected in linear trend analysis (log-linear Dose effect:
F(1, 24)¼ 16.52, Po0.01). Pairwise post hoc comparisons
revealed that the doses of 7 and 11mg/kg significantly
reduced intake, and all 9 dependent rats self-administered
less ethanol after treatment with 11mg/kg BD-1063 than
after vehicle treatment. In contrast, BD-1063 did not alter
water responding in either group (treatment: F(3, 54)¼ 0.57,

n.s.; dependence� treatment: F(3, 54)¼ 0.39, n.s.; Figure 1,
bottom panel).
Among the nondependent rats, subgroup analysis showed

that BD-1063 (11mg/kg) tended to decrease self-adminis-
tration in high responders (38% reduction compared to
vehicle, P¼ 0.08, n¼ 4, 0.80 + 0.06 g/kg), but not in low
responders (n¼ 7, 0.19 + 0.05 g/kg). Among the dependent
rats, median split subgroup analysis showed that BD-1063
treatment significantly and comparably reduced self-admin-
istration in low responders (49% reduction, P¼ 0.0001;
n¼ 5, 0.84 + 0.14 g/kg) vs high responders (34% reduction,
P¼ 0.02; n¼ 5, 1.33 + 0.05 g/kg). Thus, BD-1063 reduced
ethanol responding in both nondependent and dependent
rodents that had high mean baseline ethanol self-adminis-
tration (B0.8 g/kg of ethanol). Above this threshold of
intake, the relative suppression of ethanol self-administra-
tion by BD-1063 was unrelated to baseline responding,
arguing against a rate-dependent effect.

Effect of BD-1063 on Saccharin Self-Administration in
Wistar Rats

As shown in Figure 2, treatment with BD-1063 did not
reliably affect responding for saccharin in Wistar rats
(treatment: F(3, 21)¼ 0.65, n.s.). Moreover, no significant
linear contrast effect of dose was observed. As desired, the
saccharin solution maintained levels of responding under
vehicle conditions that did not differ from those observed in
withdrawn, ethanol-dependent rats. BD-1063 treatment also
did not affect concurrent responding for water (treatment:
F(3, 21)¼ 0.13, n.s.), with no significant linear contrast
effect of dose observed.

Effect of BD-1063 on Ethanol Self-Administration in sP
Rats

As shown in Figure 3 (top panel), systemic treatment with the
SigR antagonist BD-1063 reduced ethanol responding of sP
rats (treatment: F(4, 32)¼ 11.63, Po0.001), in a dose-
dependent manner (log-linear Dose effect: F(1, 32)¼ 44.90,
Po0.001). Post hoc comparisons revealed that the 4.4, 7, and
11mg/kg doses significantly reduced responding relative to
vehicle conditions; all nine sP rats showed reduced ethanol
self-administration following the 11mg/kg dose. In contrast,
responding for water was not significantly affected by BD-
1063 (treatment: F(4, 32)¼ 0.45, n.s.; Figure 3, bottom panel).
Figure 4 shows the time course of BD-1063 action, with the
drug reducing ethanol intake within the first 5min of the
session and the cumulative reduction persisting for the
duration of the session (60min). Median split analysis again
showed that BD-1063 achieved a similar relative suppression
of ethanol self-administration in low responders (42%
reduction, P¼ 0.04; n¼ 4, 0.92+0.05 g/kg) vs high responders
(41% reduction, Po0.01; n¼ 5, 1.30+0.11 g/kg).

Effect of BD-1063 on Saccharin Self-Administration in
sP Rats

Treatment with BD-1063 did not reliably affect saccharin
self-administration in sP rats (treatment: F(4, 24)¼ 1.90,
n.s.), as shown in Figure 5. Though a linear contrast effect of
Dose was observed (F(1, 24)¼ 5.24, P¼ 0.03), pairwise
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comparisons showed that no dose reduced responding
relative to vehicle conditions. Moreover, the relative
reduction in ethanol responding in sP rats elicited by BD-
1063 (11mg/kg) was greater in sP rats responding for
ethanol than in those responding for saccharin (42 vs 15%,
respectively). As desired, the saccharin solution elicited
levels of responding under vehicle conditions that were
similar to sP rats responding for ethanol. BD-1063
treatment did not significantly affect water intake
(F(4, 24)¼ 1.42, n.s.), and no significant linear contrast
effect of dose was observed.

Effect of BD-1063 on Progressive Ratio Responding for
Ethanol in sP Rats

As shown in Figure 6, systemic treatment with the SigR
antagonist BD-1063 reduced the break point of sP rats
responding for ethanol under a PR schedule of reinforce-
ment (treatment: F(4, 40)¼ 8.28, Po0.001), in a dose-
dependent manner (log-linear dose effect: F(1, 40)¼ 22.77,
Po0.001). BD-1063 treatment also dose dependently
reduced the total number of responses emitted for ethanol
(treatment: F(4, 40)¼ 8.56, Po0.001; log-linear Dose effect:
F(1, 40)¼ 23.46, Po0.001) as well as the total number of
ethanol reinforcers earned (treatment: F(4, 40)¼ 7.88,
Po0.001; data not shown). Post hoc comparisons revealed
that the 4.4, 7, and 11mg/kg doses of BD-1063 significantly
reduced each of the above measures. Responding at the
inactive lever was not altered by BD-1063 treatment
(F(4, 40)¼ 2.57, n.s.).

Figure 1 Effect of acute subcutaneous pretreatment (�15min) with the s-receptor (SigR) antagonist BD-1063 on ethanol (a and b) and water (c and d)
self-administration on a fixed ratio-1 schedule of reinforcement. Subjects were ethanol-dependent Wistar rats (n¼ 9), tested 6-h into withdrawal from
ethanol vapor, and nondependent Wistar rats (n¼ 11). Data represent mean+ SEM intake, normalized for body weight (a and c), or number of lever press
responses (b and d). *po0.05, **po0.01 vs vehicle-treated group (Dunnett’s test).

Figure 2 Effect of acute subcutaneous pretreatment (�15min) with the
s-receptor (SigR) antagonist BD-1063 on saccharin (a) and water (b) self-
administration on a fixed ratio-1 schedule of reinforcement in Wistar rats
(n¼ 8). Data represent mean+ SEM number of lever press responses.
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Sig-1R Gene Expression in sP Rats and in Acutely
Withdrawn Dependent Wistar Rats

Quantitative real-time PCR showed, as depicted in Figure 7,
that Sig-1R mRNA levels were significantly lower in the
nucleus accumbens of ethanol-naive sP rats (t(14)¼ 2.60,
po0.05) and 24-h withdrawn, ethanol-dependent rats
(t(16)¼ 1.76, po0.05) compared with ethanol-naive

outbred Wistar controls. No significant differences were
observed in the nucleus accumbens of 6-h withdrawn,
ethanol-dependent rats (t(14)¼ 0.55, n.s.). No differences
were observed among groups in expression of Sig-1R
mRNA within the ventral tegmental area, central nucleus
of the amygdala or basolateral amygdala (data not shown).

DISCUSSION

This study shows that the preferential Sig-1R antagonist
BD-1063 dose dependently and selectively reduced oral
ethanol self-administration in two animal models of
excessive ethanol drinkingFacutely withdrawn, ethanol
dependent outbred Wistar rats and genetically selected,
alcohol-preferring sP rats. BD-1063 also reduced the
motivation of sP rats to work to obtain alcohol. In contrast,
BD-1063 did not reduce ethanol self-administration in
nondependent control Wistar rats or comparably reduce
self-administration of water or of an equally reinforcing
saccharin solution. Both ethanol-naive sP rats and acutely
withdrawn (24 h), ethanol-dependent Wistar rats showed
decreased Sig-1R mRNA expression in the nucleus accum-
bens compared with ethanol-naive control Wistar rats. The
results collectively support an endogenous role for brain
Sig-1Rs in the modulation of excessive ethanol intake and
reinforcement.
The highest dose of BD-1063 administered (11mg/kg of

free base) decreased fixed-ratio operant responding for
ethanol, a measure of ethanol’s reinforcing properties with
predictive validity for medications used to treat alcoholism
(Altshuler et al, 1980; Czachowski et al, 2001; Johnson and

Figure 3 Effect of acute subcutaneous pretreatment (�15min) with the s-receptor (SigR) antagonist BD-1063 on alcohol (a and b) and water (c and d)
self-administration on a fixed ratio-1 schedule of reinforcement in sP rats (n¼ 9). Data represent mean + SEM intake normalized for body weight (a and c),
or number of lever press responses (b and d). *po0.05, **po0.01 vs vehicle-treated group (Dunnett’s test).

Figure 4 Time-course of the reduction of cumulative ethanol intake
resulting from subcutaneous pretreatment with BD-1063 in sP rats (n¼ 9).
Graph shows the cumulative ethanol intake at 5, 10, 15, 30, and 60min into
the session of subjects shown in Figure 3. Data represent mean�SEM.
b¼ dose of 4.4mg/kg, c¼ dose of 7mg/kg, d¼ dose of 11mg/kg,
significantly different from vehicle (Dunnett’s test).

r-Antagonist reduces excessive ethanol intake in rats
V Sabino et al

1487

Neuropsychopharmacology



Ait-Daoud, 2000), by 37 and 42% in dependent Wistar and
sP rats, respectively. Several control measures demonstrated
the specificity of Sig-1R antagonist action on excessive
ethanol self-administration, including no effect on mean
ethanol self-administration of nondependent rats, on
concurrent water self-administration, or on self-adminis-
tration of an equally reinforcing saccharin solution. Also,
arguing against a rate-dependent interpretation of BD-1063
action, median split analysis showed that BD-1063 similarly
reduced ethanol self-administration of high vs low respond-
ing ethanol-dependent and sP rats. Thus, BD-1063 did not
reduce general behavior or produce rate-suppressant
effects, consistent with previous reports showing lack of
locomotor suppressant effect of BD-1063, similar to the
chemically related BD-1047, at doses up to 30mg/kg
(Brammer et al, 2006; Maurice et al, 2003; McCracken
et al, 1999; Nguyen et al, 2005).
To address further the alternative explanation that the

selective action of BD-1063 in models of excessive drinking
was a rate-suppressive effect on the higher baseline
responding of ethanol-dependent and sP rats, the effects
of BD-1063 also were evaluated under a PR schedule of
reinforcement. Under PR reinforcement schedules, ratio
requirements increase with subsequent reinforcer deliv-
eries, and the influence of local response rates on
performance are reduced. BD-1063 potently (4.4mg/kg)
reduced the break point, an objective measure of the effort

an animal will expend to obtain a reinforcer that is sensitive
both to the subjects’ incentive state and to the reinforcers’
stimulus properties (Walker et al, 2008). The ability of BD-
1063 to reduce break point also counters the alternative
explanation that the drug acted by altering ethanol
absorption or metabolism because the total amount of
ethanol self-administered by rats under this schedule
(0.18 g/kg under vehicle treatment) would not result in
significant BALs (personal observation). Thus, the SigR
antagonist reduced not only ethanol intake, but also the
work that rats would emit to obtain ethanol.
These results are broadly consistent with previous

findings that the Sig-1R antagonist BD-1047 attenuated
several behavioral and motivational effects of acute passive
ethanol administration in mice (Maurice et al, 2003)
including ethanol-induced locomotor activation and etha-
nol-induced place preference and taste aversion condition-
ing. Here, a different Sig-1R antagonist selectively reduced
responding for ethanol in two distinct models of excessive
ethanol self-administration, supporting the hypothesis that
endogenous SigR signaling contributes to oral ethanol’s
reinforcing effects. However, BD-1063 did not reduce
ethanol self-administration to control-like levels. Perhaps
higher doses of BD-1063 could have eliminated the excess
component of ethanol self-administration altogether. Alter-
natively, other transmitter systems likely independently

Figure 5 Effect of acute subcutaneous pretreatment (�15min) with the
s-receptor (SigR) antagonist BD-1063 on saccharin (a) and water (b) self-
administration on a fixed ratio-1 schedule of reinforcement in sP rats
(n¼ 8). Data represent the mean+ SEM number of lever press responses.

Figure 6 Effect of acute subcutaneous pretreatment (�15min) with the
s-receptor (SigR) antagonist BD-1063 on break point (a) and total
responses (b) for ethanol in sP rats (n¼ 11) tested under a progressive
ratio schedule of reinforcement. Data represent mean+ SEM. **po0.01 vs
vehicle-treated group (Dunnett’s test).
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contribute to the excess ethanol intake in these models
(Funk et al, 2006; Walker et al, 2008; Roberto et al, 2008).
Previous studies have demonstrated that SigR blockade

can attenuate several neurobehavioral effects of cocaine and
methamphetamine, including the drugs’ subjective (Katz
et al, 2003), psychomotor stimulant (Liu and Matsumoto,
2008; Menkel et al, 1991; Ujike et al, 1992), rewarding
(Romieu et al, 2000), and toxic (Matsumoto et al, 2001b;
Maurice et al, 2002) effects. A recent study, however,
observed that the SigR antagonist BD-1047 did not reduce
nondependent intravenous cocaine self-administration
(Martin-Fardon et al, 2007), unlike this study in which we
observed suppression of oral ethanol self-administration by
BD-1063. Several procedural differences may explain the
discrepant findings, including major ones such as the
substance of abuse under study, the antagonists and route
of drug intake used, and the session duration. The subjects
under study also may be critical because ethanol self-
administration was only reduced here in models of
excessive self-administration and not in nondependent
controls, a group more analogous to those of the previous
cocaine self-administration study. Interestingly, BD-1047
did reduce reinstatement of cocaine-directed responding
elicited by a drug-taking contextual stimulus (Martin-
Fardon et al, 2007); it remains to be seen whether Sig-1R
antagonists similarly suppress reinstatement of ethanol-
directed responding.
The greater efficacy of the SigR antagonist in the two

models of excessive drinking raises the possibility that
withdrawn, ethanol-dependent rats and sP rats might both
carry alterations in the expression or function of SigR sites
or endogenous ligands, leading to an increased reinforcing
efficacy of ethanol. In this study, quantitative real-time PCR
showed that Sig-1R mRNA levels were modestly (15%) but
significantly lower in the nucleus accumbens of both sP rats

and 24-h withdrawn, dependent Wistar rats. Similar to
previous studies (Economidou et al, 2008; Hansson et al,
2007), outbred Wistar rats were used as the control group
for both sP rats and outbred Wistar dependent rats in this
study to allow a more direct comparison between these two
animal models of excessive drinking. Using alcohol non-
preferring rats as a control group for sP rats also might have
left it more ambiguous as to whether observed differences
were associated with excessive drinking as opposed to
ethanol aversion, which can be associated with molecular
changes distinct from those which drive excess intake (Saba
et al, 2001).
Reduced Sig-1R mRNA expression was not observed 6 h

after cessation of ethanol vapor suggesting that the decrease
may be a delayed transcriptional consequence of ethanol
withdrawal, rather than of the ethanol exposure history per
se. A related question is why differences in Sig-1R mRNA
levels were not observed between Wistar ethanol-naive and
ethanol-dependent rats during early withdrawal (6 h), a time
point at which differences in ethanol self-administration
and sensitivity to BD-1063 already were present. Perhaps
Sig-1R activity is already altered at the 6-h time point at the
ligand or receptor protein level due to the early stages or
previous cycles of withdrawal, but a change in Sig-1R
transcription takes longer to manifest. Such a delay might
result if the decreased receptor mRNA expression occurs in
response to heightened SigR ligand activity or per the
slower time course of transcription vs ligand release/
binding. Testing this hypothesis in future studies could
involve measuring Sig-1R protein or endogenous ligands
(once identified) during intoxication and 6-h withdrawal. In
addition, differences in the experimental paradigms used
for the behavioral vs molecular studies may be relevant.
Perhaps rats with a history of self-administering ethanol
during withdrawal might show changes in Sig-1R mRNA
levels at the earlier 6-h time point. To identify innate
differences in sP rats, we measured Sig-1R mRNA levels in
ethanol-naive rats in this study, rather than in rats that were
acutely or historically self-administering ethanol. Ethanol
drinking can differentially affect ethanol-naive alcohol-
preferring rats, eliminating or introducing neurochemical
and behavioral differences (Hansson et al, 2007; Katner and
Weiss, 2001; Weiss et al, 1993), and it would be valuable in
future studies also to examine differential changes in SigR
systems that result from ethanol drinking in the groups
studied here. As a first-priority study relevant to the current
hypothesis, however, the present experiments identified the
presence of innate differences in the SigR system of sP rats
in relation to their outbred stock and showed that
withdrawal from repeated ethanol exposure yielded an
environmental phenocopy of this molecular correlate of the
genetic propensity to drink ethanol.
Similar changes were not observed in the central or

basolateral amygdala or ventral tegmental area, suggesting
regional specificity. The nucleus accumbens, intimately
related to reward-related processes, integrates limbic
information related to memory, drive, and motivation with
the generation of goal-directed behaviors (Carelli and
Wightman, 2004; Pecina et al, 2006; Pennartz et al, 1994).
The nucleus accumbens also is implicated in excessive
alcohol drinking and the pathophysiology of dependence
(Koob, 2003; Tupala and Tiihonen, 2004). Further studies

Figure 7 Sig-1R mRNA expression in the nucleus accumbens of
ethanol-naive Sardinian alcohol-preferring (sP) rats, ethanol-naive outbred
Wistar control rats, and acutely withdrawn (6-h) Wistar rats previously
made ethanol-dependent through intermittent exposure to ethanol vapors
for 6 weeks (left panel, n¼ 7, 9, and 7, respectively) and ethanol-naive
outbred Wistar control rats, and acutely withdrawn (24-h) Wistar rats
(right panel n¼ 9 and 7, respectively). Data represent mean+ SEM
expressed as percent of the control group. *po0.05 vs outbred control
rats (Student’s t-test).
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are needed to determine the functional significance of the
molecular difference shared by sP and withdrawn depen-
dent rats. The decreased Sig-1R mRNA expression might
represent a compensatory response to a higher availability
of neuroactive steroids, putative endogenous SigR ligands
(for a review see Maurice, 2004). Such an interpretation is
consistent with the observed higher sensitivity to pharma-
cological blockade of SigR by BD-1063. Studies that localize
the decrease in Sig-1 mRNA to the shell vs core nucleus
accumbens subregions, that potentially relate observed
mRNA differences to protein expression changes, that
explore corresponding changes in putative endogenous
SigR ligands, and that investigate the effects of brain site-
specific administration of Sig-1R ligands on the reinforcing
effects of ethanol will be required.
Ethanol has not been shown to interact directly with

SigRs, but SigRs ligands may alter reinforcing actions of
ethanol by indirectly modulating activity of other ethanol-
sensitive transmitter systems; for example, SigR
ligands affect synthesis, release, and uptake of dopamine
(Bastianetto et al, 1995; Booth and Baldessarini, 1991;
Weatherspoon and Werling, 1999; Weiser et al, 1995). The
SigR agonists ( + )pentazocine, ( + )-SKF 10,047, and DUP
734 increased extracellular dopamine concentration and
dopamine metabolism in the striatum (Iyengar et al, 1990),
facilitating release through a nontransporter-mediated
mechanism. In addition ( + )pentazocine enhanced amphet-
amine-stimulated DA release in striatal slices (Izenwasser
et al, 1998). Electrophysiological studies also have shown a
modulatory role of SigRs on the firing activity of both the
A9 and the A10 dopaminergic pathways, with an activation
of SigRs generally resulting in an increase in firing (Engberg
and Wikstrom, 1991; Minabe et al, 1999; Sanchez-Arroyos
and Guitart, 1999; Steinfels et al, 1989; Zhang et al, 1992). In
addition, the SigR agonist PRE-084 dose dependently
increased the functional coupling of dopamine receptors
with G-proteins in dopaminergic terminal brain areas
(Peeters et al, 2004). Based on these observations, SigR
antagonists might attenuate ethanol reinforcement by
influencing dopaminergic transmission, directly or indir-
ectly, within the mesolimbic pathway.
Alternatively, the drive to consume ethanol and other

drugs of abuse may interfere with the activity of one of the
endoplasmic reticulum (ER) proteins recently shown to be
associated with SigRs (Aydar et al, 2002; Hayashi and Su,
2001; Yamamoto et al, 2002). SigRs, subcellularly localized
within perikarya and dendrites, are compartmentalized to
lipid-enriched globular membranes (Alonso et al, 2000;
Phan et al, 2003), such as mitochondria-associated mem-
branes of the smooth ER. In the ER, Sig-1Rs associate with
proteins such as inositol 1,4,5 triphosphate receptor type 3
(IP3R3), K+ channel subunits, or the ER chaperone BiP
(GRP78) and serve as chaperone molecules in response to
Ca2+ depletion (Hayashi and Su, 2001, 2007). Sig-1Rs
translocate following cellular stimuli, redistributing to the
entire ER or to cell components, events that alter
intracellular communication (Hayashi et al, 2000; Hayashi
and Su, 2003a, b, 2007; Monnet et al, 2003; Morin-Surun
et al, 1999). Thus, SigRs are putative sensors and/or
modulators of neuronal intracellular Ca2+ mobilization,
and consequently of extracellular Ca2+ influx. Such action
could explain the broad neuromodulation of SigR on several

neurotransmitter systems by SigRs (Maurice et al, 2002).
Based on these observations, a SigR antagonist may
attenuate ethanol reinforcement by interfering with the
putative activation of intracellular calcium mobilization
associated with the drive to excessively consume ethanol.
BD-1063 has preferential, nanomolar affinity for Sig-1Rs,

being 30-fold selective for Sig-1R vs Sig-2R sites (Brammer
et al, 2006; Matsumoto et al, 2001a). Still, it is possible that
at the systemic doses administered here, BD-1063 binds
both SigR subtypes. Although most studies implicate the
Sig-1R subtype in the actions of drugs of abuse, a few lines
of pharmacological evidence suggest that some actions may
also (or alternatively) involve Sig-2Rs (Mach et al, 1999;
Matsumoto and Mack, 2001; Matsumoto et al, 2001b, 2007;
Nuwayhid and Werling, 2006). As the Sig-2R gene has not
been cloned or predicted from homology, this study could
only investigate changes in Sig-1R mRNA, with the results
pointing to a role for the Sig-1R subtype in excessive
drinking. Further studies can better define the relative roles
of each subtype in ethanol reinforcement. In summary, a
selective SigR antagonist preferentially diminishes ethanol
reinforcement in models of excessive drinking. Control
procedures rule out a nonspecific or rate-dependent
suppression in responding or a generalized action on all
reinforcers. The selective effects of blocking SigRs on
excessive drinking suggest a potential mechanism for
neuroadaptation that leads to excessive drinking and a
potential target for medication development for treatment
of alcoholism.
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