
The CRF System Mediates Increased Passive Stress-Coping
Behavior Following the Loss of a Bonded Partner in a
Monogamous Rodent

Oliver J Bosch*,1, Hemanth P Nair2, Todd H Ahern2, Inga D Neumann1 and Larry J Young2

1Department of Behavioural Neuroendocrinology, University of Regensburg, Regensburg, Germany; 2Department of Psychiatry, Center for

Behavioral Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA

Social relationships significantly influence physiology and behavior, including the hypothalamo–pituitary–adrenal axis, anxiety, and mental

health. Disruption of social bonds through separation or death often results in profound grieving, depression, and physical illness. As the

monogamous prairie vole forms enduring, selective pair bonds with the mating partner, they provide an animal model to study the

physiological consequences of pair bonding and, thus, the loss of the bonded partner. Male prairie voles were paired with a novel female

or male sibling. After 5 days, half of the males of each group were separated from the partner. Elevated plus-maze, forced swim, and tail

suspension tests were used to assess anxiety-like and passive stress-coping behaviors indicative of depressive-like behavior. Following 4

days of separation from the female but not the male partner, experimental males displayed increased passive stress-coping. This effect

was abolished by long-term intracerebroventricular infusion of a nonselective corticotropin-releasing factor (CRF) receptor antagonist

without disrupting the bond itself. Both CRF type 1 and 2 receptors were involved in the emergence of passive stress-coping behavior.

Furthermore, pairing with a female was associated with elevated CRF mRNA in the bed nucleus of the stria terminalis, and partner loss

elicited a pronounced increase in circulating corticosteroid and adrenal weight. We speculate that the CRF system may mediate an

aversive affect following separation from the female partner, which may facilitate proximity seeking between the pair-bonded individuals.

Hence, the prairie vole model may provide insights into brain mechanisms involved in the psychopathological consequences of partner

loss.
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INTRODUCTION

There is increasing evidence that social bonds have a
positive impact on health and buffer against stressors
(Kikusui et al, 2006). In contrast, the absence or sudden
disruption of those bonds increases susceptibility to
diseases (House et al, 1990; Kirschbaum et al, 1995; Uchino
et al, 1996; Capitanio et al, 1998; for review see Biondi and
Picardi, 1996; DeVries et al, 2003), including depression
(Zisook et al, 1997; Watanabe et al, 2004; Grippo et al,
2007a, b). In humans, bereavement is a highly disruptive
experience that is usually followed by a painful period of
acute grief (Shear and Shair, 2005). Thus, understanding the
neurobiological consequences of partner loss, particularly
with respect to increased susceptibility to depression, may

be informative for developing strategies for coping with the
loss of a loved one.

Prairie voles (Microtus ochrogaster) have served as an
excellent animal model for examining the neurobiological
mechanisms underlying social bonding (Carter and Getz,
1993; Carter et al, 1995; Aragona and Wang, 2004) and for
investigating the physiological consequences of social loss
(Grippo et al, 2007a, b). Unlike 95% of all mammalian
species, prairie voles are socially monogamous, forming
enduring and selective pair bonds with their mates (Carter
and Getz, 1993). Although the formation of pair bonds is
thought to be based on brain circuitries mediating reward
and reinforcement (Young and Wang, 2004; Nair and Young,
2006; Aragona et al, 2003, 2006), an aversion to prolonged
partner separation may help preserve the bond over time by
inducing proximity-seeking behaviors. Thus, we predicted
that even a short separation from a partner may be aversive
and lead to an alteration in emotionality as reflected by
increased passive stress-coping or anxiety-like behavior in
male voles. In fact, recent publications have shown that 4
weeks social isolation leads to increased passive coping in
female prairie voles (Grippo et al, 2007a, b).
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The behavioral consequences of disrupting a pair bond
could be associated with both the brain corticotropin-
releasing factor (CRF) system and hypothalamo–pituitary–
adrenal (HPA) axis. Chronic upregulation of the brain CRF
system is thought to be important in the pathogenesis of
various psychopathologies, including anxiety-like and
depressive-like disorders (for review see Holsboer and
Barden, 1996; Nemeroff, 1996; Keck, 2006). Reduced
anxiety-like and depressive-like behaviors have been shown
after blocking CRF receptors in rats (Liebsch et al, 1995;
Bakshi et al, 2002; Hodgson et al, 2007) and in mice lacking
CRF receptors (Timpl et al, 1998; Kishimoto et al, 2000; for
review see Behan et al, 1996). Social support reduces the
basal activity of the HPA axis as well as cortisol responses to
psychological stressors in humans and in other species
(Elliot, 1989; Kirschbaum et al, 1995; DeVries et al, 1997;
Sachser et al, 1998; Thorsteinsson and James, 1999) and,
thus, may also affect well-being (Elliot, 1989; Kikusui et al,
2006) by minimizing long-term exposure to increased levels
of glucocorticoids (DeVries, 2002).

To examine the consequences of disruption of a pair bond
and the potential involvement of the CRF system, we
measured passive stress-coping as an indicator of depres-
sive-like behavior and anxiety-like behavior in male
prairie voles following a 3–5 day separation from a female
partner or a male sibling. We then tested whether
separation from a female partner increases plasma ACTH
and glucocorticoid levels or brain CRF mRNA. Finally,
we investigated the role of CRF receptors (CRF-R1 and
CRF-R2) in the behavioral changes precipitated by the loss
of a bonded partner.

MATERIALS AND METHODS

Animals

All animals were sexually naı̈ve adult male and female
prairie voles (70–100 days of age) from the laboratory-
breeding colony originally derived from field-captured
voles in Illinois, USA. After weaning at 21 days of
age, subjects were housed in same-sex sibling pairs or
trios under standard laboratory conditions (14 : 10 h
light–dark cycle, lights on at 06 : 00 h; 201C, 60% humidity
and free access to water and Purina rabbit chow).
All behavioral tests were performed between 08 : 00 and
12 : 00 h. In an attempt to minimize stress during the
experimental paradigm, a careful cage change regimen was
followed: animals were only exposed to new cages at the
beginning of the pair housing and separation periods.
Furthermore, approximately 1/3 of the bedding from an
animal’s previous cage accompanied it to the new cage. The
animal studies were conducted in accordance with the
guidelines of the National Institute of Health and were
approved by Emory University’s Institutional Animal Care
and Use Committee.

Experimental Protocol

Male voles were paired with either unfamiliar females or
male siblings. In the male siblings group, only those siblings
were paired which were housed separately from each other
since weaning (49–79 days without contact). After 5 days,

half of the voles of each group were separated. Twenty-four
hour of cohabitation with a femaleFeven without mating
Fis sufficient for the induction of a partner preference,
which is a laboratory proxy for pair-bond formation
(Williams et al, 1992). Prairie vole females do not display
regular ovarian cycles, but are reliably induced into estrus
24–48 h following cohabitation with a male as a conse-
quence of exposure to male urine. Females will mate for a
24-h period during estrus (Roberts et al, 1998), and mating
does not occur after this period. Therefore, the stage of the
estrus cycle was not assessed in the females before
cohabitation with the male. Each vole underwent only one
of the Experiments A–E. The details for each experiment are
illustrated in Figure 1. We first sought to determine whether
disruption of a pair bond in male prairie voles would result
in changes in passive stress-coping (Experiment A) and
anxiety-related behavior (Experiment B). In Experiment C
we investigated whether the pairing and separation alters
basal plasma levels of stress hormones. We then determined
whether the CRF system is linked to partner loss-induced
passive stress-coping by nonselective blocking of brain CRF
receptors (Experiment D). Finally, Experiment E employed
selective CRF-R1 and CRF-R2 antagonists to identify which
CRF-R type underlies this link.

Forced swim test. Male voles were exposed to the forced
swim test (FST; Porsolt et al, 1977) in a single test session as
this has been shown to reveal differences in passive stress-
coping in rats (Liebsch et al, 1999; Overstreet et al, 2004,
2008) and mice (Borsini and Meli, 1988; Oshima et al, 2003;
for review see Cryan and Mombereau, 2004; Cryan et al,
2005). Animals were forced to remain for 5 min in a 4 l glass

Figure 1 Testing schedules of the five experimental approaches (A–E).
Male prairie voles were co-housed and allowed to form a partner bond.
After 5 days, half of the males of each group were separated from the
partner; animals from paired groups stayed with their partner. On the ninth
day after pairing, ie the fourth day after separation (A, B) or on the eighth
day after pairing, ie the third day after separation (D, E), testing for
behavioral effects started, or voles were left undisturbed until the tenth day
after first pairing, ie the fifth day after separation in the particular groups, to
take blood samples and brains under basal conditions (C). In Experiments
(D, E), osmotic minipumps were implanted after 3 days of pairing delivering
Ringer’s solution until day 5 of pairing (grey bars) when half of the animals
were separated followed by CRF receptor antagonist lasting until the end
of the experiment (black bars). EPM¼ elevated plus-maze; FS¼ forced
swim test; HPA¼ hypothalamo–pituitary–adrenal axis; PP¼ partner pre-
ference test; TS¼ tail suspension test.
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beaker (15 cm in diameter) filled to a height of 20 cm with
tap water (23±11C). The behavior of the voles was scored
by a trained observer blind to the animals’ treatment. The
following behaviors were recorded according to our
previous studies in rats (eg Ebner et al, 2005) using an
automatic timer software package (Stopwatch + ; Center for
Behavioral Neuroscience, Atlanta, GA: downloadable at
http://www.cbn-atl.org/research/behavioralcore.shtml): (1)
struggling, defined as movements during which the fore-
limbs break the water’s surface; (2) swimming, defined as
movements of the fore and hind limbs resulting in forward
motion without breaking the water surface, including
diving, and (3) floating, defined as the behavior during
which the animal uses limb movement to maintain its
equilibrium without any movement of the trunk as an
indicator of passive stress-coping.

Tail suspension test. The procedure used was similar to
that described by Steru et al (1985). Male voles were
suspended by their tail using adhesive tape to an aluminium
stick (diameter 1 cm) and hung in the middle of a black
covered box (40� 40� 40 cm3) approximately 80 cm above
the ground. The duration of immobility (passive hanging
indicative of passive stress-coping) during a 5-min test
period was recorded using Stopwatch + software (see
above).

Elevated plus-maze. In the elevated plus-maze (EPM) test,
a conflict situation is created between the animal’s
exploratory drive and its innate fear of open and exposed
areas as demonstrated in rats (Pellow et al, 1985; Liebsch
et al, 1998) and voles (Hendrie et al, 1997; Insel et al, 1995;
Pitkow et al, 2001). The vole plus-maze consisted of an
elevated (height: 100 cm) plus-shaped aluminium platform
with two closed (40 cm high walls out of dark PVC,
o20 lux) and two open arms (each 60� 10 cm, 80 lux),
connected at the center by a neutral zone (10� 10 cm).
Before a vole was placed on the EPM, the surface of the
maze was cleaned with water containing a low concentra-
tion of a detergent and dried. The vole was placed in the
neutral zone with its head facing a closed arm. The
following parameters were recorded with a video/computer
system (Plus-maze V2.0; Ernst Fricke, Germany) by a
trained observer blind to the animals’ treatment during the
5-min exposure according to our own studies in rats (eg,
Neumann et al, 1998; Bosch et al, 2005): (1) percentage of
time spent on the open arms vs total time on all arms, (2)
percentage of entries into open arms vs entries into all arms,
and (3) the number of entries into closed arms. (1) and (2)
are indicative of anxiety-like behavior, (3) represents
locomotion.

Partner preference test. To reveal whether our pharmaco-
logical manipulation of the CRF system might influence the
expression of a partner preference after 5-days of cohabita-
tion, we tested the males from Experiment D (nonselective
CRF-R antagonist) in the partner preference test as
previously described (Williams et al, 1992; Winslow et al,
1993). Numbers of cage entries were counted to reveal
differences in locomotor activity. On the next day, voles
were killed and the brains collected for confirmation of

cannula placement. The injection site was verified by
injecting ink by the implanted brain infusion kit targeting
the lateral ventricle, removal of the brain, and a vertical cut
through the brain.

Detection of ACTH and Corticosterone

Between 0900 and 1100 h, male voles were briefly anesthe-
tized with isoflurane, and immediately decapitated using
scissors within 2 min after removal from the cage. Trunk
blood (B0.2 ml) was collected on ice in EDTA-coated tubes
complemented by aprotinin (10 ml per tube; Trasylol, Bayer
AG, Leverkusen, Germany). The blood was centrifuged at
41C, 5000 r.p.m. for 5 min, and plasma was aliquoted and
stored at �801C until assay. Plasma ACTH and cortico-
sterone were measured in 50 and 10 ml plasma samples,
respectively, using commercially available kits (ICN, Costa
Mesa, USA) according to the respective protocols.

In Situ Hybridization for CRF mRNA

In situ hybridization for CRF was performed using a rat
CRF 35S riboprobe as described previously (Ressler et al,
2002). In a pilot study, slides were exposed to X-ray film
and a densitometric analysis was performed for the central
nucleus of the amygdala, lateral bed nucleus of the stria
terminalis, medial bed nucleus of the stria terminalis
(mBNST), and paraventricular nucleus (PVN) of the
hypothalamus. As differences in signal between groups
were detected only in the mBNST, we performed a more
quantitative analysis of CRF expression in this area by
counting silver grains over cells of emulsion-dipped slides.
The slides were exposed to photographic emulsion (Kodak
NTB-2) for 4 days and counterstained with cresyl violet
before coverslipping. Silver grains in the mBNST were
quantified using the AIS Image Analysis software’s grain
counting feature. Images of the area of interest were taken
through a � 40 objective, and digitized with a MTI CCD72
camera. The numbers of grains in approximately 15 clusters
over cells in the mBNST were counted using a 40 pixel
diameter circular cursor setting for each cluster. Grain
counts from a proportionate area in the caudate putamen
were taken as a background reading. For the mBNST and
background readings, bilateral grain counts from three
adjacent sections were taken and averaged. The background
reading for each section was subtracted from the reading for
the mBNST.

Long-Term Intracerebroventricular Administration of
CRF-R Antagonists

On the third day of pairing an intracerebroventricular
(i.c.v.) osmotic minipump (Model 1007D, infusion flow rate:
0.5 ml/h; Brain Infusion Kit 3; fixant Loctite 454; Alzet
Osmotic Pumps, Cupertino, CA, USA) was stereotaxically
implanted (coordinates for the lateral ventricle: nose bar,
2.5 mm; AP, 0.6 mm; ML, 1.0 mm; DV, 3.0 mm) under
isoflurane anesthesia (Novaplus; Hospira Inc., Lake Forest,
IL, USA) as described before (Torner et al, 2001). The
cannula was connected to the osmotic minipump through
PE-20 tubing filled with either Ringer’s solution or Ringer
containing (1) the nonspecific CRF-R antagonist d-phe-CRF
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(14.1 pmol/h; Bachem, Montreal, Canada; Experiment D) or
(2) the selective antagonist for CRF-R1 (CP-154526;
137 pmol/h; generously provided by Dr Michael Owens,
Emory University, Atlanta, USA) or CRF-R2 (Astressin-2B;
12.4 pmol/h; Sigma-Aldrich, St. Louis, USA; Experiment E).
Infusion of each antagonist was timed such that the
treatment actually began 48 h after surgery, the day that
half of the animals were separated. To accomplish this, the
PE-20 tubing extending from the osmotic minipump was
filled with enough Ringer’s solution to last for up to 44 h
(from surgery to the end of the 5-day cohabitation period).
To prevent diffusion between the Ringer’s solution and the
CRF-R antagonist solution, a small air bubble separated the
two solutions in the tubing. At the end of the surgery,
animals received 0.01 ml i.p. analgesia (buprenorphine;
Buprenex, Henry Schein Inc.). Afterwards, all male voles
were placed on a piece of cotton wool in the original home
cage with the female partner. Recovery of the animals was
monitored until animals were fully awake. At the end of the
experiment animals were killed and cannula placement was
verified by infusion of black ink into the cannula and
adrenals were removed and weighed.

Statistics

Data are presented as mean + SEM. Either a one-way
ANOVA (factor CRF-R type 1 or 2 antagonist), two-way
ANOVA (factors partner type (sibling/female); separation
condition (paired/separated); treatment (vehicle/antago-
nist)) or three-way ANOVA (factors separation condition;
treatment; female type (partner/stranger)) was performed
for all experiments. All interactions were followed by
Newman–Keuls post hoc tests for pair-wise comparisons.
Significance was accepted at po0.05. All statistics were
performed using GB-Stat 10.0 (Dynamic Microsystems,
Silver Springs, USA).

RESULTS

Isolation from a Female Partner Induces Passive
Stress-Coping Behavior

Experiment A. During the FST, the time spent floating
differed among groups (partner type (female or male
sibling)� separation condition (paired or separated) inter-
action: F1,34 ¼ 9.38, p¼ 0.004; Figure 2a). Males separated
from a female partner displayed significantly more floating
behavior (po0.01) relative to males that remained with
their female partner, and males that either remained with or
were isolated from their sibling partner. In the tail
suspension test (TST), we found a significant interaction
between partner type and separation condition (F1,33¼ 18.1,
p¼ 0.0002; Figure 2b). Males isolated from a female
displayed significantly more immobility (po0.01) com-
pared with males in the other treatment groups.

Experiment B. On the EPM, separation from the partner
altered only one anxiety-related parameter, ie the percen-
tage of entries into the open arms of the EPM decreased in
the separated groups independent of the sex of the partner
(two-way ANOVA; factor partner: F1,42 ¼ 5.48, p¼ 0.02;
Figure 2d). However, the post hoc test revealed no further

differences. Separation had no effect on the percentage of
time spent on the open arms (partner� separation inter-
action: F1,42¼ 0.02, p¼ 0.90; Figure 2c). There was no
difference in the locomotion as reflected by entries into
closed arms (female partner, paired: 12±2; separated:
13±1; male partner, paired: 12±1; separated: 12±1;
F1,42 ¼ 0.30, p¼ 0.59) between the groups.

Isolation from a Female Partner Increases Basal
Corticosterone Levels

Experiment C. Basal plasma corticosterone levels signifi-
cantly differed among groups (partner type� separation
condition interaction: F1,35 ¼ 4.65, p¼ 0.04; Figure 3a).
Males separated from a female partner had higher
corticosterone levels than males that remained with the
female partner (po0.05). In the sibling-paired groups, no
differences were found, paralleling recent findings by
Grippo et al (2007a).

Figure 2 Effect of partner separation on passive stress-coping behavior
in (a) the forced swim test and (b) the tail suspension test as well as (c, d)
anxiety-like behavior on the elevated plus-maze. Male voles were paired for
5 days with a female (fp) or male sibling (sp). Half of the males were then
separated from their cage-mate (black bars) whereas the remaining half
remained pair housed (grey bars) for 4–5 days before behavioral testing
(from Experiment A (a, b) or Experiment B (c, d; see Figure 1 for details).
Passive stress-coping behavior is reflected as the amount of time the animal
spends inactive, ie floating (a) or immobile (b). Anxiety-like behavior is
reflected as percentage of time spent in and percentage of entries into the
open arms vs all arms (c, d). Numbers of animals included in the statistics
were (a) female partner: n¼ 9 in each group; sibling partner: n¼ 10 in each
group; (b) female partner: n¼ 9 in each group; sibling partner paired: n¼ 9;
separated: n¼ 10; (c, d) female partner paired: n¼ 10; separated: n¼ 12;
sibling partner: n¼ 12 in each group. Data are expressed as mean + SEM.
**po0.01 vs all other groups.
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No significant differences were found for ACTH due to a
high deviation in the female-paired, separated group
(Figure 3b).

Pairing with a Female Increased CRF mRNA in the
mBNST

In a pilot study (data not shown), we performed in situ
hybridization for CRF mRNA in males paired or isolated from
females or male siblings. Relative optical density measure-
ments from in situ hybridization films revealed that among
the central nucleus of the amygdala, lateral BNST, mBNST,
and PVN of the hypothalamus, the only region showing
differences across groups was the mBNST. To further verify
this finding, brains of male voles from Experiment C were
removed and processed for CRF mRNA in situ hybridization
with emulsion dipping for grain counting. Grain cluster
density in the mBNST is illustrated in Figure 4a. Two-way
analysis of variance for partner type and separation condition
revealed a main effect of partner type (F1,29¼ 6.68, po0.02),
such that males paired with a female or isolated from a female
showed significantly higher CRF mRNA grain counts in the
mBNST relative to males paired or isolated from a sibling
(Figure 4b). Thus both groups of male with previous sexual
experience displayed elevated CRF mRNA grain counts.

Infusion of d-phe-CRF during the Isolation Period
Blocks Separation-Induced Passive Stress-Coping
Behavior

Experiment D. Continuous i.c.v. infusion of the nonselec-
tive CRF-R antagonist, d-phe-CRF, which began on the day
of isolation, resulted in differences among groups in the FST
(factors separation� treatment: F1,34 ¼ 9.38, p¼ 0.004;
Figure 5a) and TST (F1,33 ¼ 18.1, p¼ 0.0002; Figure 5b).
d-phe-CRF-treated male voles separated from their female
partner showed reduced floating (po0.01) and immobility
(po0.01) in the FST and TST, respectively, relative to

vehicle controls (Figure 5a and b). There was no effect of the
d-phe-CRF on floating or immobility in males that were not
separated from their female partner.

The partner preference test revealed that male voles
paired with a female spent more time with the original
female partner than with an unknown female (three-way
ANOVA; main effect of partner type: F1,36¼ 54.9, po0.0001;
Figure 5c). There were no treatment (F1,36¼ 0.05, p¼ 0.94),
separation condition (F1,36¼ 1.08, p¼ 0.30), or interaction
effects, indicating that, once a pair bond is established,
partner preferences are not disrupted by subsequent CRF
antagonist treatment. Locomotor activity as reflected by the
number of cage entries was similar between the groups
independent of the treatment (paired VEH: 130±15; d-phe-
CRF: 156±22; separated VEH: 177±35 mg; d-phe-CRF:
121±20; two-way ANOVA: F1,21 ¼ 2.08, p¼ 0.17).

The weight of the adrenal glands was higher after
separation from the female partner (paired VEH:
148±10 mg; d-phe-CRF: 146±5 mg; separated VEH:
196±11 mg; d-phe-CRF: 186±7 mg; two-way ANOVA; factor
separation: F1,36¼ 26.0, po0.0001) regardless of the treatment
with d-phe-CRF (factor treatment: F1,36¼ 0.48, p¼ 0.50).

Both CRF-R Types are Involved in Mediating Passive
Stress-Coping Behavior after Separation

Experiment E. Competitive receptor binding studies
revealed that CP-154526 is selective for the prairie vole

Figure 3 Effect of partner separation on basal plasma levels of
corticosterone (a) and ACTH (b). Male voles were paired for 5 days
with a female (fp) or male sibling (sp). Half of the males were then
separated from their cage-mate (black bars) whereas the remaining half
remained pair housed (grey bars) for 5 days (Experiment C; see Figure 1
for details). The voles were left undisturbed until the initial separation from
the partner and no behavioral tests were performed. Numbers of animals
included in the statistics were 10 per group. Data are expressed as mean+
SEM. *po0.05 vs respective female-paired group.

Figure 4 CRF mRNA expression in the mBNST. Clusters of grains in the
region of the mBNST (a). Male voles (Experiment C; see Figure 1 for
details) paired with a female (grey bars) or separated from a female (black
bars) demonstrate higher CRF mRNA grains in the mBNST relative to
males paired or separated from a sibling male (b). Data are expressed as
mean + SEM. *po0.05.
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CRF-R1 whereas Astressin-2B is selective for the prairie vole
CRF-R2, as has been previously reported in the rat (see
Supplementary Material). Both the CRF-R1- and the CRF-
R2-selective antagonists resulted in differences among
groups in the FST (factors separation� treatment:
F2,57 ¼ 6.36, p¼ 0.003; Figure 6a) and TST (F2,58¼ 6.42,
p¼ 0.003; Figure 6b). Male voles separated from their
female partner showed reduced floating in the FST when
treated with i.c.v. CRF-R1 antagonist (po0.05) or CRF-R2
antagonist (po0.01) as well as reduced immobility (CRF-R1
antagonist: po0.01; CRF-R2 antagonist: po0.01) in the
TST, relative to the separated vehicle control (Figure 6a and
b). There was no effect of the CRF-R antagonists on floating
or immobility in males that were not separated from their
partner.

DISCUSSION

In humans, long-term separation from the partner, eg due
to its death, has been shown to increase the risk for
depression (for review see Shear and Shair, 2005). Here we
show for the first time that male prairie voles separated

from a female partner display increased passive stress-
coping strategy in the FST and the TST, indicative of
depressive-like behavior in rodents (Porsolt et al, 1977;
Armario et al, 1988; Martı́ and Armario, 1993). Importantly,
this effect was not present in males that remain paired with
a female, paired with a male sibling unknown since
weaning, or isolated from such a male sibling and, thus,
emphasize the significant consequences of the loss of a
bonded partner for male prairie voles. It is important to
note that previous studies have shown that in sexually naı̈ve
female prairie voles long-term social isolation (4 weeks)
increases passive stress-coping behavior (Grippo et al,
2007a, b). However, the present study is the first one to
suggest a selective effect of loss of a bonded partner, as
opposed to mere social isolation, on passive stress-coping
behavior. Interestingly, separation from a partner for 4
days, regardless of its sex, tended to increase anxiety-related
behavior on the elevated plus-maze in male prairie voles,
consistent with previous findings after a 24 h separation
(Stowe et al, 2005).

There are two caveats of the present study that must be
considered in the interpretation of this data. First, it is
important to note that the present study does not

Figure 5 Effect of i.c.v. CRF-R antagonist (d-phe-CRF) treatment
unspecific for receptor type 1 and 2 on passive stress-coping in (a) the
forced swim test, (b) the tail suspension test, and (c) the partner preference
test in female-paired male voles from Experiment D (see Figure 1 for
details). Male voles were group-housed for 5 days with a female and
constantly infused with CRF-A the following days while being still with the
partner (grey bars) or separated 3–5 days (black bars). The amount of time
the animals spend on passive stress-coping strategy, ie floating (a) or
immobility (b). The partner preference (c) is represented by the time the
male voles spent on huddling with either a female stranger or the bonding
partner. Numbers of animals included in the statistics were paired VEH: 5;
CRF-A: 4; separated VEH: 7; CRF-A: 6. Data are expressed as mean + SEM.
**po0.01 vs all other groups. *po0.05 vs huddling with stranger in same
group.

Figure 6 Effect of i.c.v. CRF-R1 (CP-154526) or CRF-R2 (Astressin-2B)
antagonist treatment on passive stress-coping in (a) the forced swim test
and (b) the tail suspension test in female-paired male voles from
Experiment E (see Figure 1 for details). Male voles were group-housed
for 5 days with a female and constantly infused with CRF-R1 or -R2
antagonist the following days when still with the partner (grey bars) or
separated 3–4 days (black bars). The amount of time the animals spend on
passive stress-coping strategy is reflected as floating (a) or immobility (b).
Numbers of animals included in the statistics were paired VEH: 10; CRF-R1:
9; CRF-R2: 9; separated were 10 per group. Data are expressed as mean +
SEM. **po0.01 vs respective female-paired group; ##po0.01, #po0.05 vs
vehicle-treated separated group.
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differentiate the effects of pair bond disruption in general vs
loss of a potential sexual partner. However, under the
pairing conditions used in this study, mating begins 24–48 h
following pairing and extends for only 24 h (Roberts et al,
1998), therefore mating would have ceased by the time of
the separation. We did not quantify mating during the 5 day
cohabitation period, but it should be noted that even 24 h of
cohabitation without mating is sufficient for the develop-
ment of a partner preference (Williams et al, 1992). Thus,
this suggests that it is the disruption of the pair bond, and
not the loss of a potential sexual partner, that is altering the
coping behavior. Future studies can address this issue by
pharmacologically blocking partner preference formation
and examining coping behavior following separation from
the partner. A second caveat is that the males in the paired
group cohabitated with the females for several days longer
than the males in the separated group. However, as mating
does not occur after the fourth day of cohabitation, and
there were no differences in coping behavior between the
males that remained paired with their female partner and
the male either paired or separated from a sibling partner, it
is unlikely the mere difference in duration of cohabitation
with the female resulted in the increase in passive coping
behavior.

Evidence from both clinical and basic research indicates
that the development of depression may arise from a
dysregulation of the CRF system (Holsboer and Barden,
1996; Nemeroff, 1996; Keck, 2006). Animal models of stress-
induced anhedonia show increased CRF content in the
BNST (Stout et al, 2000), whereas passive coping behaviors
in the FST can be reversed with CRF-R antagonists (Griebel
et al, 2002; for review see Bale, 2005). Interestingly, there is
growing evidence supporting the use of CRF-R1 antagonists
as antidepressants (Holsboer, 1999; Bale, 2005; Zobel et al,
2000; but see Binneman et al, 2008).

On the basis of these data, we predicted that the passive-
coping behaviors as indicators of depressive-like behavior
arising from separation from a female partner may be
linked to CRF activity. Constantly blocking CRF-R1 and/or -
R2 during the isolation period prevented the emergence of
passive coping behavior, supporting our hypothesis. Inter-
estingly, these treatments did not decrease passive stress
coping in voles that remained with the female partner,
which is probably due to the fact that in these groups the
time spent on floating and immobility in the FST and the
TST, respectively, was already low. More importantly,
despite the fact that partner preference formation is
facilitated by exposure to stressors (DeVries et al, 1996)
or central infusions of CRF (DeVries et al, 2002; Lim et al,
2007), CRF-R antagonist given after partner preference
formation did not disrupt partner preferences (Experiment
D). The preservation of the partner preferences demon-
strates that social memory of the partner was not affected by
the CRF-R antagonist treatment (Heinrichs, 2003).

We had initially predicted that CRF mRNA content might
also be the highest in animals separated from a female.
However, this was not the caseFmales that remained with a
female and males that were isolated from a female both
showed increased CRF mRNA content in the mBNST
relative to males paired or separated from a male sibling.
This finding suggests that pairing with a female partner,
including sexual experience, alters the CRF tone, perhaps

priming the brain to quickly respond to social stressors.
Also, a lack of increased CRF mRNA expression in other
brain regions emphasizes the selectivity of the effects on
CRF expression.

The upregulation of the CRF mRNA in the mBNST in
pair-bonded males and the lack of increased passive stress-
coping behavior in separated males with long-term CRF-R
antagonism together provide solid evidence that the CRF
system are important in the passive stress-coping behavior
following isolation from an opposite sex bonded partner.
Which CRF ligands (CRF or the urocortins) and which CRF
receptor populations mediate social loss-induced passive
stress-coping behavior remains to be investigated. However,
our findings that both CRF-R1 and CRF-R2 mediate stress
responses are consistent with recent findings. Bakshi et al
(2002) showed that both CRF-R1 and -R2 mediate stress
responses in independent brain areas and Lim et al (2007)
that both CRF-R1 and CRF-R2 in the nucleus accumbens
are necessary for CRF-induced partner preference forma-
tion in prairie voles.

HPA axis activity is used as a measure of the physiological
stress status. An acute increase of these parameters is
traditionally viewed as a stress response (Levine et al, 1989),
whereas an elevation in basal corticosterone (Albeck et al,
1997; Zelena et al, 1999) and adrenal hypertrophy (Biondi
and Zannino, 1997; Reber et al, 2006, 2007) are established
markers for chronic stress. In support, our experiments
revealed basal plasma corticosterone levels to be signifi-
cantly higher in male voles separated from a female
compared to all other groups. Moreover, an increased
weight of the adrenal glands, the source of corticosterone
and adrenaline, was found in males 5 days after separation
from a female, thereby giving further evidence of a
chronically upregulated basal HPA axis in male voles
separated from the bonded female partner.

The finding of elevated corticosterone levels exclusively in
males separated from the female bonded partner is in line
with studies showing that contact with a female suppresses
basal HPA axis activity in both naı̈ve and pair-bonded male
voles (DeVries et al, 1997). Our results also support earlier
reports that baseline corticosteroids are elevated following
separation from a female partner in various species
(Crawley, 1984; Mendoza and Mason, 1986; Ziegler et al,
1995; Castro and Matt, 1997; Norcross and Newman, 1999),
including prairie voles (Carter et al, 1995). Interestingly, in
earlier studies short-term separation from a sibling was
reported to increase basal levels of corticosterone in 40-day-
old female prairie voles (Kim and Kirkpatrick, 1996) as well
as in juvenile voles of both sexes (Ruscio et al, 2007). Thus,
it seems that in adult female voles the loss of social support
by a conspecific partner of the same sex has strong
physiological (Kim and Kirkpatrick, 1996) and emotional
(Grippo et al, 2007a, b) effects whereas in males only the
loss of a bonded female partner results in alterations of
these parameters.

Surprisingly, the elevated corticosterone in this study was
not accompanied by increased CRF mRNA content in the
hypothalamic PVN. One possibility is that AVP released
from the parvocellular neurons of the PVN may act
synergistically with CRF on ACTH-containing cells of the
pituitary under stressful conditions (Gillies et al, 1982;
Aguilera, 1994). In the present study, the long-term
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separation from the female partner might act as a chronic
stressor, during which AVP appears to become the
predominant regulator of HPA function (Aguilera, 1994)
whereas CRF mRNA expression can be unchanged depend-
ing on the stressor (Aguilera and Rabadan-Diehl, 2000).

In conclusion, in the monogamous male prairie vole, 4–5
days of separation from the bonded female partner only, but
not social isolation per se as seen in female voles (Grippo
et al, 2007a, b), results in the emergence of passive stress-
coping behavior as well as increased HPA axis activity.
Although it is difficult to interpret increased passive stress-
coping behavior in voles, antidepressants reduce this
behavior in the FST and TST in other species, suggesting
that it is relevant to depressive-like behavior in these
species. The combined increase in passive stress-coping
behavior and in HPA axis activity in males in the present
study are, however, consistent with the hypothesis that
separation from a bonded mating partner is aversive in
prairie voles, as it is in humans. Although the emergence of
passive stress-coping behavior and increased HPA activity
following the loss of a bonded female partner is intuitively
maladaptive, we speculate that this phenomenon may
actually be the by-product of an adaptive bidimensional
integrative emotional system (eg reward/aversion) that is
fundamental to the formation and preservation of enduring
bonds (Panksepp et al, 1997). Although CRF-R activation is
apparently not necessary for the display of a partner
preference, activation of this system following separation
from the mating partner may act to preserve the established
pair by maintaining contact. Thus, the CRF system may
compliment the reinforcing effects of other neuropeptides
systems (eg oxytocin and vasopressin) which are thought to
be critical to pair-bond formation. On the basis of our
results we believe that prairie voles represent an important
rodent model that will provide us with unique insights into
the neurobiology of the loss of a bonded partner which may
be relevant to grieving and bereavement in humans.
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