Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Sperm cells are passive cargo of the pollen tube in plant fertilization

Abstract

Sperm cells of seed plants have lost their motility and are transported by the vegetative pollen tube cell for fertilization, but the extent to which they regulate their own transportation is a long-standing debate. Here we show that Arabidopsis lacking two bHLH transcription factors produces pollen without sperm cells. This abnormal pollen mostly behaves like the wild type and demonstrates that sperm cells are dispensable for normal pollen tube development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The drop1− drop2− pollen grains lack sperm cells.
Figure 2: Sperm-less drop1− drop2− mutant pollen tubes grow normally toward the ovule.

Similar content being viewed by others

References

  1. Dresselhaus, T., Sprunck, S. & Wessel, G. M. Curr. Biol. 26, R125–R139 (2016).

    Article  CAS  Google Scholar 

  2. McCue, A. D., Cresti, M., Feijo, J. A. & Slotkin, R. K. J. Exp. Bot. 62, 1621–1631 (2011).

    Article  CAS  Google Scholar 

  3. Dumas, C., Knox, R. B. & Gaude, T. Protoplasma 124, 168–174 (1985).

    Article  Google Scholar 

  4. Liu, J. et al. Curr. Biol. 23, 993–998 (2013).

    Article  CAS  Google Scholar 

  5. Hamamura, Y. et al. Curr. Biol. 21, 497–502 (2011).

    Article  CAS  Google Scholar 

  6. Kliwer, I. & Dresselhaus, T. Plant Signal. Behav. 5, 885–889 (2010).

    Article  Google Scholar 

  7. Zhou, X. & Meier, I. Proc. Natl Acad. Sci. USA 111, 11900–11905 (2014).

    Article  CAS  Google Scholar 

  8. Lin, Q. et al. Plant Cell 27, 2894–2906 (2015).

    Article  CAS  Google Scholar 

  9. Huang, Q., Dresselhaus, T., Gu, H. & Qu, L.-J. J. Integr. Plant Biol. 57, 518–521 (2015).

    Article  CAS  Google Scholar 

  10. Preuss, D., Rhee, S. Y. & Davis, R. W. Science 264, 1458–1460 (1994).

    Article  CAS  Google Scholar 

  11. Leydon, A. R. et al. Curr. Biol. 23, 1209–1214 (2013).

    Article  CAS  Google Scholar 

  12. Schönberger, J., Hammes, U. Z. & Dresselhaus, T. Plant J. 71, 173–181 (2012).

    Article  Google Scholar 

  13. Berger, F. & Twell, D. Annu. Rev. Plant Biol. 62, 461–484 (2011).

    Article  CAS  Google Scholar 

  14. Hou, Y. et al. Curr. Biol. 26, 2343–2350 (2016).

    Article  CAS  Google Scholar 

  15. Higashiyama, T. & Yang, W. Plant Physiol. 173, 112–121 (2017).

    Article  CAS  Google Scholar 

  16. Boisson-Dernier, A. et al. Development 136, 3279–3288 (2009).

    Article  CAS  Google Scholar 

  17. Borg, M. et al. Plant Cell 26, 2098–2113 (2014).

    Article  CAS  Google Scholar 

  18. Iwakawa, H., Shinmyo, A. & Sekine, M. Plant J. 45, 819–831 (2006).

    Article  CAS  Google Scholar 

  19. Yang, C. Y., Vizcay-Barrena, G., Conner, K. & Wilson, Z. Plant Cell 19, 3530–3548 (2007).

    Article  CAS  Google Scholar 

  20. Picelli, S. et al. Nat. Methods 10, 1096–1098 (2013).

    Article  CAS  Google Scholar 

  21. Trapnell, C. et al. Nat. Protoc. 7, 562–578 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Tang and Y. Hu (Peking University, China) for technical help in single-cell RNA extraction, library construction and RNA-seq analysis. We are grateful to T. Aoyama and T. Tsuge (Kyoto University, Japan) for suggestions on preparing the manuscript. This work is supported by National Natural Science Foundation of China (grant Nos. 31620103903, 31621001 and 31370344) and partially by the 111 project. The Qu laboratory is supported by the Peking-Tsinghua Joint Center for Life Sciences and the Dresselhaus lab by the Collaborative Research Center SFB924. The supplementary materials contain additional data.

Author information

Authors and Affiliations

Authors

Contributions

L.-J.Q., H.G., J.D. and T.D. designed the study; Q.L. generated single mutants. J.Z. and Q.H. generated double mutants and, together with S.Z. and A.B., performed phenotypic analysis. Q.H. and J.Z. conducted RNA-seq analysis; Q.H. and J.H. performed bioinformatics analysis. X.G. and S.Z. performed the SIV PT attraction assay. L.-J.Q., J.Z., S.Z., H.G., J.D. and T.D. interpreted the data and wrote the manuscript.

Corresponding author

Correspondence to Li-Jia Qu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1-7, Supplementary Tables 1 and 2, Supplementary Methods, Supplementary References. (PDF 1709 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Huang, Q., Zhong, S. et al. Sperm cells are passive cargo of the pollen tube in plant fertilization. Nature Plants 3, 17079 (2017). https://doi.org/10.1038/nplants.2017.79

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2017.79

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing