Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Two mechanisms for dissipation of excess light in monomeric and trimeric light-harvesting complexes

Abstract

Oxygenic photoautotrophs require mechanisms for rapidly matching the level of chlorophyll excited states from light harvesting with the rate of electron transport from water to carbon dioxide. These photoprotective reactions prevent formation of reactive excited states and photoinhibition. The fastest response to excess illumination is the so-called non-photochemical quenching which, in higher plants, requires the luminal pH sensor PsbS and other yet unidentified components of the photosystem II antenna. Both trimeric light-harvesting complex II (LHCII) and monomeric LHC proteins have been indicated as site(s) of the heat-dissipative reactions. Different mechanisms have been proposed: energy transfer to a lutein quencher in trimers, formation of a zeaxanthin radical cation in monomers. Here, we report on the construction of a mutant lacking all monomeric LHC proteins but retaining LHCII trimers. Its non-photochemical quenching induction rate was substantially slower with respect to the wild type. A carotenoid radical cation signal was detected in the wild type, although it was lost in the mutant. We conclude that non-photochemical quenching is catalysed by two independent mechanisms, with the fastest activated response catalysed within monomeric LHC proteins depending on both zeaxanthin and lutein and on the formation of a radical cation. Trimeric LHCII was responsible for the slowly activated quenching component whereas inclusion in supercomplexes was not required. This latter activity does not depend on lutein nor on charge transfer events, whereas zeaxanthin was essential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phenotype of wild-type and NoM plants.
Figure 2: Biochemical characterization of the NoM mutant.
Figure 3: Kinetics of rise and relaxation of photoprotective energy dissipation.
Figure 4: Kinetics of the formation and relaxation of photoprotective energy dissipation.
Figure 5: Spectral changes associated with the formation of NPQ in wild-type, npq4 and NoM genotypes.
Figure 6: TA spectroscopy on wild-type and NoM thylakoids.

Similar content being viewed by others

References

  1. Vass, I. et al. Reversible and irreversible intermediates during photoinhibition of photosystem II: stable reduced QA species promote chlorophyll triplet formation. Proc. Natl Acad. Sci. USA 89, 1408–1412 (1992).

    Article  CAS  Google Scholar 

  2. Niyogi, K. K. & Truong, T. B. Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr. Opin. Plant Biol. 16, 307–314 (2013).

    Article  CAS  Google Scholar 

  3. de Bianchi, S., Ballottari, M., Dall'Osto, L. & Bassi, R. Regulation of plant light harvesting by thermal dissipation of excess energy. Biochem. Soc. Trans. 38, 651–660 (2010).

    Article  CAS  Google Scholar 

  4. Horton, P., Ruban, A. V. & Walters, R. G. Regulation of light harvesting in green plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 655–684 (1996).

    Article  CAS  Google Scholar 

  5. Cazzaniga, S., Dall'Osto, L., Kong, S. G., Wada, M. & Bassi, R. Interaction between avoidance of photon absorption, excess energy dissipation and zeaxanthin synthesis against photoxidative stress in Arabidopsis. Plant J. 76, 568–579 (2013).

    Article  CAS  Google Scholar 

  6. Nilkens, M. et al. Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis. Biochim. Biophys. Acta. 1797, 466–475 (2010).

    Article  CAS  Google Scholar 

  7. Li, X. P. et al. Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J. Biol. Chem. 279, 22866–22874 (2004).

    Article  CAS  Google Scholar 

  8. Dominici, P. et al. Biochemical properties of the PsbS subunit of photosystem II either purified from chloroplast or recombinant. J. Biol. Chem. 277, 22750–22758 (2002).

    Article  CAS  Google Scholar 

  9. Fan, M. et al. Crystal structures of the PsbS protein essential for photoprotection in plants. Nat. Struct. Mol. Biol. 22, 729–735 (2015).

    Article  CAS  Google Scholar 

  10. Suga, M. et al. Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses. Nature 517, 99–103 (2015).

    Article  CAS  Google Scholar 

  11. Jansson, S. A guide to the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci. 4, 236–240 (1999).

    Article  CAS  Google Scholar 

  12. Wei, X. et al. Structure of spinach photosystem II-LHCII supercomplex at 3.2 Å resolution. Nature 534, 69–74 (2016).

    Article  CAS  Google Scholar 

  13. Kouril, R., Wientjes, E., Bultema, J. B., Croce, R. & Boekema, E. J. High-light vs. low-light: effect of light acclimation on photosystem II composition and organization in Arabidopsis thaliana. BBA-Bioenergetics 1827, 411–419 (2013).

    Article  CAS  Google Scholar 

  14. Betterle, N. et al. Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction. J. Biol. Chem. 284, 15255–15266 (2009).

    Article  CAS  Google Scholar 

  15. Niyogi, K. K. et al. Photoprotection in a zeaxanthin- and lutein-deficient double mutant of Arabidopsis. Photosynth. Res. 67, 139–145 (2001).

    Article  CAS  Google Scholar 

  16. Havaux, M., Dall'Osto, L. & Bassi, R. Zeaxanthin has enhanced antioxidant capacity with respect to all other xanthophylls in Arabidopsis leaves and functions independent of binding to PSII antennae. Plant Physiol. 145, 1506–1520 (2007).

    Article  CAS  Google Scholar 

  17. Belgio, E., Johnson, M. P., Juric, S. & Ruban, A. V. Higher plant photosystem II light-harvesting antenna, not the reaction center, determines the excited-state lifetime-both the maximum and the nonphotochemically quenched. Biophys J. 102, 2761–2771 (2012).

    Article  CAS  Google Scholar 

  18. Ruban, A. V., Walters, R. G. & Horton, P. The molecular mechanism of the control of excitation energy dissipation in chloroplast membranes—inhibition of deltapH- dependent quenching of chlorophyll fluorescence by dicyclohexylcarbodiimide. FEBS Lett. 309, 175–179 (1992).

    Article  CAS  Google Scholar 

  19. Ruban, A. V. et al. Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450, 575–578 (2007).

    Article  CAS  Google Scholar 

  20. Niyogi, K. K., Grossman, A. R. & Björkman, O. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10, 1121–1134 (1998).

    Article  CAS  Google Scholar 

  21. Muller, M. G. et al. Singlet energy dissipation in the photosystem II light-harvesting complex does not involve energy transfer to carotenoids. ChemPhysChem 11, 1289–1296 (2010).

    Article  Google Scholar 

  22. Wahadoszamen, M., Berera, R., Ara, A. M., Romero, E. & van Grondelle, R. Identification of two emitting sites in the dissipative state of the major light harvesting antenna. Phys. Chem. Chem. Phys. 14, 759–766 (2012).

    Article  CAS  Google Scholar 

  23. Bode, S. et al. On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls. Proc. Natl Acad. Sci. USA 106, 12311–12316 (2009).

    Article  CAS  Google Scholar 

  24. Holt, N. E. et al. Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307, 433–436 (2005).

    Article  CAS  Google Scholar 

  25. Avenson, T. J. et al. Zeaxanthin radical cation formation in minor light-harvesting complexes of higher plant antenna. J. Biol. Chem. 283, 3550–3558 (2008).

    Article  CAS  Google Scholar 

  26. Ahn, T. K. et al. Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein. Science 320, 794–797 (2008).

    Article  CAS  Google Scholar 

  27. Barros, T., Royant, A., Standfuss, J., Dreuw, A. & Kuhlbrandt, W. Crystal structure of plant light-harvesting complex shows the active, energy-transmitting state. EMBO J. 28, 298–306 (2009).

    Article  CAS  Google Scholar 

  28. Avenson, T. J. et al. Lutein can act as a switchable charge transfer quencher in the CP26 light-harvesting complex. J. Biol. Chem. 284, 2830–2835 (2009).

    Article  CAS  Google Scholar 

  29. de Bianchi, S., Dall'Osto, L., Tognon, G., Morosinotto, T. & Bassi, R. Minor antenna proteins CP24 and CP26 affect the interactions between photosystem II subunits and the electron transport rate in grana membranes of Arabidopsis. Plant Cell 20, 1012–1028 (2008).

    Article  CAS  Google Scholar 

  30. de Bianchi, S. et al. Arabidopsis mutants deleted in the light-harvesting protein Lhcb4 have a disrupted photosystem II macrostructure and are defective in photoprotection. Plant Cell 23, 2659–2679 (2011).

    Article  CAS  Google Scholar 

  31. Dall'Osto, L., Unlu, C., Cazzaniga, S. & van Amerongen, H. Disturbed excitation energy transfer in Arabidopsis thaliana mutants lacking minor antenna complexes of photosystem II. Biochim. Biophys. Acta 1837, 1981–1988 (2014).

    Article  CAS  Google Scholar 

  32. Baker, N. R. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59, 89–113 (2008).

    Article  CAS  Google Scholar 

  33. Johnson, G. N., Young, A. J. & Horton, P. Activation of non-photochemical quenching in thylakoids and leaves. Planta 194, 550–556 (1994).

    Article  CAS  Google Scholar 

  34. Finazzi, G. et al. A zeaxanthin-independent nonphotochemical quenching mechanism localized in the photosystem II core complex. Proc. Natl Acad. Sci. USA 101, 12375–12380 (2004).

    Article  CAS  Google Scholar 

  35. Pogson, B. J., Niyogi, K. K., Bjorkman, O. & DellaPenna, D. Altered xanthophyll compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants. Proc. Natl Acad. Sci. USA 95, 13324–13329 (1998).

    Article  CAS  Google Scholar 

  36. Horton, P. et al. Control of the light-harvesting function of chloroplast membranes by aggregation of the LHCII chlorophyll-protein complex. FEBS Lett. 292, 1–4 (1991).

    Article  CAS  Google Scholar 

  37. Lambrev, P. H., Nilkens, M., Miloslavina, Y., Jahns, P. & Holzwarth, A. R. Kinetic and spectral resolution of multiple nonphotochemical quenching components in Arabidopsis leaves. Plant Physiol. 152, 1611–1624 (2010).

    Article  CAS  Google Scholar 

  38. Holzwarth, A. R., Miloslavina, Y., Nilkens, M. & Jahns, P. Identification of two quenching sites active in the regulation of photosynthetic light-harvesting studied by time-resolved fluorescence. Chem. Phys. Lett. 483, 262–267 (2009).

    Article  CAS  Google Scholar 

  39. Li, X. P. et al. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403, 391–395 (2000).

    Article  CAS  Google Scholar 

  40. Caffarri, S., Frigerio, S., Olivieri, E., Righetti, P. G. & Bassi, R. Differential accumulation of Lhcb gene products in thylakoid membranes of Zea mays plants grown under contrasting light and temperature conditions. Proteomics 5, 758–768 (2005).

    Article  CAS  Google Scholar 

  41. Briantais, J.-M., Hodges, M. & Moya, I. in Progress in Photosynthesis Research II (ed. J. Biggins ) 705–708 (Nijhoff Publishers, 1987).

    Book  Google Scholar 

  42. Pietrzykowska, M. et al. The light-harvesting chlorophyll a/b binding proteins Lhcb1 and Lhcb2 play complementary roles during state transitions in Arabidopsis. Plant Cell 26, 3646–3660 (2014).

    Article  CAS  Google Scholar 

  43. Leoni, C. et al. Very rapid phosphorylation kinetics suggest a unique role for Lhcb2 during state transitions in Arabidopsis. Plant J. 76, 236–246 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Damkjaer, J. et al. The photosystem II light-harvesting protein Lhcb3 affects the macrostructure of photosystem II and the rate of state transitions in Arabidopsis. Plant Cell 21, 3245–3256 (2009).

    Article  CAS  Google Scholar 

  45. Li, Z. et al. Lutein accumulation in the absence of zeaxanthin restores nonphotochemical quenching in the Arabidopsis thaliana npq1 mutant. Plant Cell 21, 1798–1812 (2009).

    Article  CAS  Google Scholar 

  46. Lambrev, P. H. et al. Functional domain size in aggregates of light-harvesting complex II and thylakoid membranes. BBA-Bioenergetics 1807, 1022–1031 (2011).

    Article  CAS  Google Scholar 

  47. Miloslavina, Y. et al. Far-red fluorescence: a direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching. FEBS Lett. 582, 3625–3631 (2008).

    Article  CAS  Google Scholar 

  48. Wilk, L., Grunwald, M., Liao, P. N., Walla, P. J. & Kuhlbrandt, W. Direct interaction of the major light-harvesting complex II and PsbS in nonphotochemical quenching. Proc. Natl Acad. Sci. USA 110, 5452–5456 (2013).

    Article  CAS  Google Scholar 

  49. Liu, Z. et al. Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428, 287–292 (2004).

    Article  CAS  Google Scholar 

  50. Caffarri, S., Croce, R., Breton, J. & Bassi, R. The major antenna complex of photosystem II has a xanthophyll binding site not involved in light harvesting. J. Biol. Chem. 276, 35924–35933 (2001).

    Article  CAS  Google Scholar 

  51. Weis, E. & Berry, J. A. Quantum efficiency of photosystem II in relation to energy dependent quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 894, 198–208 (1987).

    Article  CAS  Google Scholar 

  52. Haniewicz, P. et al. Isolation of monomeric photosystem II that retains the subunit PsbS. Photosynth. Res. 118, 199–207 (2013).

    Article  CAS  Google Scholar 

  53. Morosinotto, T., Baronio, R. & Bassi, R. Dynamics of chromophore binding to Lhc proteins in vivo and in vitro during operation of the xanthophyll cycle. J. Biol. Chem. 277, 36913–36920 (2002).

    Article  CAS  Google Scholar 

  54. Walters, R. G., Ruban, A. V. & Horton, P. Identification of proton-active residues in a higher plant light-harvesting complex. Proc. Natl Acad. Sci. USA 93, 14204–14209 (1996).

    Article  CAS  Google Scholar 

  55. Casazza, A. P., Tarantino, D. & Soave, C. Preparation and functional characterization of thylakoids from Arabidopsis thaliana. Photosynth. Res. 68, 175–180 (2001).

    Article  CAS  Google Scholar 

  56. Gilmore, A. M. & Yamamoto, H. Y. Zeaxanthin formation and energy-dependent fluorescence quenching in pea chloroplasts under artificially mediated linear and cyclic electron transport. Plant Physiol. 96, 635–643 (1991).

    Article  CAS  Google Scholar 

  57. Schägger, H. & von Jagow, G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368–379 (1987).

    Article  Google Scholar 

  58. Havaux, M., Dall'Osto, L., Cuine, S., Giuliano, G. & Bassi, R. The effect of zeaxanthin as the only xanthophyll on the structure and function of the photosynthetic apparatus in Arabidopsis thaliana. J. Biol. Chem. 279, 13878–13888 (2004).

    Article  CAS  Google Scholar 

  59. Augulis, R. & Zigmantas, D. Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance. Opt. Express. 19, 13126–13133 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the EEC projects ACCLIPHOT (PITN-GA-2012-316427) and SE2B (675006–SE2B) to R.B. Work in Lund was supported by LaserLab Europe, the Swedish Research Council and the Knut and Alice Wallenberg Foundation. The work of K.K.N. and G.R.F. was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DEAC02-05CH11231 and the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences under field work proposal 449B. L.D.'s work was supported by international mobility programme CooperInt 2011/2014, University of Verona.

Author information

Authors and Affiliations

Authors

Contributions

R.B., K.K.N. and G.R.F. conceived the work and designed the experiments. L.D., S.C. and M.B. performed all the experiments for the isolation of mutants, and their physiological and biochemical characterization. D.Z. coordinated and performed the transient absorption spectroscopy experiments. D.P. and K.Z. contributed to the time resolved analysis experiments. All of the authors contributed to writing the manuscript. All of the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Roberto Bassi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–6, Supplementary Table 1 and Supplementary References. (PDF 1038 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dall'Osto, L., Cazzaniga, S., Bressan, M. et al. Two mechanisms for dissipation of excess light in monomeric and trimeric light-harvesting complexes. Nature Plants 3, 17033 (2017). https://doi.org/10.1038/nplants.2017.33

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2017.33

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing