Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanism of host substrate acetylation by a YopJ family effector

Abstract

The Yersinia outer protein J (YopJ) family of bacterial effectors depends on a novel acetyltransferase domain to acetylate signalling proteins from plant and animal hosts. However, the underlying mechanism is unclear. Here, we report the crystal structures of PopP2, a YopJ effector produced by the plant pathogen Ralstonia solanacearum, in complex with inositol hexaphosphate (InsP6), acetyl-coenzyme A (AcCoA) and/or substrate Resistance to Ralstonia solanacearum 1 (RRS1-R)WRKY. PopP2 recognizes the WRKYGQK motif of RRS1-RWRKY to position a targeted lysine in the active site for acetylation. Importantly, the PopP2–RRS1-RWRKY association is allosterically regulated by InsP6 binding, suggesting a previously unidentified role of the eukaryote-specific cofactor in substrate interaction. Furthermore, we provide evidence for the reaction intermediate of PopP2-mediated acetylation, an acetyl-cysteine covalent adduct, lending direct support to the ‘ping-pong’-like catalytic mechanism proposed for YopJ effectors. Our study provides critical mechanistic insights into the virulence activity of YopJ class of acetyltransferases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structures of PopP2 in complex with InsP6, AcCoA and/or RRS1-RWRKY.
Figure 2: InsP6-dependent acetyltransferase activity of PopP2.
Figure 3: The PopP2–RRS1-RWRKY interaction.
Figure 4: Structural comparison of PopP2WT–RRS1-RWRKY, HopZ1a and ULP1–SMT3.
Figure 5: InsP6-stimulated binding between PopP2 and RRS1-RWRKY.
Figure 6: A model for enzymatic catalysis of YopJ effectors.

Similar content being viewed by others

References

  1. Zipfel, C. Plant pattern-recognition receptors. Trends Immunol. 35, 345–351 (2014).

    Article  CAS  Google Scholar 

  2. Böhm, H., Albert, I., Fan, L., Reinhard, A. & Nürnberger, T. Immune receptor complexes at the plant cell surface. Curr. Opin. Plant Biol. 20, 47–54 (2014).

    Article  Google Scholar 

  3. Jones, J. D. G. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006).

    Article  CAS  Google Scholar 

  4. Chisholm, S. T., Coaker, G., Day, B. & Staskawicz, B. J. Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124, 803–814 (2006).

    Article  CAS  Google Scholar 

  5. Dean, P. Functional domains and motifs of bacterial type III effector proteins and their roles in infection. FEMS Microbiol. Rev. 35, 1100–1125 (2011).

    Article  CAS  Google Scholar 

  6. Büttner, D. Behind the lines–actions of bacterial type III effector proteins in plant cells. FEMS Microbiol. Rev. 6, 894–937 (2016).

    Article  Google Scholar 

  7. Costa, T. R. D. et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat. Rev. Micro. 13, 343–359 (2015).

    Article  CAS  Google Scholar 

  8. Ma, K.-W. & Ma, W. Yopj family effectors promote bacterial infection through a unique acetyltransferase activity. Microbiol. Mol. Biol. Rev. 80, 1011–1027 (2016).

    Article  CAS  Google Scholar 

  9. Lewis, J. D. et al. The YopJ superfamily in plant-associated bacteria. Mol. Plant. Pathol. 12, 928–937 (2011).

    Article  CAS  Google Scholar 

  10. Jones, R. M. et al. Salmonella AvrA coordinates suppression of host immune and apoptotic defenses via JNK pathway blockade. Cell Host Microbe 3, 233–244 (2008).

    Article  CAS  Google Scholar 

  11. Mittal, R., Peak-Chew, S. Y. & McMahon, H. T. Acetylation of MEK2 and IκB (IKK) activation loop residues by YopJ inhibits signaling. Proc. Natl Acad. Sci. USA 103, 18574–18579 (2006).

    Article  CAS  Google Scholar 

  12. Mukherjee, S. et al. Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 312, 1211–1214 (2006).

    Article  CAS  Google Scholar 

  13. Paquette, N. et al. Serine/threonine acetylation of TGFβ-activated kinase (TAK1) by Yersinia pestis YopJ inhibits innate immune signaling. Proc. Natl Acad. Sci. USA 109, 12710–12715 (2012).

    Article  CAS  Google Scholar 

  14. Trosky, J. E. et al. Vopa inhibits ATP binding by acetylating the catalytic loop of MAPK kinases. J. Biol. Chem. 282, 34299–34305 (2007).

    Article  CAS  Google Scholar 

  15. Le Roux, C. et al. A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity. Cell 161, 1074–1088 (2015).

    Article  CAS  Google Scholar 

  16. Sarris, P. F. et al. A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell 161, 1089–1100 (2015).

    Article  CAS  Google Scholar 

  17. Lee, A. H.-Y. et al. A bacterial acetyltransferase destroys plant microtubule networks and blocks secretion. PLoS Pathog. 8, e1002523 (2012).

    Article  CAS  Google Scholar 

  18. Jiang, S. et al. Bacterial effector activates jasmonate signaling by directly targeting JAZ transcriptional repressors. PLoS Pathog. 9, e1003715 (2013).

    Article  Google Scholar 

  19. Orth, K. et al. Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science 290, 1594–1597 (2000).

    Article  CAS  Google Scholar 

  20. Zhang, Z.-M. et al. Structure of a pathogen effector reveals the enzymatic mechanism of a novel acetyltransferase family. Nat. Struct. Mol. Biol. 23, 847–852 (2016).

    Article  CAS  Google Scholar 

  21. Ma, K.-W. et al. Two serine residues in Pseudomonas syringae effector HopZ1a are required for acetyltransferase activity and association with the host co-factor. New Phytol. 1157–1168 (2015).

  22. Cheong, M. S. et al. Avrbst acetylates Arabidopsis ACIP1, a protein that associates with microtubules and is required for immunity. PLoS Pathog. 10, e1003952 (2014).

    Article  Google Scholar 

  23. Mittal, R., Peak-Chew, S. Y., Sade, R. S., Vallis, Y. & McMahon, H. T. The acetyltransferase activity of the bacterial toxin YopJ of Yersinia is activated by eukaryotic host cell inositol hexakisphosphate. J. Biol. Chem. 285, 19927–19934 (2010).

    Article  CAS  Google Scholar 

  24. Mukherjee, S., Hao, Y.-H. & Orth, K. A newly discovered post-translational modification – the acetylation of serine and threonine residues. Trends Biochem. Sci. 32, 210–216 (2007).

    Article  CAS  Google Scholar 

  25. Duan, M.-R. et al. DNA binding mechanism revealed by high resolution crystal structure of Arabidopsis thaliana WRKY1 protein. Nucleic Acids Res. 35, 1145–1154 (2007).

    Article  CAS  Google Scholar 

  26. Tasset, C. et al. Autoacetylation of the Ralstonia solanacearum effector PopP2 targets a lysine residue essential for RRS1-R-mediated immunity in Arabidopsis. PLoS Pathog. 6, e1001202 (2010).

    Article  Google Scholar 

  27. Guttman, D. S. & Greenberg, J. T. Functional analysis of the type III effectors AvrRpt2 and AvrRpm1 of Pseudomonas syringae with the use of a single-copy genomic integration system. Mol. Plant Microbe Interact. 14, 145–155 (2001).

    Article  CAS  Google Scholar 

  28. Yamasaki, K. et al. Structural basis for sequence-specific DNA recognition by an Arabidopsis WRKY transcription factor. J. Biol. Chem. 287, 7683–7691 (2012).

    Article  CAS  Google Scholar 

  29. Morgan, R. L. et al. Catalytic domain of the diversified Pseudomonas syringae type III effector HopZ1 determines the allelic specificity in plant hosts. Mol. Microbiol. 76, 437–455 (2010).

    Article  CAS  Google Scholar 

  30. Mossessova, E. & Lima, C. D. Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol. Cell 5, 865–876 (2000).

    Article  CAS  Google Scholar 

  31. Pruneda, J. N. et al. The molecular basis for ubiquitin and ubiquitin-like specificities in bacterial effector proteases. Mol. Cell 63, 261–276 (2016).

    Article  CAS  Google Scholar 

  32. Vetting, M. W. et al. Structure and functions of the GNAT superfamily of acetyltransferases. Arch. Biochem. Biophys. 433, 212–226 (2005).

    Article  CAS  Google Scholar 

  33. Utley, R. T. & Côté, J. The MYST family of histone acetyltransferases. Curr. Top. Microbiol. Immunol. 274, 203–236 (2003).

    CAS  PubMed  Google Scholar 

  34. Berndsen, C. E., Albaugh, B. N., Tan, S. & Denu, J. M. Catalytic mechanism of a MYST family histone acetyltransferase. Biochem 46, 623–629 (2007).

    Article  CAS  Google Scholar 

  35. Cleland, W. W. Statistical analysis of enzyme kinetic data. Methods Enzymol. 63, 103–138 (1979).

    Article  CAS  Google Scholar 

  36. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  37. Kabsch, W . XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  Google Scholar 

  38. Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  Google Scholar 

  39. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  40. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  41. Case, D. A. et al. AMBER 2016 (Univ. California, 2016).

    Google Scholar 

  42. Rossato, G., Ernst, B., Smiesko, M., Spreafico, M. & Vedani, A. Probing small-molecule binding to cytochrome P450 2D6 and 2C9: an in silico protocol for generating toxicity alerts. ChemMedChem 5, 2088–2101 (2010).

    Article  CAS  Google Scholar 

  43. Peters, M. B. et al. Structural survey of zinc-containing proteins and development of the zinc AMBER force field (ZAFF). J. Chem. Theory Comput. 6, 2935–2947 (2010).

    Article  CAS  Google Scholar 

  44. Roe, D. R. & Cheatham, T. E. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 9, 3084–3095 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH (1R35GM119721), Kimmel Scholar Award from Sidney Kimmel Foundation for Cancer Research and March of Dimes Foundation (1-FY15-345) to J.S., and grants from US NSF (IOS no. 0847870) and the USDA Agriculture Experimental Station Funding (CA-R-PPA-5075-H) to W.M. We would like to thank staff members at the Advanced Light Source, Lawrence Berkeley National Laboratory and Advanced Photon Source, Argonne National Laboratory for access to X-ray beamlines.

Author information

Authors and Affiliations

Authors

Contributions

Z-M.Z. and L.G. determined the crystal structures of PopP2 complexes and conducted ITC assays. J.S. and L.G. performed NMR analysis. K-W.M. and S.S. performed in vitro acetylation assays and in vivo functional analyses. Z.H. performed computational analysis. W.M. and J.S. designed and organized the study, Z.-M.Z., K-W.M., W.M. and J.S. prepared the manuscript.

Corresponding authors

Correspondence to Wenbo Ma or Jikui Song.

Ethics declarations

Competing interests

The authors declare no competing financial interest.

Supplementary information

Supplementary Information

Supplementary Figures 1–9, Supplementary Tables 1 and 2. (PDF 2153 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, ZM., Ma, KW., Gao, L. et al. Mechanism of host substrate acetylation by a YopJ family effector. Nature Plants 3, 17115 (2017). https://doi.org/10.1038/nplants.2017.115

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2017.115

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing