Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chloroplast FtsZ assembles into a contractible ring via tubulin-like heteropolymerization

Abstract

Chloroplast division is driven by a ring containing FtsZ1 and FtsZ2 proteins, which originated from bacterial FtsZ, a tubulin-like protein; however, mechanistic details of the chloroplast FtsZ ring remain unclear. Here, we report that FtsZ1 and FtsZ2 can heteropolymerize into a contractible ring ex vivo. Fluorescently labelled FtsZ1 and/or FtsZ2 formed single rings in cells of the yeast Pichia pastoris. Photobleaching experiments indicated that co-assembly of FtsZ1 and FtsZ2 imparts polarity to polymerization. Assembly of FtsZ chimaeras revealed that the protofilaments assemble via heteropolymerization of FtsZ2 and FtsZ1. Contraction of the ring was accompanied by an increase in the filament turnover rate. Our findings suggest that the evolutionary duplication of FtsZ in plants may have increased the mobility and kinetics of FtsZ ring dynamics in chloroplast division. Thus, the gene duplication and heteropolymerization of chloroplast FtsZs may represent convergent evolution with eukaryotic tubulin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reconstitution of a single FtsZ ring in P. pastoris cells.
Figure 2: Assembly and kinetics of chloroplast FtsZ rings ex vivo.
Figure 3: Hetero-interactions of FtsZ2 and FtsZ1.
Figure 4: Competitive binding experiments using polymerization-deficient mutants of FtsZ2 and FtsZ1.
Figure 5: Schematic representation of tubulin-like heteropolymerization of chloroplast FtsZs.
Figure 6: Constriction dynamics of the reconstituted chloroplast FtsZ rings.

Similar content being viewed by others

References

  1. Jarvis, P. & López-Juez, E. Biogenesis and homeostasis of chloroplasts and other plastids. Nature Rev. Mol. Cell Biol. 14, 787–802 (2013).

    Article  CAS  Google Scholar 

  2. Gillham, N. W., Boynton, J. E. & Hauser, C. R. Translational regulation of gene expression in chloroplasts and mitochondria. Annu. Rev. Genet. 28, 71–93 (1994).

    Article  CAS  Google Scholar 

  3. Yoshida, Y., Miyagishima, S. Y., Kuroiwa, H. & Kuroiwa, T. The plastid-dividing machinery: formation, constriction and fission. Curr. Opin. Plant Biol. 15, 714–721 (2012).

    Article  Google Scholar 

  4. Osteryoung, K. W. & Pyke, K. A. Division and dynamic morphology of plastids. Annu. Rev. Plant Biol. 65, 443–472 (2014).

    Article  CAS  Google Scholar 

  5. Kuroiwa, T. et al. Vesicle, mitochondrial, and plastid division machineries with emphasis on dynamin and electron-dense rings. Int. Rev. Cell Mol. Biol. 271, 97–152 (2008).

    Article  CAS  Google Scholar 

  6. Miyagishima, S. Y. & Kabeya, Y. Chloroplast division: squeezing the photosynthetic captive. Curr. Opin. Microbiol. 13, 738–746 (2010).

    Article  CAS  Google Scholar 

  7. Mori, T., Kuroiwa, H., Takahara, M., Miyagishima, S. Y. & Kuroiwa, T. Visualization of an FtsZ ring in chloroplasts of Lilium longiflorum leaves. Plant Cell Physiol. 42, 555–559 (2001).

    Article  CAS  Google Scholar 

  8. Vitha, S., McAndrew, R. S. & Osteryoung, K. W. FtsZ ring formation at the chloroplast division site in plants. J. Cell Biol. 153, 111–120 (2001).

    Article  CAS  Google Scholar 

  9. Kuroiwa, T. et al. The division apparatus of plastids and mitochondria. Int. Rev. Cytol. 181, 1–41 (1998).

    Article  CAS  Google Scholar 

  10. Yoshida, Y. et al. Chloroplasts divide by contraction of a bundle of nanofilaments consisting of polyglucan. Science 329, 949–953 (2010).

    Article  CAS  Google Scholar 

  11. Miyagishima, S. Y. et al. A plant-specific dynamin-related protein forms a ring at the chloroplast division site. Plant Cell Online 15, 655–665 (2003).

    Article  CAS  Google Scholar 

  12. Gao, H., Kadirjan-Kalbach, D., Froehlich, J. E. & Osteryoung, K. W. ARC5, a cytosolic dynamin-like protein from plants, is part of the chloroplast division machinery. Proc. Natl Acad. Sci. USA 100, 4328–4333 (2003).

    Article  CAS  Google Scholar 

  13. Hong, Z. et al. A unified nomenclature for Arabidopsis dynamin-related large GTPases based on homology and possible functions. Plant Mol. Biol. 53, 261–265 (2003).

    Article  CAS  Google Scholar 

  14. Osteryoung, K. W. & Vierling, E. Conserved cell and organelle division. Nature 376, 473–474 (1995).

    Article  CAS  Google Scholar 

  15. Takahara, M. et al. A putative mitochondrial ftsZ gene is present in the unicellular primitive red alga Cyanidioschyzon merolae. Mol. Gen. Genet. 264, 452–460 (2000).

    Article  CAS  Google Scholar 

  16. Adams, D. W. & Errington, J. Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nature Rev. Microbiol. 7, 642–653 (2009).

    Article  Google Scholar 

  17. Erickson, H. P., Anderson, D. E. & Osawa, M. FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol. Mol. Biol. Rev. 74, 504–528 (2010).

    Article  CAS  Google Scholar 

  18. Miyagishima, S. Y. et al. Two types of FtsZ proteins in mitochondria and red-lineage chloroplasts: the duplication of FtsZ is implicated in endosymbiosis. J. Mol. Evol. 58, 291–303 (2004).

    Article  CAS  Google Scholar 

  19. TerBush, A. D., Yoshida, Y. & Osteryoung, K. W. FtsZ in chloroplast division: structure, function and evolution. Curr. Opin. Cell Biol. 25, 461–470 (2013).

    Article  CAS  Google Scholar 

  20. Osteryoung, K. W., Stokes, K. D., Rutherford, S. M., Percival, A. L. & Lee, W. Y. Chloroplast division in higher plants requires members of two functionally divergent gene families with homology to bacterial ftsZ. Plant Cell. 10, 1991–2004 (1998).

    Article  CAS  Google Scholar 

  21. Ma, X. & Margolin, W. Genetic and functional analyses of the conserved C-terminal core domain of Escherichia coli FtsZ. J. Bacteriol. 181, 7531–7544 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Maple, J., Aldridge, C. & Møller, S. G. Plastid division is mediated by combinatorial assembly of plastid division proteins. Plant J. 43, 811–823 (2005).

    Article  CAS  Google Scholar 

  23. Schmitz, A. J., Glynn, J. M., Olson, B. J. S. C., Stokes, K. D. & Osteryoung, K. W. Arabidopsis FtsZ2-1 and FtsZ2-2 are functionally redundant, but FtsZ-based plastid division is not essential for chloroplast partitioning or plant growth and development. Mol. Plant 2, 1211–1222 (2009).

    Article  CAS  Google Scholar 

  24. Strepp, R., Scholz, S., Kruse, S., Speth, V. & Reski, R. Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proc. Natl Acad. Sci. USA 95, 4368–4373 (1998).

    Article  CAS  Google Scholar 

  25. Yoshida, Y. et al. Isolated chloroplast division machinery can actively constrict after stretching. Science 313, 1435–1438 (2006).

    Article  CAS  Google Scholar 

  26. Osawa, M., Anderson, D. E. & Erickson, H. P. Reconstitution of contractile FtsZ rings in liposomes. Science 320, 792–794 (2008).

    Article  CAS  Google Scholar 

  27. Nogales, E., Wolf, S. G., Downing, K. H., Gray, R. A. & Pertsov, A. M. Structure of the alpha beta tubulin dimer by electron crystallography. Nature 393, 199–203 (1998).

    Article  Google Scholar 

  28. Nogales, E., Whittaker, M., Milligan, R. A., Downing, K. H. & Berkeley, L. High-resolution model of the microtubule. Cell 96, 79–88 (1999).

    Article  CAS  Google Scholar 

  29. Löwe, J. & Amos, L. A. Crystal structure of the bacterial cell-division protein FtsZ. Nature 391, 203–206 (1998).

    Article  Google Scholar 

  30. Oliva, M. A., Cordell, S. C. & Löwe, J. Structural insights into FtsZ protofilament formation. Nature Struct. Mol. Biol. 11, 1243–1250 (2004).

    Article  CAS  Google Scholar 

  31. Sprague, B. L., Pego, R. L., Stavreva, D. A. & McNally, J. G. Analysis of binding reactions by fluorescence recovery after photobleaching. Biophys. J. 86, 3473–3495 (2004).

    Article  CAS  Google Scholar 

  32. Olson, B. J. S. C., Wang, Q. & Osteryoung, K. W. GTP-dependent heteropolymer formation and bundling of chloroplast FtsZ1 and FtsZ2. J. Biol. Chem. 285, 20634–20643 (2010).

    Article  CAS  Google Scholar 

  33. Zhang, M., Chen, C., Froehlich, J. E., Terbush, A. D. & Osteryoung, K. W. Roles of Arabidopsis PARC6 in coordination of the chloroplast division complex and negative regulation of FtsZ assembly. Plant Physiol. 170, 250–262 (2015).

    Article  Google Scholar 

  34. Glynn, J. M., Froehlich, J. E. & Osteryoung, K. W. Arabidopsis ARC6 coordinates the division machineries of the inner and outer chloroplast membranes through interaction with PDV2 in the intermembrane space. Plant Cell 20, 2460–2470 (2008).

    Article  CAS  Google Scholar 

  35. Miyagishima, S. Y. Mechanism of plastid division: from a bacterium to an organelle. Plant Physiol. 155, 1533–1544 (2011).

    Article  CAS  Google Scholar 

  36. TerBush, A. D. & Osteryoung, K. W. Distinct functions of chloroplast FtsZ1 and FtsZ2 in Z-ring structure and remodeling. J. Cell Biol. 199, 623–637 (2012).

    Article  CAS  Google Scholar 

  37. Nogales, E., Downing, K. H., Amos, L. A. & Löwe, J. Tubulin and FtsZ form a distinct family of GTPases. Nature Struct. Biol. 5, 451–458 (1998).

    Article  CAS  Google Scholar 

  38. Halavatyi, A. et al. A mathematical model of actin filament turnover for fitting FRAP data. Eur. Biophys. J. 39, 669–677 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Porter for helpful discussions. This research was supported by a Human Frontier Science Program Long Term Fellowship (LT000356/2011-L to Y.Y.), a Japan Society for the Promotion of Science Postdoctoral Research Fellowship for Research Abroad (to Y.Y.) and the National Science Foundation (grant MCB-1121943 to K.W.O.).

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. designed the research and experiments. Y.Y. and Y.M. performed experiments and analysed the results. Y.Y., Y.M., A.D.T. and K.W.O. discussed the results. Y.Y., Y.M., A.D.T. and K.W.O. wrote the manuscript.

Corresponding author

Correspondence to Yamato Yoshida.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Material

Supplementary Methods, Supplementary References, Supplementary Figs 1-8 and Supplementary Tables 1 and 2. (PDF 1829 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshida, Y., Mogi, Y., TerBush, A. et al. Chloroplast FtsZ assembles into a contractible ring via tubulin-like heteropolymerization. Nature Plants 2, 16095 (2016). https://doi.org/10.1038/nplants.2016.95

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2016.95

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing