Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

State transitions redistribute rather than dissipate energy between the two photosystems in Chlamydomonas

Abstract

Photosynthesis converts sunlight into biologically useful compounds, thus fuelling practically the entire biosphere. This process involves two photosystems acting in series powered by light harvesting complexes (LHCs) that dramatically increase the energy flux to the reaction centres. These complexes are the main targets of the regulatory processes that allow photosynthetic organisms to thrive across a broad range of light intensities. In microalgae, one mechanism for adjusting the flow of energy to the photosystems, state transitions, has a much larger amplitude than in terrestrial plants, whereas thermal dissipation of energy, the dominant regulatory mechanism in plants, only takes place after acclimation to high light. Here we show that, at variance with recent reports, microalgal state transitions do not dissipate light energy but redistribute it between the two photosystems, thereby allowing a well-balanced influx of excitation energy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kinetics of P700 oxidation in a ΔPC C. reinhardtii mutant.
Figure 2: Comparison of the changes in the PSII and PSI antenna size on state I to state II transitions using different approaches as detailed in the main text.
Figure 3: Evolution, as a function of the time after induction of state transitions, of the fast and slow components in the oxidation kinetics of P700 in the ΔPC mutant.
Figure 4: A quantitative schematic of photosystem and antenna distribution heterogeneity, and of its change during state transitions, in C. reinhardtii.

Similar content being viewed by others

References

  1. Archer, M. D. & Barber, J. Molecular to Global Photosynthesis (Imperial College Press, 2004).

    Book  Google Scholar 

  2. Croce, R. & van Amerongen, H. Natural strategies for photosynthetic light harvesting. Nature Chem. Biol. 10, 492–501 (2014).

    Article  CAS  Google Scholar 

  3. Rochaix, J.-D. Regulation and dynamics of the light-harvesting system. Annu. Rev. Plant Biol. 65, 287–309 (2014).

    Article  CAS  Google Scholar 

  4. Goss, R. & Lepetit, B. Biodiversity of NPQ. J. Plant Physiol. 172, 13–32 (2015).

    Article  CAS  Google Scholar 

  5. Nawrocki, W. J., Tourasse, N. J., Taly, A., Rappaport, F. & Wollman, F. A. The plastid terminal oxidase: its elusive function points to multiple contributions to plastid physiology. Ann. Rev. Plant Biol. 66, 49–74 (2015).

    Article  CAS  Google Scholar 

  6. Bonaventura, C. & Myers, J. Fluorescence and oxygen evolution from Chlorella pyrenoidosa. Biochim. Biophys. Acta 189, 366–383 (1969).

    Article  CAS  Google Scholar 

  7. Murata, N. Control of excitation transfer in photosynthesis: Light-induced change of chlorophyll a fluorescence in porphyridium cruentum. Biochim. Biophys. Acta 172, 242–251 (1969).

    Article  CAS  Google Scholar 

  8. Wollman, F. A. State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. EMBO J. 20, 3623–3630 (2001).

    Article  CAS  Google Scholar 

  9. Goldschmidt-Clermont, M. & Bassi, R. Sharing light between two photosystems: mechanism of state transitions. Curr. Opin. Plant Biol. 25, 71–78 (2015).

    Article  CAS  Google Scholar 

  10. Kyle, D. J., Staehelin, L. A. & Arntzen, C. J. Lateral mobility of the light-harvesting complex in chloroplast membranes controls excitation-energy distribution in higher-plants. Arch. Biochem. Biophys. 222, 527–541 (1983).

    Article  CAS  Google Scholar 

  11. Vallon, O., Wollman, F. A. & Olive, J. Lateral distribution of the main protein complexes of the photosynthetic apparatus in Chlamydomonas-reinhardtii and in spinach—an immunocytochemical study using intact thylakoid membranes and a PS-II enriched membrane preparation. Photobiochem. Photobiophys. 12, 203–220 (1986).

    CAS  Google Scholar 

  12. Cardol, P. et al. Impaired respiration discloses the physiological significance of state transitions in Chlamydomonas. Proc. Natl Acad. Sci. USA 106, 15979–15984 (2009).

    Article  CAS  Google Scholar 

  13. Allen, J. F. Protein-phosphorylation in regulation of photosynthesis. Biochim. Biophys. Acta 1098, 275–335 (1992).

    Article  CAS  Google Scholar 

  14. Iwai, M., Yokono, M., Inada, N. & Minagawa, J. Live-cell imaging of photosystem II antenna dissociation during state transitions. Proc. Natl Acad. Sci. USA 107, 2337–2342 (2010).

    Article  CAS  Google Scholar 

  15. Unlu, C., Drop, B., Croce, R. & van Amerongen, H. state transitions in Chlamydomonas reinhardtii strongly modulate the functional size of photosystem II but not of photosystem I. Proc. Natl Acad. Sci. USA 111, 3460–3465 (2014).

    Article  Google Scholar 

  16. Nagy, G. et al. Chloroplast remodeling during state transitions in Chlamydomonas reinhardtii as revealed by noninvasive techniques in vivo. Proc. Natl Acad. Sci. USA 111, 5042–5047 (2014).

    Article  CAS  Google Scholar 

  17. Unlu, C., Polukhina, I. & van Amerongen, H. Origin of pronounced differences in 77 K fluorescence of the green alga Chlamydomonas reinhardtii in state 1 and 2. Eur. Biophys. J. http://dx.doi.org/10.1007/s00249-015-1087-9 (2015).

  18. The Chlamydomonas Sourcebook 2nd edn (eds Harris, E. H., Stern, D. B. & Witman, G. B. ) 1–24 (Academic Press, 2009).

    Google Scholar 

  19. Peers, G. et al. An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462, 518–U215 (2009). .

    Article  CAS  Google Scholar 

  20. Delosme, R., Olive, J. & Wollman, F. A. Changes in light energy distribution upon state transitions: an in vivo photoacoustic study of the wild type and photosynthesis mutants from Chlamydomonas reinhardtii. Biochim. Biophys. Acta-Bioenerg. 1273, 150–158 (1996).

    Article  Google Scholar 

  21. Houille-Vernes, L., Rappaport, F., Wollman, F. A., Alric, J. & Johnson, X. Plastid terminal oxidase 2 (PTOX2) is the major oxidase involved in chlororespiration in Chlamydomonas. Proc. Natl Acad. Sci. USA 108, 20820–20825 (2011).

    Article  CAS  Google Scholar 

  22. Delepelaire, P. & Wollman, F. A. Correlations between fluorescence and phosphorylation changes in thylakoid membranes of Chlamydomonas-reinhardtii in vivo—a kinetic-analysis. Biochim. Biophys. Acta 809, 277–283 (1985).

    Article  CAS  Google Scholar 

  23. Witt, H. T. Energy-conversion in the functional membrane of photosynthesis – analysis by light-pulse and electric pulse methods - central role of the electric-field. Biochim. Biophys. Acta 505, 355–427 (1979).

    Article  CAS  Google Scholar 

  24. Murakami, A. Quantitative analysis of 77K fluorescence emission spectra in Synechocystis sp. PCC 6714 and Chlamydomonas reinhardtii with variable PS I/PS II stoichiometries. Photosynth. Res. 53, 141–148 (1997).

    Article  CAS  Google Scholar 

  25. Lunde, C., Jensen, P. E., Haldrup, A., Knoetzel, J. & Scheller, H. V. The PSI-H subunit of photosystem I is essential for state transitions in plant photosynthesis. Nature 408, 613–615 (2000).

    Article  CAS  Google Scholar 

  26. Rappaport, F., Beal, D., Joliot, A. & Joliot, P. On the advantages of using green light to study fluorescence yield changes in leaves. Biochim. Biophys. Acta 1767, 56–65 (2007).

    Article  CAS  Google Scholar 

  27. Rizzo, F., Zucchelli, G., Jennings, R. & Santabarbara, S. Wavelength dependence of the fluorescence emission under conditions of open and closed Photosystem II reaction centres in the green alga Chlorella sorokiniana. Biochim. Biophys. Acta-Bioenerg. 1837, 726–733 (2014).

    Article  CAS  Google Scholar 

  28. Drop, B., Yadav, K. N. S., Boekema, E. J. & Croce, R. Consequences of state transitions on the structural and functional organization of photosystem I in the green alga Chlamydomonas reinhardtii. Plant J. 78, 181–191 (2014).

    Article  CAS  Google Scholar 

  29. Takahashi, H., Okamuro, A., Minagawa, J. & Takahashi, Y. Biochemical characterization of photosystem I-associated light-harvesting complexes I and II isolated from state 2 cells of Chlamydomonas reinhardtii. Plant Cell Physiol. 55, 1437–1449 (2014).

    Article  CAS  Google Scholar 

  30. Galka, P. et al. Functional analyses of the plant photosystem I-light-harvesting complex II supercomplex reveal that light-harvesting complex II loosely bound to photosystem II is a very efficient antenna for photosystem I in state II. Plant Cell 24, 2963–2978 (2012).

    Article  CAS  Google Scholar 

  31. Le Quiniou, C. et al. PSI-LHCI of Chlamydomonas reinhardtii: Increasing the absorption cross section without losing efficiency. Biochim. Biophys. Acta 1847, 458–467 (2015).

    Article  CAS  Google Scholar 

  32. Wlodarczyk, L. M. et al. Functional rearrangement of the light-harvesting antenna upon state transitions in a green alga. Biophys. J. 108, 261–271 (2015).

    Article  CAS  Google Scholar 

  33. Takahashi, H., Iwai, M., Takahashi, Y. & Minagawa, J. Identification of the mobile light-harvesting complex II polypeptides for state transitions in Chlamydomonas reinhardtii. Proc. Natl Acad. Sci. USA 103, 477–482 (2006).

    Article  CAS  Google Scholar 

  34. Johnson, X. & Alric, J. Interaction between starch breakdown, acetate assimilation, and photosynthetic cyclic electron flow in Chlamydomonas reinhardtii. J. Biol. Chem. 287, 26445–26452 (2012).

    Article  CAS  Google Scholar 

  35. Clowez, S., Godaux, D., Cardol, P., Wollman, F. A. & Rappaport, F. The involvement of hydrogen-producing and ATP-dependent NADPH-consuming pathways in setting the redox poise in the chloroplast of Chlamydomonas reinhardtii in anoxia. J. Biol. Chem. 290, 8666–8676 (2015).

    Article  CAS  Google Scholar 

  36. Godaux, D., Bailleul, B., Berne, N. & Cardol, P. Induction of photosynthetic carbon fixation in anoxia relies on hydrogenase activity and proton-gradient regulation-like1-mediated cyclic electron flow in Chlamydomonas reinhardtii. Plant Physiol. 168, 648–658 (2015).

    Article  CAS  Google Scholar 

  37. Quinn, J. et al. The plastocyanin-deficient phenotype of Chlamydomonas reinhardtii Ac-208 results from a frame-shift mutation in the nuclear gene encoding preapoplastocyanin. J. Biol. Chem. 268, 7832–7841 (1993).

    CAS  PubMed  Google Scholar 

  38. Gallaher, S. D., Fitz-Gibbon, S. T., Glaesener, A. G., Pellegrini, M. & Merchant, S. S. Chlamydomonas genome resource for laboratory strains reveals a mosaic of sequence variation, identifies true strain histories, and enables strain-specific studies. Plant Cell 27, 2335–2352 (2015).

    Article  CAS  Google Scholar 

  39. Redding, K. et al. A systematic survey of conserved histidines in the core subunits of Photosystem I by site-directed mutagenesis reveals the likely axial ligands of P-700. EMBO J. 17, 50–60 (1998).

    Article  CAS  Google Scholar 

  40. Joliot, P. & Joliot, A. Quantification of cyclic and linear flows in plants. Proc. Natl Acad. Sci. USA 102, 4913–4918 (2005).

    Article  CAS  Google Scholar 

  41. Alric, J., Lavergne, J. & Rappaport, F. Redox and ATP control of photosynthetic cyclic electron flow in Chlamydomonas reinhardtii (I) aerobic conditions. Biochim. Biophys. Acta-Bioenerg. 1797, 44–51 (2010).

    Article  CAS  Google Scholar 

  42. Takahashi, H., Clowez, S., Wollman, F. A., Vallon, O. & Rappaport, F. Cyclic electron flow is redox-controlled but independent of state transition. Nature Commun. 4, 1954 (2013).

    Article  Google Scholar 

  43. Engel, B. D. et al. Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography. eLife 4 (2015).

  44. Drop, B. et al. Light-harvesting complex II (LHCII) and its supramolecular organization in Chlamydomonas reinhardtii. Biochim. Biophys. Acta 1837, 63–72 (2014).

    Article  CAS  Google Scholar 

  45. Drop, B. et al. Photosystem I of Chlamydomonas reinhardtii contains nine light-harvesting complexes (Lhca) located on one side of the core. J. Biol. Chem. 286, 44878–44887 (2011).

    Article  CAS  Google Scholar 

  46. Barber, J. Regulation of energy-transfer by cations and protein-phosphorylation in relation to thylakoid membrane organization. Photosynth. Res. 10, 243–253 (1986).

    Article  CAS  Google Scholar 

  47. Kargul, J. et al. Light-harvesting complex II protein CP29 binds to photosystem I of Chlamydomonas reinhardtii under state 2 conditions. FEBS J. 272, 4797–4806 (2005).

    Article  CAS  Google Scholar 

  48. Suga, M. et al. Native structure of photosystem II at 1.95 A resolution viewed by femtosecond X-ray pulses. Nature 517, 99–103 (2015).

    Article  CAS  Google Scholar 

  49. Mazor, Y., Borovikova, A. & Nelson, N. The structure of plant photosystem I super-complex at 2.8 A resolution. eLife 4, e07433 (2015).

    Article  Google Scholar 

  50. Tokutsu, R., Kato, N., Bui, K. H., Ishikawa, T. & Minagawa, J. Revisiting the supramolecular organization of photosystem II in Chlamydomonas reinhardtii. J. Biol. Chem. 287, 31574–31581 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Bujaldon for the ΔPC-WT cross. W.J.N., F.-A.W. and F.R. acknowledge the support of CNRS and Université Pierre et Marie Curie. This work was supported by the Initiative d'Excellence programme from the French State (grant DYNAMO, ANR-11-LABX-0011-01) and by the programme PHC PROCOPE 2014 PROJET no. 30729YB. W.J.N. is a recipient of a PhD fellowship from the Université Pierre et Marie Curie. S.S. acknowledges the support from the DYNAMO ANR-11-LABX-0011-01 grant for travel. L.M. was a recipient of the Studienstiftung des Deutschen Volkes fellowship for her Master studies. Fabrice Rappaport deceased before final acceptance of this manuscript. His co-authors wish to acknowledge his remarkable contributions to our current understanding of photosynthesis regulations.

Author information

Authors and Affiliations

Authors

Contributions

W.J.N., S.S., L.M. performed the experiments. F.-A.W. and F.R. conceived and designed the research. All of the authors discussed, analysed the data and wrote the paper.

Corresponding author

Correspondence to Francis-André Wollman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nawrocki, W., Santabarbara, S., Mosebach, L. et al. State transitions redistribute rather than dissipate energy between the two photosystems in Chlamydomonas. Nature Plants 2, 16031 (2016). https://doi.org/10.1038/nplants.2016.31

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2016.31

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing