Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fundamental species traits explain provisioning services of tropical American palms

Abstract

The well-being of the global human population rests on provisioning services delivered by 12% of the Earth's 400,000 plant species1. Plant utilization by humans is influenced by species traits24, but it is not well understood which traits underpin different human needs5. Here, we focus on palms (Arecaceae), one of the most economically important plant groups globally6, and demonstrate that provisioning services related to basic needs, such as food and medicine, show a strong link to fundamental functional and geographic traits. We integrate data from 2,201 interviews on plant utilization from three biomes in South America—spanning 68 communities, 43 ethnic groups and 2,221 plant uses—with a dataset of 4 traits (leaf length, stem volume, fruit volume, geographic range size) and a species-level phylogeny7. For all 208 palm species occurring in our study area, we test for relations between their traits and perceived value. We find that people preferentially use large, widespread species rather than small, narrow-ranged species, and that different traits are linked to different uses. Further, plant size and geographic range size are stronger predictors of ecosystem service realization for palm services related to basic human needs than less-basic needs (for example, ritual). These findings suggest that reliance on plant size and availability may have prevented our optimal realization of wild-plant services, since ecologically rare yet functionally important (for example, chemically) clades may have been overlooked. Beyond expanding our understanding of how local people use biodiversity in mega-diverse regions, our trait- and phylogeny-based approach helps to understand the processes that underpin ecosystem service realization, a necessary step to meet societal needs in a changing world with a growing human population5,8.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of study communities.
Figure 2: Phylogenetic distribution of species' traits and of the contribution of 208 palm species to different ecosystem services in northwestern South America.
Figure 3: The hierarchy of human needs, species' traits, and ecosystem services.

Similar content being viewed by others

References

  1. The State of the World's Plants Report (Royal Botanic Gardens, Kew, 2016).

  2. Díaz, S. et al. Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecol. Evol. 3, 2958–2975 (2013).

    Article  Google Scholar 

  3. Diamond, J. Evolution, consequences and future of plant and animal domestication. Nature 418, 700–707 (2002).

    Article  CAS  Google Scholar 

  4. Purugganan, M. D. & Fuller, D. Q. The nature of selection during plant domestication. Nature 457, 843–848 (2009).

    Article  CAS  Google Scholar 

  5. Díaz, S. et al. Linking functional diversity and social actor strategies in a framework for interdisciplinary analysis of nature's benefits to society. Proc. Natl Acad. Sci. USA 108, 895–902 (2011).

    Article  Google Scholar 

  6. Johnson, D. V. Tropical Palms (Food and Agriculture Organization of the United Nations, 2011).

    Google Scholar 

  7. Faurby, S., Eiserhardt, W. L., Baker, W. J. & Svenning, J. C. An all-evidence species-level supertree for the palms (Arecaceae). Mol. Phylogenet. Evol. 100, 57–69 (2016).

    Article  Google Scholar 

  8. Kareiva, P., Watts, S., McDonald, R. & Boucher, T. Domesticated nature: shaping landscapes and ecosystems for human welfare. Science 316, 1866–1869 (2007).

    Article  CAS  Google Scholar 

  9. Roosevelt, A. C., Da Costa, M. L., Machado, C. L. & Michab, M. Paleoindian cave dwellers in the Amazon: the peopling of the Americas. Science 272, 373 (1996).

    Article  CAS  Google Scholar 

  10. Díaz, S., Fargione, J., Chapin, F. S. III & Tilman, D. Biodiversity loss threatens human well-being. PLoS Biol. 4, e277 (2006).

    Article  Google Scholar 

  11. de Bello, F. et al. Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers. Conserv. 19, 2873–2893 (2010).

    Article  Google Scholar 

  12. Kissling, W. D. et al. Quaternary and pre-Quaternary historical legacies in the global distribution of a major tropical plant lineage. Glob. Ecol. Biogeog. 21, 909–921 (2012).

    Article  Google Scholar 

  13. Cámara-Leret, R., Paniagua-Zambrana, N. & Macía, M. J. in Proceedings of the Botany 2011 Symposium Honoring Richard E. Schultes (eds Ponman, B. & Bussmann, R. W. ) 41–71 (Missouri Botanical Garden, 2012).

    Google Scholar 

  14. Macía, M. J. et al. Palm uses in northwestern South America: a quantitative review. Bot. Rev. 77, 462–570 (2011).

    Article  Google Scholar 

  15. Tardío, J. & Pardo-de-Santayana, M. Cultural importance indices: a comparative analysis based on the useful wild plants of southern Cantabria (northern Spain). Econ. Bot. 62, 24–39 (2008).

    Article  Google Scholar 

  16. Westoby, M. A leaf–height–seed (LHS) plant ecology strategy scheme. Plant Soil 199, 213–227 (1998).

    Article  CAS  Google Scholar 

  17. Forest, F. et al. Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445, 757–760 (2007).

    Article  CAS  Google Scholar 

  18. Saslis-Lagoudakis, C. H. et al. Phylogenies reveal predictive power of traditional medicine in bioprospecting. Proc. Natl Acad. Sci. USA 109, 15835–15840 (2012).

    Article  CAS  Google Scholar 

  19. Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).

    Article  CAS  Google Scholar 

  20. Harvey, P. H. & Purvis, A. Comparative methods for explaining adaptations. Nature 351, 619–624 (1991).

    Article  CAS  Google Scholar 

  21. Dransfield, J. et al. Genera Palmarum: The Evolution and Classification of Palms (Kew Publishing, 2008).

    Google Scholar 

  22. Martins, E. P. & Hansen, T. F. Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am. Nat. 149, 646–667 (1997).

    Article  Google Scholar 

  23. Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    Article  Google Scholar 

  24. Cámara-Leret, R., Paniagua-Zambrana, N., Svenning, J.-C., Balslev, H. & Macía, M. J. Geospatial patterns in traditional knowledge serve in assessing intellectual property rights and benefit-sharing in northwest South America. J. Ethnopharmacol. 158, 58–65 (2014).

    Article  Google Scholar 

  25. Maslow, A. H. A theory of human motivation. Psychol. Rev. 50, 370 (1943).

    Article  Google Scholar 

  26. Gruca, M., Cámara-Leret, R., Macía, M. J. & Balslev, H. New categories for traditional medicine in the economic botany data collection standard. J. Ethnopharmacol. 155, 1388–1392 (2014).

    Article  Google Scholar 

  27. Soberón, J. & Peterson, A. T. Biodiversity governance: a tower of Babel of scales and cultures. PLoS Biol. 13, e1002108 (2015).

    Article  Google Scholar 

  28. Cámara-Leret, R., Paniagua-Zambrana, N., Balslev, H. & Macía, M. J. Ethnobotanical knowledge is vastly under-documented in northwestern South America. PLoS ONE 9, e85794 (2014).

    Article  Google Scholar 

  29. Meyer, R. S., DuVal, A. E. & Jensen, H. R. Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol. 196, 29–48 (2012).

    Article  Google Scholar 

  30. Nicotra, A. B. et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15, 684–692 (2010).

    Article  CAS  Google Scholar 

  31. Henderson, A. Evolution and Ecology of Palms (The New York Botanical Garden Press, 2002).

    Google Scholar 

  32. Henderson, A. A multivariate analysis of Hyospathe (Palmae). Am. J. Bot. 91, 953–965 (2004).

    Article  Google Scholar 

  33. Henderson, A. A multivariate study of Calyptrogyne (Palmae). Syst. Bot. 30, 60–83 (2005).

    Article  Google Scholar 

  34. Henderson, A. A revision of Geonoma (Arecaceae). Phytotaxa 17, 1–271 (2011).

    Article  Google Scholar 

  35. Henderson, A. A revision of Desmoncus (Arecaceae). Phytotaxa 35, 1–88 (2011).

    Article  Google Scholar 

  36. Henderson, A. A revision of Pholidostachys (Arecaceae). Phytotaxa 43, 1–48 (2012).

    Article  Google Scholar 

  37. Henderson, A. & Villalba, I. A revision of Welfia (Arecaceae). Phytotaxa 119, 33–44 (2013).

    Article  Google Scholar 

  38. Galeano, G. & Bernal, R. Palmas de Colombia: Guía de Campo (Editorial Universidad Nacional de Colombia, 2010).

    Google Scholar 

  39. Sanín, M. J. & Galeano, G. A revision of the Andean wax palms, Ceroxylon (Arecaceae). Phytotaxa 34, 1–64 (2011).

    Article  Google Scholar 

  40. Göldel, B., Kissling, W. D. & Svenning, J. C. Geographical variation and environmental correlates of functional trait distributions in palms (Arecaceae) across the New World. Bot. J. Linn. Soc. 179, 602–617 (2015).

    Article  Google Scholar 

  41. Balslev, H., Macía, M. J. & Navarrete, H. Cosecha de Palmas en el Noroeste de Suramérica: Bases Científicas Para Su Manejo y Conservación (Pontificia Universidad Católica del Ecuador, 2015).

    Google Scholar 

  42. The Plant List (Royal Botanical Garden, Kew & Missouri Botanical Garden); http://www.theplantlist.org

  43. Bjorholm, S., Svenning, J.-C., Skov, F. & Balslev, H. Environmental and spatial controls of palm (Arecaceae) species richness across the Americas. Glob. Ecol. Biogeogr. 14, 423–429 (2005).

    Article  Google Scholar 

  44. Henderson, A., Galeano, G. & Bernal, R. Field Guide to the Palms of the Americas (Princeton Univ. Press, 1995).

    Google Scholar 

  45. Borchsenius, F. & Bernal, R. Aiphanes (Palmae) (New York Botanical Garden Press on behalf of Organization for Flora Neotropica, 1996).

    Google Scholar 

  46. Kahn, F. The genus Astrocaryum (Arecaceae). Rev. Peru. Biol. 15, 31–48 (2008).

    Google Scholar 

  47. Kahn, F., Millán, B., Pintaud, J.-C. & Machahua, M. Detailed assessment of the distribution of Astrocaryum sect. Huicungo (Arecaceae) in Peru. Rev. Peru. Biol. 18, 279–282 (2011).

    Google Scholar 

  48. Henderson, A. Bactris (Palmae) (New York Botanical Garden Press on behalf of Organization for Flora Neotropica, 2000).

    Google Scholar 

  49. Paniagua-Zambrana, N., Macía, M. J. & Cámara-Leret, R. Toma de datos etnobotánicos de palmeras y variables socioeconómicas en comunidades rurales. Ecol. Bolivia 45, 44–68 (2010).

    Google Scholar 

  50. Borchsenius, F., Pedersen, H. B. & Balslev, H. Manual to the Palms of Ecuador (Aarhus Univ. Press, 1998).

    Google Scholar 

  51. Moraes, M. Flora de palmeras de Bolivia (Plural Editores, 2004).

    Google Scholar 

  52. Thiers, B. Index Herbariorum: A Global Directory of Public Herbaria and Associated Staff. New York Botanical Garden's Virtual Herbarium (New York Botanical Garden, 2016); http://sweetgum.nybg.org/ih/

  53. Cook, F. Economic Botany Data Collection Standard. Prepared for the International Working Group on Taxonomic Databases for Plant Sciences (TDWG) (Royal Botanic Gardens Kew, 1995).

    Google Scholar 

  54. Cámara-Leret, R. et al. Ecological community traits and traditional knowledge shape palm ecosystem services in northwestern South America. Forest Ecol. Manag. 334, 28–42 (2014).

    Article  Google Scholar 

  55. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2015).

  56. Ho, L. S. T. & Ané, C. phylolm: Phylogenetic Linear Regression. R package v.2.5 (2015); https://cran.r-project.org/package=phylolm

  57. Revell, L. J. Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article  Google Scholar 

  58. Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    Article  CAS  Google Scholar 

  59. Spiess, A. & Ritz, C. qpcR: Modelling and analysis of real-time PCR data (R Foundation for Statistical Computing, 2014).

    Google Scholar 

Download references

Acknowledgements

We thank the 68 study communities and participants of our fieldwork interviews. We are also grateful to our partner institutions and their research teams who dedicated resources to facilitate our research. We thank G. Galeano, R. Bernal, J.-C. Pintaud, R. Valencia, H. Navarrete, L. de La Torre, M. Moraes, B. Millán and R. Carrillo for their support and discussions. We extend our gratitude to J.C. Copete, M. Soto Gomez, N. Paniagua, L. Camelo, R. Bussmann and M. Jaimes for assistance in fieldwork, to D. Warren for helpful discussions, to S. Cámara-Leret for contributing palm illustrations, and to I. Cámara-Leret for assistance with design and layout of figures. This study was funded by the European Union, 7th Framework Programme (FP7-PALMS-Contract no. 212631, to H.B.), and also supported by the Russell E. Train Education for Nature Program of the WWF, Anne S. Chatham Fellowship of the Garden Club of America, William L. Brown Center, Universidad Autónoma de Madrid travel grants programme, and a GSST fellowship of Aarhus University. J.-C.S. and B.G. were supported by the European Research Council (ERC-2012-StG-310886-HISTFUNC); C.H.S.-L. and N.R. by the People Programme (Marie Curie Actions) of the European Union's 7th Framework programme (FP7-PEOPLE-2012-IEF-328637 - BiodiversityAltitude); W.D.K. by the Netherlands Organization for Scientific Research (824.15.007) and the University of Amsterdam (starting grant); and H.B. by the Danish National Science Research Council (272-06-0476).

Author information

Authors and Affiliations

Authors

Contributions

R.C.-L. and C.H.S.-L. conceived and designed the study. R.C.-L. and M.J.M. did the ethnobotanical fieldwork. R.C.-L., M.J.M., H.B., S.F., B.G. and W.D.K. provided data. R.C.-L., B.G. and H.B. built new geographic range maps. R.C.-L., C.H.S.-L. and S.F. analysed the data. R.C.-L. and C.H.S.-L. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Rodrigo Cámara-Leret.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–3, Supplementary Tables 1–4. (PDF 1954 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cámara-Leret, R., Faurby, S., Macía, M. et al. Fundamental species traits explain provisioning services of tropical American palms. Nature Plants 3, 16220 (2017). https://doi.org/10.1038/nplants.2016.220

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2016.220

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing