Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Convergence and divergence of bitterness biosynthesis and regulation in Cucurbitaceae

Abstract

Differentiation of secondary metabolite profiles in closely related plant species provides clues for unravelling biosynthetic pathways and regulatory circuits, an area that is still underinvestigated. Cucurbitacins, a group of bitter and highly oxygenated tetracyclic triterpenes, are mainly produced by the plant family Cucurbitaceae. These compounds have similar structures, but differ in their antitumour activities and ecophysiological roles. By comparative analyses of the genomes of cucumber, melon and watermelon, we uncovered conserved syntenic loci encoding metabolic genes for distinct cucurbitacins. Characterization of the cytochrome P450s (CYPs) identified from these loci enabled us to unveil a novel multi-oxidation CYP for the tailoring of the cucurbitacin core skeleton as well as two other CYPs responsible for the key structural variations among cucurbitacins C, B and E. We also discovered a syntenic gene cluster of transcription factors that regulates the tissue-specific biosynthesis of cucurbitacins and may confer the loss of bitterness phenotypes associated with convergent domestication of wild cucurbits. This study illustrates the potential to exploit comparative genomics to identify enzymes and transcription factors that control the biosynthesis of structurally related yet unique natural products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparative analysis of cucurbitacin biosynthetic and regulatory genes in cucumber, melon and watermelon.
Figure 2: Elucidation of the catalytic steps involved in CuB and CuE biosynthesis.
Figure 3: Functional elucidations of a multifunctional and a divergent CYP.
Figure 4: Characterization of the tissue-specific bitterness regulators from melon and watermelon.

Similar content being viewed by others

References

  1. Speed, M. P., Fenton, A., Jones, M. G., Ruxton, G. D. & Brockhurst, M. A. Coevolution can explain defensive secondary metabolite diversity in plants. New Phytol. 208, 1251–1263 (2015).

    Article  Google Scholar 

  2. Metcalf, R. L., Metcalf, R. A. & Rhodes, A. M. Cucurbitacins as kairomones for diabroticite beetles. Proc. Natl Acad. Sci. USA 77, 3769–3772 (1980).

    Article  CAS  Google Scholar 

  3. Da Costa, C. P. & Jones, C. M. Cucumber beetle resistance and mite susceptibility controlled by the bitter gene in Cucumis sativus L. Science 172, 1145–1146 (1971).

    Article  CAS  Google Scholar 

  4. Chen, J. C., Chiu, M. H., Nie, R. L., Cordell, G. A. & Qiu, S. X. Cucurbitacins and cucurbitane glycosides: structures and biological activities. Nat. Prod. Rep. 22, 386–399 (2005).

    Article  CAS  Google Scholar 

  5. Shang, Y. et al. Biosynthesis, regulation, and domestication of bitterness in cucumber. Science 346, 1084–1088 (2014).

    Article  CAS  Google Scholar 

  6. Chen, X. et al. Biological activities and potential molecular targets of cucurbitacins: a focus on cancer. Anticancer Drugs 23, 777–787 (2012).

    Article  CAS  Google Scholar 

  7. Thoennissen, N. H. et al. Cucurbitacin B induces apoptosis by inhibition of the JAK/STAT pathway and potentiates antiproliferative effects of gemcitabine on pancreatic cancer cells. Cancer Res. 69, 5876–5884 (2009).

    Article  CAS  Google Scholar 

  8. Lester, G. Melon (Cucumis melo L.) fruit nutritional quality and health functionality. HortTechnology 7, 222–227 (1997).

    Article  Google Scholar 

  9. Matsuo, K., DeMilo, A. B., Schroder, R. F. W. & Martin, P. A. W. Rapid high-performance liquid chromatography method to quantitate elaterinide in juice and reconstituted residues from a bitter mutant of Hawkesbury watermelon. J. Agric. Food Chem. 47, 2755–2759 (1999).

    Article  CAS  Google Scholar 

  10. Dong, Y. et al. Cucurbitacin E, a tetracyclic triterpenes compound from Chinese medicine, inhibits tumor angiogenesis through VEGFR2-mediated Jak2–STAT3 signaling pathway. Carcinogenesis 31, 2097–2104 (2010).

    Article  CAS  Google Scholar 

  11. Iwanski, G. B. et al. Cucurbitacin B, a novel in vivo potentiator of gemcitabine with low toxicity in the treatment of pancreatic cancer. Br. J. Pharmacol. 160, 998–1007 (2010).

    Article  CAS  Google Scholar 

  12. Zerikly, M. & Challis, G. L. Strategies for the discovery of new natural products by genome mining. ChemBioChem 10, 625–633 (2009).

    Article  CAS  Google Scholar 

  13. Frey, M. et al. Analysis of a chemical plant defense mechanism in grasses. Science 277, 696–699 (1997).

    Article  CAS  Google Scholar 

  14. Winzer, T. et al. A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine. Science 336, 1704–1708 (2012).

    Article  CAS  Google Scholar 

  15. Field, B. & Osbourn, A. E. Metabolic diversification—independent assembly of operon-like gene clusters in different plants. Science 320, 543–547 (2008).

    Article  CAS  Google Scholar 

  16. Itkin, M. et al. Biosynthesis of antinutritional alkaloids in solanaceous crops is mediated by clustered genes. Science 341, 175–179 (2013).

    Article  CAS  Google Scholar 

  17. De Luca, V., Salim, V., Atsumi, S. M. & Yu, F. Mining the biodiversity of plants: a revolution in the making. Science 336, 1658–1661 (2012).

    Article  Google Scholar 

  18. Falara, V. et al. The tomato terpene synthase gene family. Plant Physiol. 157, 770–789 (2011).

    Article  CAS  Google Scholar 

  19. Nützmann, H. W., Huang, A. & Osbourn, A. Plant metabolic clusters–from genetics to genomics. New Phytol. 211, 771–789 (2016).

    Article  Google Scholar 

  20. Chae, L., Kim, T., Nilo-Poyanco, R. & Rhee, S. Y. Genomic signatures of specialized metabolism in plants. Science 344, 510–513 (2014).

    Article  CAS  Google Scholar 

  21. Huang, S. et al. The genome of the cucumber, Cucumis sativus L. Nat. Genet. 41, 1275–1281 (2009).

    Article  CAS  Google Scholar 

  22. Garcia-Mas, J. et al. The genome of melon (Cucumis melo L.). Proc. Natl Acad. Sci. USA 109, 11872–11877 (2012).

    Article  CAS  Google Scholar 

  23. Guo, S. et al. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat. Genet. 45, 51–58 (2013).

    Article  CAS  Google Scholar 

  24. Shibuya, M., Adachi, S. & Ebizuka, Y. Cucurbitadienol synthase, the first committed enzyme for cucurbitacin biosynthesis, is a distinct enzyme from cycloartenol synthase for phytosterol biosynthesis. Tetrahedron 60, 6995–7003 (2004).

    Article  CAS  Google Scholar 

  25. Lenser, T. & Theißen, G. Molecular mechanisms involved in convergent crop domestication. Trends Plant Sci. 18, 704–714 (2013).

    Article  CAS  Google Scholar 

  26. Keeling, C. I. & Bohlmann, J. Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol. 170, 657–675 (2006).

    Article  CAS  Google Scholar 

  27. Field, B. et al. Formation of plant metabolic gene clusters within dynamic chromosomal regions. Proc. Natl Acad. Sci. USA 108, 16116–16121 (2011).

    Article  CAS  Google Scholar 

  28. Zi, J., Mafu, S. & Peters, R. J. To gibberellins and beyond! Surveying the evolution of (di) terpenoid metabolism. Annu. Rev. Plant Biol. 65, 259–286 (2014).

    Article  CAS  Google Scholar 

  29. Matsuba, Y. et al. Evolution of a complex locus for terpene biosynthesis in Solanum. Plant Cell 25, 2022–2036 (2013).

    Article  CAS  Google Scholar 

  30. Chaturvedi, D., Goswami, A., Saikia, P. P., Barua, N. C. & Rao, P. G. Artemisinin and its derivatives: a novel class of anti-malarial and anti-cancer agents. Chem. Soc. Rev. 39, 435–454 (2010).

    Article  CAS  Google Scholar 

  31. Masters, B. A. et al. In vitro myotoxicity of the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, pravastatin, lovastatin, and simvastatin, using neonatal rat skeletal myocytes. Toxicol. Appl. Pharmacol. 131, 163–174 (1995).

    Article  CAS  Google Scholar 

  32. Strømgaard, K. et al. Ginkgolide derivatives for photolabeling studies: preparation and pharmacological evaluation. J. Med. Chem. 45, 4038–4046 (2002).

    Article  Google Scholar 

  33. Ro, D.-K. et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440, 940–943 (2006).

    Article  CAS  Google Scholar 

  34. Paddon, C. J. et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496, 528–532 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Ren (Institute of Microbiology, Chinese Academy of Sciences) for providing the NMR assay platform and L. Han (Institute of Biotechnology, Chinese Academy of Agricultural Sciences) for experimental assistance. The CYPs were named according to the alignment made by D. Nelson (http://drnelson.uthsc.edu/cytochromeP450.html). This work was supported by founding from the National Key R & D Program for Crop Breeding (2016YFD0100307), National Science Fund for Distinguished Young Scholars (31225025 to S.H.), the National Program on Key Basic Research Projects in China (the 973 Program; 2012CB113900), the leading talents of Guangdong province Program (00201515), National Natural Science Foundation of China (31322047, 31401886, 31101550 and 31672171), The Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences (CAAS-ASTIP-IVFCAAS), the Chinese Ministry of Finance (1251610601001), China Postdoctoral Science Foundation (2014M550902), the Discovery Grant from National Science and Engineering Research Council of Canada (NSERC) and Canada Research Chair program to D.-K.R., and the UK Biotechnological and Biological Sciences Research Council Institute Strategic Programme Grant ‘Understanding and Exploiting Plant and Microbial Metabolism’ (BB/J004561/1), the John Innes Foundation, and the Genomes to Natural Products National Institutes of Health Programme grant U01GM110699 awards to A.O. This work was also supported by the Shenzhen Municipal and Dapeng District Governments. Institute of Flowers and Vegetables has two pending patent applications relating to the genes reported in this study.

Author information

Authors and Affiliations

Authors

Contributions

S.H. and Y.S. conceived and organized the research. Y.M., Y.S., J.Z., H.W., Z.L., K.Z., Y.Zhou., M.L., H.Z. and P.H. performed the biology experiments. Y.Zhou., L.D., X.X., Xin.L., Z.Q. and Xiu.L. performed metabolic detection. Y.Zhong, Y.M., Y.S., D.-K.R., J.Z., L.D., X.X., T.L., S.Z., Q.H., J.R., Xin.L., P.H., Z.Q., Xiu.L., Z.Z., H.K. and A.O. performed data analysis. Y.S., D.-K.R., Y.Zhou. and S.H. wrote the manuscript. J.Z., L.D., J.R., P.T., Z.Z., H.K. and A.O. revised the manuscript.

Corresponding authors

Correspondence to Yi Shang or Sanwen Huang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary References, Supplementary Figures 1-22, Supplementary Tables 3 and 4. (PDF 4349 kb)

Supplementary Table 1

Numeric pi values of the SNPs within the domestication sweep region. (XLSX 63 kb)

Supplementary Table 2

Primers used in this study. (XLSX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Ma, Y., Zeng, J. et al. Convergence and divergence of bitterness biosynthesis and regulation in Cucurbitaceae. Nature Plants 2, 16183 (2016). https://doi.org/10.1038/nplants.2016.183

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2016.183

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing