Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transposon-derived small RNA is responsible for modified function of WRKY45 locus

Abstract

Transposable elements (TEs) are an important source for generating small interfering RNAs (siRNAs) in plants and animals. Although TE-siRNA-induced silencing of TEs by RNA-directed DNA methylation (RdDM) in the maintenance of genome integrity has been intensively studied, it is unknown whether this type of silencing occurs in suppressing endogenous non-TE genes during host–pathogen interactions. Here we show that a TE-siRNA, TE-siR815, causes opposite functions for the two alleles, WRKY45-1 and WRKY45-2, of the WRKY45 transcription factor in rice resistance to Xanthomonas oryzae pv. oryzae, which causes the most devastating bacterial disease in rice worldwide. Expression of WRKY45-1, but not WRKY45-2, generated TE-siR815, which in turn repressed ST1, an important component in WRKY45-mediated resistance, by RdDM. Suppression of ST1 abolished WRKY45-mediated resistance leading to pathogen susceptibility. These results suggest that TE-siR815 contributes to the natural variation of the WRKY45 locus and TE-siR815-induced suppression of ST1 results in the negative role of WRKY45-1 but positive role of WRKY45-2 in regulating disease resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rice TE-derived sRNA TE-siR815/osa-miR815.
Figure 2: TE-siR815 expression was associated with WRKY45-1 expression in leaves.
Figure 3: Overexpressing WRKY45-1.2 enhanced resistance to Xoo PXO61.
Figure 4: Overexpressing TE-siR815b blocked WRKY45-1.2- and WRKY45-2-mediated resistance.
Figure 5: Transcriptional activation of ST1 was associated with WRKY45-2-mediated resistance.
Figure 6: OsRDR2 and OsDCL3a influenced the generation of TE-siR815 and methylation of ST1.

Similar content being viewed by others

References

  1. Arikit, S., Zhai, J. & Meyers, B. C. Biogenesis and function of rice small RNAs from non-coding RNA precursors. Curr. Opin. Plant Biol. 16, 170–179 (2013).

    Article  CAS  Google Scholar 

  2. Bologna, N. G. & Voinnet, O. The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu. Rev. Plant Biol. 65, 473–503 (2014).

    Article  CAS  Google Scholar 

  3. Meyers, B. C. et al. Criteria for annotation of plant microRNAs. Plant Cell 20, 3186–3190 (2008).

    Article  CAS  Google Scholar 

  4. Wu, L. et al. DNA methylation mediated by a microRNA pathway. Mol. Cell 38, 465–475 (2010).

    Article  CAS  Google Scholar 

  5. Chen, X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303, 2022–2025 (2004).

    Article  CAS  Google Scholar 

  6. Voinnet, O. Origin, biogenesis, and activity of plant microRNAs. Cell 136, 669–687 (2009).

    Article  CAS  Google Scholar 

  7. Pelaez, P. & Sanchez, F. Small RNAs in plant defense responses during viral and bacterial interactions: similarities and differences. Front. Plant Sci. 4, 343 (2013).

    Article  Google Scholar 

  8. Wessler, S. R. Transposable elements and the evolution of eukaryotic genomes. Proc. Natl Acad. Sci. USA 103, 17600–17601 (2006).

    Article  CAS  Google Scholar 

  9. Lisch, D. How important are transposons for plant evolution? Nature Rev. Genet. 14, 49–61 (2013).

    Article  CAS  Google Scholar 

  10. Lu, C. et al. Miniature inverted-repeat transposable elements (MITEs) have been accumulated through amplification bursts and play important roles in gene expression and species diversity in Oryza sativa. Mol. Biol. Evol. 29, 1005–1017 (2012).

    Article  CAS  Google Scholar 

  11. Chinnusamy, V. & Zhu, J. K. RNA-directed DNA methylation and demethylation in plants. Sci. China C Life Sci. 52, 331–343 (2009).

    Article  CAS  Google Scholar 

  12. Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nature Rev. Genet. 11, 204–220 (2010).

    Article  CAS  Google Scholar 

  13. Matzke, M., Kanno, T., Huettel, B., Daxinger, L. & Matzke, A. J. Targets of RNA-directed DNA methylation. Curr. Opin. Plant Biol. 10, 512–519 (2007).

    Article  CAS  Google Scholar 

  14. Lippman, Z. et al. Role of transposable elements in heterochromatin and epigenetic control. Nature 430, 471–476 (2004).

    Article  CAS  Google Scholar 

  15. Liu, J., He, Y., Amasino, R. & Chen, X. siRNAs targeting an intronic transposon in the regulation of natural flowering behavior in Arabidopsis. Genes Dev. 18, 2873–2878 (2004).

    Article  CAS  Google Scholar 

  16. Huettel, B. et al. Endogenous targets of RNA-directed DNA methylation and Pol IV in Arabidopsis. EMBO J. 25, 2828–2836 (2006).

    Article  CAS  Google Scholar 

  17. Kinoshita, Y. et al. Control of FWA gene silencing in Arabidopsis thaliana by SINE-related direct repeats. Plant J. 49, 38–45 (2007).

    Article  CAS  Google Scholar 

  18. Fujimoto, R. et al. Epigenetic variation in the FWA gene within the genus Arabidopsis. Plant J. 66, 831–843 (2011).

    Article  CAS  Google Scholar 

  19. Wei, L. et al. Dicer-like 3 produces transposable element-associated 24-nt siRNAs that control agricultural traits in rice. Proc. Natl Acad. Sci. USA 111, 3877–3882 (2014).

    Article  CAS  Google Scholar 

  20. Katiyar-Agarwal, S. & Jin, H. Role of small RNAs in host–microbe interactions. Annu. Rev. Phytopathol. 48, 225–246 (2010).

    Article  CAS  Google Scholar 

  21. Li, Y. et al. Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiol. 152, 2222–2231 (2010).

    Article  CAS  Google Scholar 

  22. Navarro, L. et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312, 436–439 (2006).

    Article  CAS  Google Scholar 

  23. Zhang, H. & Wang, S. Rice versus Xanthomonas oryzae pv. oryzae: a unique pathosystem. Curr. Opin. Plant Biol. 16, 188–195 (2013).

    Article  Google Scholar 

  24. Tao, Z. et al. A pair of allelic WRKY genes play opposite roles in rice–bacteria interactions. Plant Physiol. 151, 936–948 (2009).

    Article  CAS  Google Scholar 

  25. Bureau, T. E., Ronald, P. C. & Wessler, S. R. A computer-based systematic survey reveals the predominance of small inverted-repeat elements in wild-type rice genes. Proc. Natl Acad. Sci. USA 93, 8524–8529 (1996).

    Article  CAS  Google Scholar 

  26. Luo, Y. C. et al. Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development. FEBS Lett. 580, 5111–5116 (2006).

    Article  CAS  Google Scholar 

  27. Chen, X. Small RNAs in development — insights from plants. Curr. Opin. Genet. Dev. 22, 361–367 (2012).

    Article  Google Scholar 

  28. Nosaka, M. et al. Role of transposon-derived small RNAs in the interplay between genomes and parasitic DNA in rice. PLoS Genet. 8, e1002953 (2012).

    Article  CAS  Google Scholar 

  29. Shimono, M. et al. Rice WRKY45 plays important roles in fungal and bacterial disease resistance. Mol. Plant Pathol. 13, 83–94 (2012).

    Article  CAS  Google Scholar 

  30. Sharma, R. et al. Rice cytosine DNA methyltransferases — gene expression profiling during reproductive development and abiotic stress. FEBS J. 276, 6301–6311 (2009).

    Article  CAS  Google Scholar 

  31. Cao, X. et al. Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation. Curr. Biol. 13, 2212–2217 (2003).

    Article  CAS  Google Scholar 

  32. Chan, S. W. et al. RNA silencing genes control de novo DNA methylation. Science 303, 1336 (2004).

    Article  CAS  Google Scholar 

  33. Moritoh, S. et al. Targeted disruption of an orthologue of DOMAINS REARRANGED METHYLASE 2, OsDRM2, impairs the growth of rice plants by abnormal DNA methylation. Plant J. 71, 85–98 (2012).

    Article  CAS  Google Scholar 

  34. Matzke, M. A. & Mosher, R. A. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nature Rev. Genet. 15, 394–408 (2014).

    Article  CAS  Google Scholar 

  35. Cheng, H. et al. The WRKY45-2 WRKY13 WRKY42 transcriptional regulatory cascade is required for rice resistance to fungal pathogen. Plant Physiol. 167, 1087–1099 (2015).

    Article  CAS  Google Scholar 

  36. Shimono, M. et al. Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance. Plant Cell 19, 2064–2076 (2007).

    Article  CAS  Google Scholar 

  37. Schauer, S. E., Jacobsen, S. E., Meinke, D. W. & Ray, A. DICER-LIKE1 blind men and elephants in Arabidopsis development. Trends Plant Sci. 7, 487–491 (2002).

    Article  CAS  Google Scholar 

  38. Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B. & Bartel, D. P. MicroRNAs in plants. Genes Dev. 16, 1616–1626 (2002).

    Article  CAS  Google Scholar 

  39. Liu, B. et al. Loss of function of OsDCL1 affects microRNA accumulation and causes developmental defects in rice. Plant Physiol. 139, 296–305 (2005).

    Article  CAS  Google Scholar 

  40. Tao, Z. et al. OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice. J. Exp. Bot. 62, 4863–4874 (2011).

    Article  CAS  Google Scholar 

  41. Jeong, D. H. et al. Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J. 45, 123–132 (2006).

    Article  CAS  Google Scholar 

  42. Song, X. et al. Roles of DCL4 and DCL3b in rice phased small RNA biogenesis. Plant J. 69, 462–474 (2012).

    Article  CAS  Google Scholar 

  43. Cao, Y. et al. The expression pattern of a rice disease resistance gene Xa3/Xa26 is differentially regulated by the genetic backgrounds and developmental stages that influence its function. Genetics 177, 523–533 (2007).

    Article  CAS  Google Scholar 

  44. Zhao, J., Fu, J., Li, X., Xu, C. & Wang, S. Dissection of the factors affecting development-controlled and race-specific disease resistance conferred by leucine-rich repeat receptor kinase-type R genes in rice. Theor. Appl. Genet. 119, 231–239 (2009).

    Article  Google Scholar 

  45. Yuan, B., Shen, X., Li, X., Xu, C. & Wang, S. Mitogen-activated protein kinase OsMPK6 negatively regulates rice disease resistance to bacterial pathogens. Planta 226, 953–960 (2007).

    Article  CAS  Google Scholar 

  46. Lin, Y. & Zhang, Q. Optimising the tissue culture conditions for high efficiency transformation of Indica rice. Plant Cell Rep. 23, 540–547 (2005).

    Article  CAS  Google Scholar 

  47. Chen, H., Wang, S. & Zhang, Q. New gene for bacterial blight resistance in rice located on chromosome 12 identified from Minghui 63, an elite restorer line. Phytopathology 92, 750–754 (2002).

    Article  CAS  Google Scholar 

  48. Dalmay, T., Hamilton, A., Mueller, E. & Baulcombe, D. C. Potato virus X amplicons in Arabidopsis mediate genetic and epigenetic gene silencing. Plant Cell 12, 369–379 (2000).

    Article  CAS  Google Scholar 

  49. Qi, Y., Denli, A. M. & Hannon, G. J. Biochemical specialization within Arabidopsis RNA silencing pathways. Mol. Cell 19, 421–428 (2005).

    Article  CAS  Google Scholar 

  50. Gruntman, E. et al. Kismeth: analyzer of plant methylation states through bisulfite sequencing. BMC Bioinformatics 9, 371 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Y. Qi (Tsinghua University), X. Cao (the Institute of Genetics and Developmental Biology), G. An (Kyung Hee University) and D. Zhou (Huazhong Agricultural University) for kindly providing rice seeds, RDR2, DCL and DRM2 RNAi lines or mutants and the sRNA PAGE–northern protocol. We also thank C. Zhou for help with DNA methylation analysis. This work was supported by grants from the National Natural Science Foundation of China (grant nos 31471757 and 31200912) and the National Program on the Development of Basic Research in China (grant no. 2012CB114005).

Author information

Authors and Affiliations

Authors

Contributions

H.Z. designed the study, conducted most of the experiments, analysed the data and drafted the manuscript; Z.T., H.H., Z.C. and C.W. helped to generate some transgenic plants and small RNA sequencing; J.X. and X.L. provided biochemical and molecular analysis support and management; and S.W. designed and supervised the study, interpreted data and revised the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Shiping Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Tao, Z., Hong, H. et al. Transposon-derived small RNA is responsible for modified function of WRKY45 locus. Nature Plants 2, 16016 (2016). https://doi.org/10.1038/nplants.2016.16

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2016.16

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing