Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tracing ancestor rice of Suriname Maroons back to its African origin

Abstract

African rice (Oryza glaberrima) and African cultivation practices are said to have influenced emerging colonial plantation economies in the Americas1,2. However, the level of impact of African rice practices is difficult to establish because of limited written or botanical records2,3. Recent findings of O. glaberrima in rice fields of Suriname Maroons bear evidence of the high level of knowledge about rice among African slaves and their descendants, who consecrate it in ancestor rituals4,5. Here we establish the strong similarity, and hence likely origin, of the first extant New World landrace of O. glaberrima to landraces from the Upper Guinean forests in West Africa. We collected African rice from a Maroon market in Paramaribo, Suriname, propagated it, sequenced its genome6 and compared it with genomes of 109 accessions representing O. glaberrima diversity across West Africa. By analysing 1,649,769 single nucleotide polymorphisms (SNPs) in clustering analyses, the Suriname sample appears sister to an Ivory Coast landrace, and shows no evidence of introgression from Asian rice. Whereas the Dutch took most slaves from Ghana, Benin and Central Africa7, the diaries of slave ship captains record the purchase of food for provisions when sailing along the West African Coast8, offering one possible explanation for the patterns of genetic similarity. This study demonstrates the utility of genomics in understanding the largely unwritten histories of crop cultures of diaspora communities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Logbook entry of the Dutch slave ship D'Eenigheid.
Figure 2: The Surinamese Oryza glaberrima sample (TVA5634) that was propagated to sequence its genome.
Figure 3: Comparison of the Surinamese sample with 109 accessions representing O. glaberrima diversity across West Africa.
Figure 4: Heat map of clustering similarity distances to the Surinamese sample, and clustering tree.

Similar content being viewed by others

References

  1. Wood, P. H. Black Majority: Negroes in Colonial South Carolina from 1670 through the Stono Rebellion (A.A. Knopf Inc., 1974).

    Google Scholar 

  2. Carney, J. A. Black Rice: The African Origins of Rice Cultivation in the Americas (Harvard Univ. Press, 2009).

    Google Scholar 

  3. Portères, R. Présence ancienne d'une variété cultivée d’Oryza glaberrima Steud. en Guyane Française. J. Agric. Trop. Bot. Appl. 2, 680 (1955).

    Google Scholar 

  4. Van Andel, T. R. African rice (Oryza glaberrima Steud.): lost crop of the enslaved Africans discovered in Suriname. Econ. Bot. 64, 1–10 (2010).

    Article  Google Scholar 

  5. Van Andel, T. R., Van der Velden, A. & Reijers, M. The ‘Botanical Gardens of the Dispossessed’ revisited: richness and significance of Old World crops grown by Suriname Maroons. Genet. Resour. Crop Evol. 63, 695–710 (2016).

    Article  Google Scholar 

  6. Gronau, I., Hubisz, M. J., Gulko, B., Danko, C. G. & Siepel, A. Bayesian inference of ancient human demography from individual genome sequences. Nat. Genet. 43, 1031–1034 (2011).

    Article  CAS  Google Scholar 

  7. Eltis, D. & Richardson, D. Atlas of the Transatlantic Slave Trade (Yale Univ. Press, 2010).

    Google Scholar 

  8. MCC Slave Voyage the Unity 1761-1763. http://eenigheid.slavenhandelmcc.nl/?lang=en (2013).

  9. Carney, J. A. & Rosomoff, R. N. In the Shadow of Slavery: Africa's Botanical Legacy in the Atlantic World (Univ. California Press, 2009).

    Google Scholar 

  10. Voeks, R. A. & Rashford, J. African Ethnobotany in the Americas (Springer, 2012).

    Google Scholar 

  11. Meyer, R. S. et al. Domestication history and geographic adaptation inferred from a SNP map of African rice. Nat. Genet. 48, 1083–1088 (2016).

    Article  CAS  Google Scholar 

  12. Molina, J. et al. Molecular evidence for a single evolutionary origin of domesticated rice. Proc. Natl. Acad. Sci. 108, 8351–8356 (2011).

    Article  CAS  Google Scholar 

  13. Gilbert, E. in Rice: Global Networks and New Histories (ed. Bray, F. et al.) 212–228 (Cambridge Univ. Press, 2015).

    Book  Google Scholar 

  14. Nuijten, E., van Treuren, R., Struik, P. C., Mokuwa, A. & Okry, F. Evidence for the emergence of new rice types of interspecific hybrid origin in West African farmers’ fields. PLoS ONE 4, e7335 (2009).

    Article  Google Scholar 

  15. Sakagami, J. I., Joho, Y. & Sone, C. Complete submergence escape with shoot elongation ability by underwater photosynthesis in African rice, Oryza glaberrima Steud. F. Crop. Res. 152, 17–26 (2013).

    Article  Google Scholar 

  16. Collinson, P. Of the introduction of rice and tar in our colonies. Gentleman's Magazine 278–280 (1766).

  17. Vaillant, M. Milieu cultural et classification des variétés de riz des Guyanes française et hollandaise. Rev. Int. Bot. Appl. d'Agriculture Trop. 28, 520–529 (1948).

    Google Scholar 

  18. Herlein, J. D. Beschryvinge van de volk-plantinge Zuriname (Meindert Injema, 1718).

    Google Scholar 

  19. Stedman, J. G. Narrative of a Five Years’ Expedition, against the Revolted Negroes of Surinam 1790 (Johns Hopkins Univ. Press, 1988).

    Google Scholar 

  20. Price, S. Co-Wives and Calabashes (Univ. Michigan Press, 1993).

    Book  Google Scholar 

  21. Geijskes, D. C. De landbouw bij de Bosnegers van de Marowijne. West-Indische Gids. 35, 135–153 (1955).

    Article  Google Scholar 

  22. Baumgart, I. R., HilleRisLambers, D., Khodabaks, M. R. & Wildschut, J. Visit to rice growing sites on the Upper Suriname River between Nieuw Aurora and Abenaston, June 7-10 1998 (ADRON, 1998).

    Google Scholar 

  23. Wang, M. et al. The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication. Nat. Genet. 46, 982–988 (2014).

    Article  CAS  Google Scholar 

  24. Mehra, P., Pandey, B. K. & Giri, J. Genome-wide DNA polymorphisms in low Phosphate tolerant and sensitive rice genotypes. Sci. Rep. 5, 13090 (2015).

    Article  CAS  Google Scholar 

  25. Shah, S. M., Arif, M., Aslam, K., Shabir, G. & Thomson, M. J. Genetic diversity analysis of Pakistan rice (Oryza sativa) germplasm using multiplexed single nucleotide polymorphism markers. Genet. Resour. Crop. Evol. 63, 1113–1126 (2016).

    Article  CAS  Google Scholar 

  26. Aflitos, S. A. et al. Introgression browser: high-throughput whole-genome SNP visualization. Plant J. 82, 174–182 (2015).

    Article  CAS  Google Scholar 

  27. Fields-Black, E. L. Deep Roots: Rice Farmers in West Africa and the African Diaspora (Indiana Univ. Press, 2008).

    Google Scholar 

  28. Portères, R. in Origins of African Plant Domestication (ed. Harlan, J. R. ) 409–452 (Mouton Publishers, 1976).

    Google Scholar 

  29. Harlan, J. R. Origins of African Plant Domestication (Mouton Publishers, 1976).

    Book  Google Scholar 

  30. Van Andel, T. R. et al. Local plant names reveal that enslaved Africans recognized substantial parts of the New World flora. Proc. Natl Acad. Sci. USA 111, E5346–E5353 (2014).

    Article  CAS  Google Scholar 

  31. van Andel, T. R., Behari-Ramdas, J. A., Havinga, R. M. & Groenendijk, S. The medicinal plant trade in Suriname. Ethnobot. Res. Appl. 5, 351–372 (2007).

    Article  Google Scholar 

  32. Taxon: Oryza glaberrima. Accession number AMD 20101002 Hortus Botanicus Amsterdam, the Netherlands; http://dehortus.gardenexplorer.org/taxon-3625.aspx

  33. Joshi, N. A. & Fass, J. N. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files Version 1.33 (2011); https://github.com/najoshi/sickle

  34. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).

    Article  Google Scholar 

  35. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  Google Scholar 

  36. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  Google Scholar 

  37. Daneck, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    Article  Google Scholar 

  38. Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  CAS  Google Scholar 

  39. Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2016).

    Article  Google Scholar 

  40. Price, M. N., Dehal, P. S. & Arkin, A. P. Fasttree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    Article  Google Scholar 

  41. Huerta-Cepas, J., Dopazo, J. & Gabaldón, T. ETE: a python environment for tree exploration. BMC Bioinformatics 11, 24 (2010).

    Article  Google Scholar 

  42. Nychka, D., Furrer, R., Paige, J. & Sain, S. Fields: Tools for Spatial Data R package version 8.3-6 (2016).

  43. Hijmans, R. J. Raster: Geographic Data Analysis and Modeling R package version 2.5-2 (2015); https://cran.r-project.org/package=raster

  44. South, A. Rworldmap: a new R package for mapping global data. R. J. 3, 35–43 (2011).

    Article  Google Scholar 

  45. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2012); http://www.r-project.org

  46. Freedman, A. H. et al. Genome sequencing highlights the dynamic early history of dogs. PLoS Genet. 10, e1004016 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank rice farmers in Jawjaw, Mundje Kreek, Mooytaki and Paramaribo for sharing their knowledge on African rice with us. T. Polimé and B. Poeketie facilitated fieldwork in Maroon communities. C.-R. Lee helped us with the TPS analysis. This research was funded by the Biosystematics group of Wageningen University, Naturalis Biodiversity Center (Leiden), as well as support from NSF Plant Genome to R.S.M. (IOS-1202803) and M.D.P. (IOS-1126971), a TKI-Horticulture Grant to M.E.S. and S.A.A., grants from the US National Science Foundation and the NYU Abu Dhabi Research Institute to J.M.F., and the AXA Chair in Genome Biology and Evolutionary Genomics to R.A.W.

Author information

Authors and Affiliations

Authors

Contributions

T.R.v.A. conducted the fieldwork in Suriname, and wrote the paper with contributions and input from all co-authors. T.R.v.A. and M.E.S. conceived and guided the research. R.M.H. maintained the living collection of Oryza glaberrima from Suriname used in this project. D.C. performed sequencing and assisted with data analysis. R.S.M. and J.M.F. performed alignments, SNP calling, and clustering analyses. S.A.A. and M.A.V. performed phylogenomic and TPS analysis. J.A.C. and H.M. provided background on the geographical and historical aspects of West African rice, slavery and Suriname. R.A.W. and M.D.P. helped to collect the data.

Corresponding authors

Correspondence to Tinde R. van Andel or Rachel S. Meyer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figure 1-5 (PDF 548 kb)

Supplementary Table 1

Background information on the 110 Oryza glaberrima samples used for analysis, including mean depth of sequencing coverage, accession codes, collection locations and clustering distance to Surinamese sample (suri_glab_SUR). (XLSX 24 kb)

Supplementary Table 2

Per cent heterozygosity of African rice accessions with additional country labels. (XLSX 51 kb)

Supplementary Table 3

Filtering of polymorphisms. Multi Nucleotide Polymorphisms (MNP) were always excluded. Heterozygous (HET) SNPs and regions with no coverage (NC) were tentatively excluded as well but their frequency was too high. (XLSX 8 kb)

Supplementary Table 4

Top 10 EIGENSTRAT principal components of the 110 Oryza glaberrima samples. (XLSX 21 kb)

Supplementary Table 5

Ethnolinguistic information on sample provenances. Ethnolinguistic classification of locations from which the samples were collected. (XLSX 14 kb)

Supplementary Table 6

Genetic distance between the O. glaberrima samples. Kruskal-Wallis multiple comparison tests. A Kruskal-Wallis test showed significant differences in genetic distances to the Surinamese sample by country (where country n>1) (Kruskal-Wallis chi-squared = 53.809, df = 11, p-value = 1.279e-07). Results reported are for the multiple comparison test following Kruskal-Wallis set to Bonferroni significance of alpha = 0.05 after correction for 66 tests (P<0.00075). (XLSX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Andel, T., Meyer, R., Aflitos, S. et al. Tracing ancestor rice of Suriname Maroons back to its African origin. Nature Plants 2, 16149 (2016). https://doi.org/10.1038/nplants.2016.149

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2016.149

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene