Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Arabidopsis NAC transcription factor JUB1 regulates GA/BR metabolism and signalling

Abstract

Gibberellins (GAs) and brassinosteroids (BRs) are important phytohormones that control plant development and responses to environmental cues by involving DELLA proteins and BRASSINAZOLE-RESISTANT1 (BZR1) respectively as key transcription factors. Here, we reveal a new role for JUNGBRUNNEN1 (JUB1) as a transcriptional regulator of GA/BR signalling in Arabidopsis thaliana. JUB1 directly represses the hormone biosynthesis genes GA3ox1 and DWARF4 (DWF4), leading to reduced levels of GAs and BRs and typical GA/BR deficiency phenotypes exhibiting short hypocotyls, dwarfism, late flowering and male sterility. JUB1 also directly represses PHYTOCHROME INTERACTING FACTOR4 (PIF4), a transcription factor connecting hormonal and environmental stimuli. On the other hand, JUB1 activates the DELLA genes GA INSENSITIVE (GAI) and RGA-LIKE 1 (RGL1). In addition, BZR1 and PIF4 act as direct transcriptional repressors upstream of JUB1, establishing a negative feedback loop. Thus, JUB1 forms the core of a robust regulatory module that triggers DELLA accumulation, thereby restricting cell elongation while concomitantly enhancing stress tolerance.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plants overexpressing JUB1 exhibit a typical phenotype of GA- and/or BR-deficient mutants.
Figure 2: JUB1 regulation of GA- and BR-associated genes.
Figure 3: GA/BR-related growth phenotypes of JUB1-OX plants are fully rescued by overexpression of GA3ox1 and DWF4.
Figure 4: Suppression of growth by JUB1 requires DELLA proteins.
Figure 5: PIF4 and BZR1 directly repress JUB1 transcription.
Figure 6: A model for JUB1 function in the regulation of cell elongation and stress responses.

Similar content being viewed by others

References

  1. Bai, M.-Y. et al. Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nature Cell Biol. 14, 810–817 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Li, Q.-F. et al. An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis. Sci. Signal. 5, ra72 (2012).

    PubMed  Google Scholar 

  3. Franklin, K. A., Toledo-Ortiz, G., Pyott, D. E. & Halliday, K. J. Interaction of light and temperature signalling. J. Exp. Bot. 65, 2859–2871 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Clouse, S. D. & Sasse, J. M. Brassinosteroids: essential regulators of plant growth and development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 427–451 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Fleet, C. M. & Sun, T. A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr. Opin. Plant Biol. 8, 77–85 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Zhu, J.-Y., Sae-Seaw, J. & Wang, Z.-Y. Brassinosteroid signalling. Development 140, 1615–1620 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Symons, G. M., Ross, J. J., Jager, C. E. & Reid, J. B. Brassinosteroid transport. J. Exp. Bot. 59, 17–24 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Fujioka, S. & Yokota, T. Biosynthesis and metabolism of brassinosteroids. Annu. Rev. Plant Biol. 54, 137–164 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Hedden, P. & Phillips, A. L. Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci. 5, 523–530 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Olszewski, N., Sun, T.-P. & Gubler, F. Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14, S61–S80 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li, J., Nagpal, P., Vitart, V., McMorris, T. C. & Chory, J. A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272, 398–401 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Hedden, P. & Kamiya, Y. Gibberellin biosynthesis: enzymes, genes and their regulation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 431–460 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Kim, H. B. et al. The regulation of DWARF4 expression is likely a critical mechanism in maintaining the homeostasis of bioactive brassinosteroids in Arabidopsis. Plant Physiol. 140, 548–557 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim, T.-W., Guan, S., Burlingame, A. L. & Wang, Z.-Y. The CDG1 kinase mediates brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2. Mol. Cell 43, 561–571 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tang, W. et al. PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1. Nature Cell Biol. 13, 124–131 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Yin, Y. et al. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109, 181–191 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Mitchum, M. G. et al. Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development. Plant J. 45, 804–818 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Hu, J. et al. Potential sites of bioactive gibberellin production during reproductive growth in Arabidopsis. Plant Cell 20, 320–336 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ueguchi-Tanaka, M. et al. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437, 693–698 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Achard, P. et al. The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20, 2117–2129 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Achard, P., Renou, J.-P., Berthomé, R., Harberd, N. P. & Genschik, P. Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr. Biol. 18, 656–660 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Achard, P. et al. Integration of plant responses to environmentally activated phytohormonal signals. Science 311, 91–94 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Colebrook, E. H., Thomas, S. G., Phillips, A. L. & Hedden, P. The role of gibberellin signalling in plant responses to abiotic stress. J. Exp. Biol. 217, 67–75 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. De Lucas, M. et al. A molecular framework for light and gibberellin control of cell elongation. Nature 451, 480–484 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Wu, A. et al. JUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis. Plant Cell 24, 482–506 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Noguchi, T. Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiol. 121, 743–752 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Clouse, S. D. Arabidopsis mutants reveal multiple roles for sterols in plant development. Plant Cell 14, 1995–2000 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rauf, M. et al. NAC transcription factor speedy hyponastic growth regulates flooding-induced leaf movement in Arabidopsis. Plant Cell 25, 4941–4955 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Choe, S. et al. The Arabidopsis dwf7/ste1 mutant is defective in the delta7 sterol C-5 desaturation step leading to brassinosteroid biosynthesis. Plant Cell 11, 207–221 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tyler, L. et al. Della proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol. 135, 1008–1019 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, Z.-Y. et al. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev. Cell 2, 505–513 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Shahnejat-Bushehri, S., Mueller-Roeber, B. & Balazadeh, S. Arabidopsis NAC transcription factor JUNGBRUNNEN1 affects thermomemory-associated genes and enhances heat stress tolerance in primed and unprimed conditions. Plant Signal. Behav. 7, 1518–1521 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Noh, Y.-S. & Amasino, R. M. Identification of a promoter region responsible for the senescence-specific expression of SAG12. Plant Mol. Biol. 41, 181–194 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, F. et al. Biochemical insights on degradation of Arabidopsis DELLA proteins gained from a cell-free assay system. Plant Cell 21, 2378–2390 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pruneda-Paz, J. L. et al. A genome-scale resource for the functional characterization of Arabidopsis transcription factors. Cell Rep. 8, 622–632 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Oh, E., Zhu, J.-Y. & Wang, Z.-Y. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nat. Cell Biol. 14, 802–809 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tong, H. et al. Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. Plant Cell 26, 4376–4393 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Unterholzner, S. J. et al. Brassinosteroids are master regulators of gibberellin biosynthesis in Arabidopsis. Plant Cell 27, 2261–2272 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Davière, J.-M. & Achard, P. Gibberellin signaling in plants. Development 140, 1147–1151 (2013).

    Article  PubMed  Google Scholar 

  40. Marín-de la Rosa, N. et al. Large-scale identification of gibberellin-related transcription factors defines group VII ETHYLENE RESPONSE FACTORS as functional DELLA partners. Plant Physiol. 166, 1022–1032 (2014).

    Article  PubMed  Google Scholar 

  41. Karimi, M., Inzé, D. & Depicker, A. GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7, 193–195 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Skirycz, A. et al. DOF transcription factor AtDof1.1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis. Plant J. 47, 10–24 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Balazadeh, S., Riaño-Pachón, D. M. & Mueller-Roeber, B. Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biol. (Stuttg). 10, 63–75 (2008).

    Article  Google Scholar 

  44. Caldana, C., Scheible, W.-R., Mueller-Roeber, B. & Ruzicic, S. A quantitative RT-PCR platform for high-throughput expression profiling of 2500 rice transcription factors. Plant Methods 3, 7 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zentella, R. et al. Global analysis of della direct targets in early gibberellin signaling in Arabidopsis. Plant Cell 19, 3037–3057 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sakuraba, Y. et al. Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis. Nature Commun. 5, 4636 (2014).

    Article  CAS  Google Scholar 

  47. Kim, B. et al. Darkness and gulliver2/phyB mutation decrease the abundance of phosphorylated BZR1 to activate brassinosteroid signaling in Arabidopsis. Plant J. 77, 737–747 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kaufmann, K. et al. Chromatin immunoprecipitation (ChIP) of plant transcription factors followed by sequencing (ChIP-SEQ) or hybridization to whole genome arrays (ChIP-CHIP). Nature Protoc. 5, 457–472 (2010).

    Article  CAS  Google Scholar 

  49. Urbanová, T., Tarkowská, D., Novák, O., Hedden, P. & Strnad, M. Analysis of gibberellins as free acids by ultra performance liquid chromatography-tandem mass spectrometry. Talanta 112, 85–94 (2013).

    Article  PubMed  Google Scholar 

  50. Swaczynová, J. et al. New techniques for the estimation of naturally occurring brassinosteroids. J. Plant Growth Regul. 26, 1–14 (2007).

    Article  Google Scholar 

  51. Rittenberg, D. & Foster, G. L. A new procedure for quantitative analysis by isotope dilution, with application to the determination of amino acids and fatty acids. J. Biol. Chem. 133, 737–744 (1940).

    CAS  Google Scholar 

  52. Castrillo, G. et al. Speeding cis-trans regulation discovery by phylogenomic analyses coupled with screenings of an arrayed library of Arabidopsis transcription factors. PLoS ONE 6, e21524 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Senthil-Kumar, M. & Mysore, K. S. Tobacco rattle virus-based virus-induced gene silencing in Nicotiana benthamiana. Nature Protoc. 9, 1549–1562 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.B. thanks the Deutsche Forschungsgemeinschaft for funding (grant no. BA 4769/2-1). The work on hormone measurements was funded by the Ministry of Education, Youth and Sports of the Czech Republic (National Program for Sustainability I Nr. LO1204 and the ‘Návrat’ programme LK21306) and by a Grant Agency of the Czech Republic (grant no. 14-34792S). Y.S. thanks the National Research Foundation of Korea (grant no. 500-20140212) for funding. We thank S. Choe (Seoul National University, Korea) for providing seeds of the 35S:BZR1–HA and DWF4prom:GUS lines, S. A. Kay (University of California, San Diego, La Jolla) for providing the Y1H library (made available through Pascal Falter-Braun, Technische Universität München), Karin Koehl and her team (MPI of Molecular Plant Physiology) for plant care and E. Maximova (MPI of Molecular Plant Physiology) for help with microscopy work. Support by the University of Potsdam and the MPI of Molecular Plant Physiology is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

S.B. conceived the idea for the study and supervised the work. S.S.-B. carried out the experiments. Y.S. did expression analysis of JUB1 in 35S:PIF4–myc and 35S:BZR1–HA lines, ChIP-qPCR assays to show binding of BZR1 and PIF4 to the JUB1 promoter, and Y2H experiments. D.T. performed the GA and BR analyses. S.B. and S.S.-B. wrote the manuscript; S.B. did the final editing.

Corresponding author

Correspondence to Salma Balazadeh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahnejat-Bushehri, S., Tarkowska, D., Sakuraba, Y. et al. Arabidopsis NAC transcription factor JUB1 regulates GA/BR metabolism and signalling. Nature Plants 2, 16013 (2016). https://doi.org/10.1038/nplants.2016.13

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2016.13

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing