Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

V-ATPase activity in the TGN/EE is required for exocytosis and recycling in Arabidopsis

Abstract

In plants, vacuolar H+-ATPase (V-ATPase) activity acidifies both the trans-Golgi network/early endosome (TGN/EE) and the vacuole. This dual V-ATPase function has impeded our understanding of how the pH homeostasis within the plant TGN/EE controls exo- and endocytosis. Here, we show that the weak V-ATPase mutant deetiolated3 (det3) displayed a pH increase in the TGN/EE, but not in the vacuole, strongly impairing secretion and recycling of the brassinosteroid receptor and the cellulose synthase complexes to the plasma membrane, in contrast to mutants lacking tonoplast-localized V-ATPase activity only. The brassinosteroid insensitivity and the cellulose deficiency defects in det3 were tightly correlated with reduced Golgi and TGN/EE motility. Thus, our results provide strong evidence that acidification of the TGN/EE, but not of the vacuole, is indispensable for functional secretion and recycling in plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: pH in the TGN/EE of det3 is increased.
Figure 2: Reduced Golgi and TGN/EE motilities in det3.
Figure 3: Endocytic trafficking from TGN/EE to the vacuole is delayed in det3.
Figure 4: Secretion of BRI1 in det3 is reduced.
Figure 5: BRI1 recycling from TGN/EE to PM is reduced in det3.
Figure 6: Delivery of CesA complexes to the PM is impaired in det3.

Similar content being viewed by others

References

  1. Dettmer, J., Hong-Hermesdorf, A., Stierhof, Y.-D. & Schumacher, K. Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell 18, 715–730 (2006).

    Article  CAS  Google Scholar 

  2. Viotti, C. et al. Endocytic and secretory traffic in Arabidopsis merge in the trans-Golgi network/early endosome, an independent and highly dynamic organelle. Plant Cell 22, 1344–1357 (2010).

    Article  CAS  Google Scholar 

  3. Nishi, T. & Forgac, M. The vacuolar (H+)-ATPases – nature's most versatile proton pumps. Nature Rev. Mol. Cell Biol. 3, 94–103 (2002).

    Article  CAS  Google Scholar 

  4. Kane, P. M. The where, when, and how of organelle acidification by the yeast vacuolar H+-ATPase. Microbiol. Mol. Biol. Rev. 70, 177–191 (2006).

    Article  CAS  Google Scholar 

  5. Huang, C. & Chang, A. pH-dependent cargo sorting from the Golgi. J. Biol. Chem. 286, 10058–10065 (2011).

    Article  CAS  Google Scholar 

  6. Dettmer, J. et al. Essential role of the V-ATPase in male gametophyte development. Plant J. 41, 117–124 (2005).

    Article  CAS  Google Scholar 

  7. Krebs, M. et al. Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation. Proc. Natl Acad. Sci. USA 107, 3251–3256 (2010).

    Article  CAS  Google Scholar 

  8. Brüx, A. et al. Reduced V-ATPase activity in the trans-Golgi network causes oxylipin-dependent hypocotyl growth inhibition in Arabidopsis. Plant Cell 20, 1088–1100 (2008).

    Article  Google Scholar 

  9. Schumacher, K. et al. The Arabidopsis det3 mutant reveals a central role for the vacuolar H+-ATPase in plant growth and development. Genes Dev. 13, 3259–3270 (1999).

    Article  CAS  Google Scholar 

  10. Cabrera y Poch, H. L., Peto, C. A. & Chory, J. A mutation in the Arabidopsis DET3 gene uncouples photoregulated leaf development from gene expression and chloroplast biogenesis. Plant J. 4, 671–682 (1993).

    Article  Google Scholar 

  11. Caño-Delgado, A., Penfield, S., Smith, C., Catley, M. & Bevan, M. Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant J. 34, 351–362 (2003).

    Article  Google Scholar 

  12. Geldner, N., Hyman, D. L., Wang, X., Schumacher, K. & Chory, J. Endosomal signaling of plant steroid receptor kinase BRI1. Genes Dev. 21, 1598–1602 (2007).

    Article  CAS  Google Scholar 

  13. Irani, N. G. et al. Fluorescent castasterone reveals BRI1 signaling from the plasma membrane. Nature Chem. Biol. 8, 583–589 (2012).

    Article  CAS  Google Scholar 

  14. Paredez, A. R., Somerville, C. R. & Ehrhardt, D. W. Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312, 1491–1495 (2006).

    Article  CAS  Google Scholar 

  15. McFarlane, H. E., Döring, A. & Persson, S. The cell biology of cellulose synthesis. Annu. Rev. Plant Biol. 65, 69–94 (2014).

    Article  CAS  Google Scholar 

  16. Gutierrez, R., Lindeboom, J. J., Paredez, A. R., Emons, A. M. C. & Ehrhardt, D. W. Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nature Cell Biol. 11, 797–806 (2009).

    Article  CAS  Google Scholar 

  17. Crowell, E. F. et al. Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis. Plant Cell 21, 1141–1154 (2009).

    Article  CAS  Google Scholar 

  18. Gjetting, S. K., Ytting, C. K., Schulz, A. & Fuglsang, A. T. Live imaging of intra- and extracellular pH in plants using pHusion, a novel genetically encoded biosensor. J. Exp. Bot. 63, 3207–3218 (2012).

    Article  CAS  Google Scholar 

  19. Sanderfoot, A. A., Kovaleva, V., Bassham, D. C. & Raikhel, N. V. Interactions between syntaxins identify at least five SNARE complexes within the Golgi/prevacuolar system of the Arabidopsis cell. Mol. Biol. Cell 12, 3733–3743 (2001).

    Article  CAS  Google Scholar 

  20. Yang, X., Xu, P., Xiao, Y., Xiong, X. & Xu, T. Domain requirement for the membrane trafficking and targeting of syntaxin 1A. J. Biol. Chem. 281, 15457–15463 (2006).

    Article  CAS  Google Scholar 

  21. Wee, E. G.-T., Sherrier, D. J., Prime, T. A. & Dupree, P. Targeting of active sialyltransferase to the plant Golgi apparatus. Plant Cell 10, 1759–1768 (1998).

    Article  CAS  Google Scholar 

  22. Geldner, N., Friml, J., Stierhof, Y.-D., Jürgens, G. & Palme, K. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413, 425–428 (2001).

    Article  CAS  Google Scholar 

  23. Yin, Y. et al. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109, 181–191 (2002).

    Article  CAS  Google Scholar 

  24. Russinova, E. et al. Heterodimerization and endocytosis of Arabidopsis brassinosteroid receptors BRI1 and AtSERK3 (BAK1). Plant Cell 16, 3216–3229 (2004).

    Article  CAS  Google Scholar 

  25. Friedrichsen, D. M., Joazeiro, C. A. P., Li, J., Hunter, T. & Chory, J. Brassinosteroid-insensitive-1 is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase. Plant Physiol. 123, 1247–1255 (2000).

    Article  CAS  Google Scholar 

  26. Jelínková, A. et al. Probing plant membranes with FM dyes: tracking, dragging or blocking? Plant J. 61, 883–892 (2010).

    Article  Google Scholar 

  27. Asami, T. et al. Characterization of brassinazole, a triazole-type brassinosteroid biosynthesis inhibitor. Plant Physiol. 123, 93–99 (2000).

    Article  CAS  Google Scholar 

  28. Desprez, T. et al. Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 104, 15572–15577 (2007).

    Article  CAS  Google Scholar 

  29. Anderson, C. T., Carroll, A., Akhmetova, L. & Somerville, C. Real-time imaging of cellulose reorientation during cell wall expansion in Arabidopsis roots. Plant Physiol. 152, 787–796 (2010).

    Article  CAS  Google Scholar 

  30. Zhang, G. F., Driouich, A. & Staehelin, L. A. Effect of monensin on plant Golgi: re-examination of the monensin-induced changes in cisternal architecture and functional activities of the Golgi apparatus of sycamore suspension-cultured cells. J. Cell Sci. 104, 819–831 (1993).

    CAS  PubMed  Google Scholar 

  31. Ma, B. et al. Arabidopsis vacuolar H+-ATPase (V-ATPase) B subunits are involved in actin cytoskeleton remodeling via binding to, bundling, and stabilizing F-actin. J. Biol. Chem. 287, 19008–19017 (2012).

    Article  CAS  Google Scholar 

  32. Sparkes, I. A. Motoring around the plant cell: insights from plant myosins. Biochem. Soc. Trans. 38, 833–838 (2010).

    Article  CAS  Google Scholar 

  33. Maranda, B. et al. Intra-endosomal pH-sensitive recruitment of the Arf-nucleotide exchange factor ARNO and Arf6 from cytoplasm to proximal tubule endosomes. J. Biol. Chem. 276, 18540–18550 (2001).

    Article  CAS  Google Scholar 

  34. Marshansky, V. & Futai, M. The V-type H+-ATPase in vesicular trafficking: targeting, regulation and function. Curr. Opin. Cell Biol. 20, 415–426 (2008).

    Article  CAS  Google Scholar 

  35. Gidon, A. et al. Endosomal GPCR signaling turned off by negative feedback actions of PKA and v-ATPase. Nature Chem. Biol. 10, 707–709 (2014).

    Article  CAS  Google Scholar 

  36. Sun, Y. et al. Structure reveals that BAK1 as a co-receptor recognizes the BRI1-bound brassinolide. Cell Res. 23, 1326–1329 (2013).

    Article  CAS  Google Scholar 

  37. Martinière, A. et al. In vivo intracellular pH measurements in tobacco and Arabidopsis reveal an unexpected pH gradient in the endomembrane system. Plant Cell 25, 4028–4043 (2013).

    Article  Google Scholar 

  38. Shen, J. et al. Organelle pH in the Arabidopsis endomembrane system. Mol. Plant 6, 1419–1437 (2013).

    Article  CAS  Google Scholar 

  39. Schumacher, K. pH in the plant endomembrane system – an import and export business. Curr. Opin. Plant Biol. 22, 71–76 (2014).

    Article  CAS  Google Scholar 

  40. Boutté, Y. et al. ECHIDNA-mediated post-Golgi trafficking of auxin carriers for differential cell elongation. Proc. Natl Acad. Sci. USA 110, 16259–16264 (2013).

    Article  Google Scholar 

  41. Gendre, D. et al. Trans-Golgi network localized ECHIDNA/Ypt interacting protein complex is required for the secretion of cell wall polysaccharides in Arabidopsis. Plant Cell 25, 2633–2646 (2013).

    Article  CAS  Google Scholar 

  42. Kang, J. S. et al. Salt tolerance of Arabidopsis thaliana requires maturation of N-glycosylated proteins in the Golgi apparatus. Proc. Natl Acad. Sci. USA 105, 5933–5938 (2008); correction 105, 7893 (2008).

    Article  CAS  Google Scholar 

  43. Hurtado-Lorenzo, A. et al. V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway. Nature Cell Biol. 8, 124–136 (2006).

    Article  CAS  Google Scholar 

  44. Sampathkumar, A. et al. Patterning and lifetime of plasma membrane-localized cellulose synthase is dependent on actin organization in Arabidopsis interphase cells. Plant Physiol. 162, 675–688 (2013).

    Article  CAS  Google Scholar 

  45. Schlücking, K. et al. A new β-estradiol-inducible vector set that facilitates easy construction and efficient expression of transgenes reveals CBL3-dependent cytoplasm to tonoplast translocation of CIPK5. Mol. Plant 6, 1814–1829 (2013).

    Article  Google Scholar 

  46. Hajdukiewicz, P., Svab, Z. & Maliga, P. The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol. Biol. 25, 989–994 (1994).

    Article  CAS  Google Scholar 

  47. Schaaf, G. et al. AtIREG2 encodes a tonoplast transport protein involved in iron-dependent nickel detoxification in Arabidopsis thaliana roots. J. Biol. Chem. 281, 25532–25540 (2006).

    Article  CAS  Google Scholar 

  48. Ho, M. N., Hill, K. J., Lindorfer, M. A. & Stevens, T. H. Isolation of vacuolar membrane H+-ATPase-deficient yeast mutants; the VMA5 and VMA4 genes are essential for assembly and activity of the vacuolar H+-ATPase. J. Biol. Chem. 268, 221–227 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yanhai Yin (Iowa State University, Ames, USA) for providing the anti-BES1 antibody, Niko Geldner (Université de Lausanne, Switzerland) for sharing pBRI1:BRI1-GFP and pHS:BRI1-YFP lines, Daniël Van Damme (VIB-Ghent University, Belgium) for advice in microscopy, and Martine De Cock (Ghent University, Belgium) for help in preparing the manuscript. This work was supported by the Marie Curie Initial Training Network ‘BRAVISSIMO’ (grant no. PITN-GA-2008-215118) to E.R., the Odysseus program of the Research Foundation-Flanders to J.F., the Max-Planck Gesellschaft to A.D., Y.Z., L.N. and S.P., the European Union Seventh Framework Programme (FP7 2007–2013) under Grant Agreement 263916 (WallTrac, Marie Curie Initial Training Network) to P.K. and the Deutsche Forschungsgemeinschaft (SFB1101 and TPA02) to K.S. Y.L. is indebted to the Belgian Science Policy Office (BELSPO) for a postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Y.L., S.S., A.D., N.G.I., L.N., J.F, K.S., S.P. and E.R. conceived the study and designed the experiments. Y.L. performed all BR-related work, A.D., Y.Z. and P.K. performed all CesA-related work, S.S. constructed the pH sensor and did all pH measurements, N.G.I. did the AFCS uptake, Y.L., A.D., Y.Z., N.G.I., S.D.R. and I.V.H. generated materials, Y.-D. S. and K.S. did the TEM, Y.L., A.D., Y.Z., N.G.I., L.N., P.K., E.M., and V.B. did imaging, J.W. performed the chemical synthesis of AFCS, Y.L., A.D., N.G.I., S.D.R., K.S., S.P. and E.R. wrote the manuscript. All authors commented on the results and the manuscript.

Corresponding authors

Correspondence to Karin Schumacher, Staffan Persson or Eugenia Russinova.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Scholl, S., Doering, A. et al. V-ATPase activity in the TGN/EE is required for exocytosis and recycling in Arabidopsis. Nature Plants 1, 15094 (2015). https://doi.org/10.1038/nplants.2015.94

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2015.94

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing