Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transcription and processing of primary microRNAs are coupled by Elongator complex in Arabidopsis

Abstract

MicroRNAs (miRNAs) are a class of small non-coding RNAs that play important regulatory roles in gene expression in plants and animals. The biogenesis of miRNAs involves the transcription of primary miRNAs (pri-miRNAs) by RNA polymerase II (RNAPII) and subsequent processing by Dicer or Dicer-like (DCL) proteins. Here we show that the Elongator complex is involved in miRNA biogenesis in Arabidopsis. Disruption of Elongator reduces RNAPII occupancy at miRNA loci and pri-miRNA transcription. We also show that Elongator interacts with the DCL1-containing Dicing complex and lack of Elongator impairs DCL1 localization in the nuclear Dicing body. Finally, we show that pri-miRNA transcripts as well as DCL1 associate with the chromatin of miRNA genes and the chromatin association of DCL1 is compromised in the absence of Elongator. Our results suggest that Elongator functions in both transcription and processing of pri-miRNAs and probably couples these two processes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification and characterization of soe1 and soe2.
Figure 2: Elongator promotes the transcription of MIRs.
Figure 3: Elongator interacts with pri-miRNA processing factors.
Figure 4: Disruption of Elongator complex affects DCL1 localization.
Figure 5: Pri-miRNAs and DCL1 are associated with chromatin.
Figure 6: Association of DCL1 with chromatin is dependent on RNA transcripts and Elongator.

Similar content being viewed by others

References

  1. Rogers, K. & Chen, X. Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25, 2383–2399 (2013).

    Article  CAS  Google Scholar 

  2. Voinnet, O. Origin, biogenesis, and activity of plant microRNAs. Cell 136, 669–687 (2009).

    Article  CAS  Google Scholar 

  3. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  Google Scholar 

  4. Kim, V. N. MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell. Biol. 6, 376–385 (2005).

    Article  CAS  Google Scholar 

  5. Kurihara, Y. & Watanabe, Y. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc. Natl Acad. Sci. USA 101, 12753–12758 (2004).

    Article  CAS  Google Scholar 

  6. Park, M. Y., Wu, G., Gonzalez-Sulser, A., Vaucheret, H. & Poethig, R. S. Nuclear processing and export of microRNAs in Arabidopsis. Proc. Natl Acad. Sci. USA 102, 3691–3696 (2005).

    Article  CAS  Google Scholar 

  7. Dong, Z., Han, M. H. & Fedoroff, N. The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proc. Natl Acad. Sci. USA 105, 9970–9975 (2008).

    Article  CAS  Google Scholar 

  8. Liu, Q., Shi, L. & Fang, Y. Dicing bodies. Plant Physiol. 158, 61–66 (2012).

    Article  CAS  Google Scholar 

  9. Yu, B. et al. The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis. Proc. Natl Acad. Sci. USA 105, 10073–10078 (2008).

    Article  CAS  Google Scholar 

  10. Ren, G. et al. Regulation of miRNA abundance by RNA binding protein TOUGH in Arabidopsis. Proc. Natl Acad. Sci. USA 109, 12817–12821 (2012).

    Article  CAS  Google Scholar 

  11. Laubinger, S. et al. Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 105, 8795–8800 (2008).

    Article  CAS  Google Scholar 

  12. Kim, S. et al. Two cap-binding proteins CBP20 and CBP80 are involved in processing primary MicroRNAs. Plant Cell Physiol. 49, 1634–1644 (2008).

    Article  CAS  Google Scholar 

  13. Gregory, B. D. et al. A link between RNA metabolism and silencing affecting Arabidopsis development. Dev. Cell 14, 854–866 (2008).

    Article  CAS  Google Scholar 

  14. Wu, X. et al. A role for the RNA-binding protein MOS2 in microRNA maturation in Arabidopsis. Cell Res. 23, 645–657 (2013).

    Article  CAS  Google Scholar 

  15. Wang, L. et al. NOT2 proteins promote polymerase II-dependent transcription and interact with multiple MicroRNA biogenesis factors in Arabidopsis. Plant Cell 25, 715–727 (2013).

    Article  CAS  Google Scholar 

  16. Zhang, S., Xie, M., Ren, G. & Yu, B. CDC5, a DNA binding protein, positively regulates posttranscriptional processing and/or transcription of primary microRNA transcripts. Proc. Natl Acad. Sci. USA 110, 17588–17593 (2013).

    Article  CAS  Google Scholar 

  17. Zhang, S., Liu, Y. & Yu, B. PRL1, an RNA-binding protein, positively regulates the accumulation of miRNAs and siRNAs in Arabidopsis. PLoS Genet. 10, e1004841 (2014).

    Article  Google Scholar 

  18. Baumberger, N. & Baulcombe, D. C. Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc. Natl Acad. Sci. USA 102, 11928–11933 (2005).

    Article  CAS  Google Scholar 

  19. Qi, Y., Denli, A. M. & Hannon, G. J. Biochemical specialization within Arabidopsis RNA silencing pathways. Mol. Cell 19, 421–428 (2005).

    Article  CAS  Google Scholar 

  20. Lauressergues, D. et al. Primary transcripts of microRNAs encode regulatory peptides. Nature 520, 90–93 (2015).

    Article  CAS  Google Scholar 

  21. Pawlicki, J. M. & Steitz, J. A. Primary microRNA transcript retention at sites of transcription leads to enhanced microRNA production. J. Cell Biol. 182, 61–76 (2008).

    Article  CAS  Google Scholar 

  22. Kim, Y. K. & Kim, V. N. Processing of intronic microRNAs. EMBO J. 26, 775–783 (2007).

    Article  CAS  Google Scholar 

  23. Morlando, M. et al. Primary microRNA transcripts are processed co-transcriptionally. Nature Struct. Mol. Biol. 15, 902–909 (2008).

    Article  CAS  Google Scholar 

  24. Otero, G. et al. Elongator, a multisubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation. Mol. Cell 3, 109–118 (1999).

    Article  CAS  Google Scholar 

  25. Wittschieben, B. O. et al. A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Mol. Cell 4, 123–128 (1999).

    Article  CAS  Google Scholar 

  26. Rahl, P. B., Chen, C. Z. & Collins, R. N. Elp1p, the yeast homolog of the FD disease syndrome protein, negatively regulates exocytosis independently of transcriptional elongation. Mol. Cell 17, 841–853 (2005).

    Article  CAS  Google Scholar 

  27. Huang, B., Johansson, M. J. & Bystrom, A. S. An early step in wobble uridine tRNA modification requires the Elongator complex. RNA 11, 424–436 (2005).

    Article  CAS  Google Scholar 

  28. Krogan, N. J. & Greenblatt, J. F. Characterization of a six-subunit holo-elongator complex required for the regulated expression of a group of genes in Saccharomyces cerevisiae. Mol. Cell Biol. 21, 8203–8212 (2001).

    Article  CAS  Google Scholar 

  29. DeFraia, C. & Mou, Z. The role of the Elongator complex in plants. Plant Signal. Behav. 6, 19–22 (2011).

    Article  CAS  Google Scholar 

  30. Nelissen, H. et al. Plant Elongator regulates auxin-related genes during RNA polymerase II transcription elongation. Proc. Natl Acad. Sci. USA 107, 1678–1683 (2010).

    Article  CAS  Google Scholar 

  31. Wang, W. et al. An importin β protein negatively regulates MicroRNA activity in Arabidopsis. Plant Cell 23, 3565–3576 (2011).

    Article  CAS  Google Scholar 

  32. Nelissen, H. et al. The elongata mutants identify a functional Elongator complex in plants with a role in cell proliferation during organ growth. Proc. Natl Acad. Sci. USA 102, 7754–7759 (2005).

    Article  CAS  Google Scholar 

  33. Zhou, X., Hua, D., Chen, Z., Zhou, Z. & Gong, Z. Elongator mediates ABA responses, oxidative stress resistance and anthocyanin biosynthesis in Arabidopsis. Plant J. 60, 79–90 (2009).

    Article  CAS  Google Scholar 

  34. Sunkar, R., Kapoor, A. & Zhu, J. K. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18, 2051–2065 (2006).

    Article  CAS  Google Scholar 

  35. Allen, R. S. et al. Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. Proc. Natl Acad. Sci. USA 104, 16371–16376 (2007).

    Article  CAS  Google Scholar 

  36. Fang, Y. & Spector, D. L. Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Curr. Biol. 17, 818–823 (2007).

    Article  CAS  Google Scholar 

  37. Song, L., Han, M. H., Lesicka, J. & Fedoroff, N. Arabidopsis primary microRNA processing proteins HYL1 and DCL1 define a nuclear body distinct from the Cajal body. Proc. Natl Acad. Sci. USA 104, 5437–5442 (2007).

    Article  CAS  Google Scholar 

  38. Hamilton, A., Voinnet, O., Chappell, L. & Baulcombe, D. Two classes of short interfering RNA in RNA silencing. EMBO J. 21, 4671–4679 (2002).

    Article  CAS  Google Scholar 

  39. Sobell, H. M. Actinomycin and DNA transcription. Proc. Natl Acad. Sci. USA 82, 5328–5331 (1985).

    Article  CAS  Google Scholar 

  40. Zheng, B. et al. Intergenic transcription by RNA polymerase II coordinates Pol IV and Pol V in siRNA-directed transcriptional gene silencing in Arabidopsis. Genes Dev. 23, 2850–2860 (2009).

    Article  CAS  Google Scholar 

  41. Tagami, Y., Motose, H. & Watanabe, Y. A dominant mutation in DCL1 suppresses the hyl1 mutant phenotype by promoting the processing of miRNA. RNA 15, 450–458 (2009).

    Article  CAS  Google Scholar 

  42. Hawkes, N. A. et al. Purification and characterization of the human elongator complex. J. Biol. Chem. 277, 3047–3052 (2002).

    Article  CAS  Google Scholar 

  43. Ben Chaabane, S. et al. STA1, an Arabidopsis pre-mRNA processing factor 6 homolog, is a new player involved in miRNA biogenesis. Nucleic Acids Res. 41, 1984–1997 (2013).

    Article  CAS  Google Scholar 

  44. Esberg, A., Huang, B., Johansson, M. J. & Bystrom, A. S. Elevated levels of two tRNA species bypass the requirement for elongator complex in transcription and exocytosis. Mol. Cell 24, 139–148 (2006).

    Article  CAS  Google Scholar 

  45. Creppe, C. & Buschbeck, M. Elongator: an ancestral complex driving transcription and migration through protein acetylation. J. Biomed. Biotechnol. 2011, 924898 (2011).

    Article  Google Scholar 

  46. Svejstrup, J. Q. Elongator complex: how many roles does it play? Curr. Opin. Cell Biol. 19, 331–336 (2007).

    Article  CAS  Google Scholar 

  47. Wang, Y. et al. The Arabidopsis elongator complex subunit2 epigenetically regulates plant immune responses. Plant Cell 25, 762–776 (2013).

    Article  CAS  Google Scholar 

  48. Kruk, J. A., Dutta, A., Fu, J., Gilmour, D. S. & Reese, J. C. The multifunctional Ccr4-Not complex directly promotes transcription elongation. Genes Dev. 25, 581–593 (2011).

    Article  CAS  Google Scholar 

  49. Dugas, D. V. & Bartel, B. Sucrose induction of Arabidopsis miR398 represses two Cu/Zn superoxide dismutases. Plant Mol. Biol. 67, 403–417 (2008).

    Article  CAS  Google Scholar 

  50. Schneeberger, K. et al. SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nature Methods 6, 550–551 (2009).

    Article  CAS  Google Scholar 

  51. Earley, K. W. et al. Gateway-compatible vectors for plant functional genomics and proteomics. Plant J. 45, 616–629 (2006).

    Article  CAS  Google Scholar 

  52. Manavella, P. A. et al. Fast-forward genetics identifies plant CPL phosphatases as regulators of miRNA processing factor HYL1. Cell 151, 859–870 (2012).

    Article  CAS  Google Scholar 

  53. Kim, Y. J. et al. The role of Mediator in small and long noncoding RNA production in Arabidopsis thaliana. EMBO J. 30, 814–822 (2011).

    Article  CAS  Google Scholar 

  54. Zhang, H. et al. An Rrp6-like protein positively regulates noncoding RNA levels and DNA methylation in Arabidopsis. Mol. Cell 54, 418–430 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Z. Gong, X. Cao, Y. Fang, A. Millar and B. Bartel for sharing Arabidopsis mutants and transgenic lines. This work was supported by grants from the National Science Foundation of China (grant nos. 31225015, 31330042 and 31421001) to Y.Q.

Author information

Authors and Affiliations

Authors

Contributions

X.F. and Y.Q. conceived this project, designed experiments and analysed data. X.F., Y.C. and Y.L. performed the experiments. Y.Q. and X.F. wrote the manuscript. All authors discussed the results and made comments on the manuscript.

Corresponding author

Correspondence to Yijun Qi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Cui, Y., Li, Y. et al. Transcription and processing of primary microRNAs are coupled by Elongator complex in Arabidopsis. Nature Plants 1, 15075 (2015). https://doi.org/10.1038/nplants.2015.75

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2015.75

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing